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Abstract—Rational decision-making requires governance of
attainable trade-offs between conflicting goals, uncertainties
and risks, which in turn demands both novel modeling
methods and appropriate modeling technology. The paper
deals with recent developments in applied modeling that
have been motivated by the requirements for model-based
support of solving complex problems. It starts with pre-
senting novel modeling technology and integrated methods
of integrated model analysis aimed at supporting decision-
makers in diversified ways of analysis of the underlying
decision problem. Then, multicriteria analysis is discussed
in more detail with a focus on an extension of the reference
point optimization, which supports an effective analysis
of trade-offs between conflicting criteria aiming at anal-
ysis of attainable goals. Next, new approaches to coping
with endogenous uncertainty and catastrophic risks are
characterized, followed by a summary of issues related to
transparency and public understanding.

Index Terms—multicriteria optimization, decision-making
support, uncertainty, risk, structured modeling, modeling
systems and languages, model management, database man-
agement systems.

I. I NTRODUCTION

Everybody deals with conflicting goals, uncertainties,
and diverse risks all the time. In most cases we manage
even complex problems by successfully making decisions
based on experience and intuition. Consider driving a car,
for example. Each driver controls a car subconsciously
applying quite complex principles of adaptive control,
typically without even understanding the dynamics of
the car.1 Moreover, in a congested trafficeach driver
constantly monitors the behavior of other drivers and
every few seconds subconsciously predicts their behavior,
assessing the risk related to various combinations of the
predicted behavior. Given the complexity of this everyday
activity, it is amazing how well (measured e.g., by the
frequency of mistakes that lead to accidents) the problem
of controlling cars is solved by drivers with very diversi-
fied backgrounds and experience. If every driver can do
this, then one should ask why formal methods may help
solving problems that seem to be simpler.

The simplest answer to this question may result from
a more careful consideration of diverse approaches to

This paper is based on “Rational Governance of Conflicting Goals,
Uncertainties and Risks,” by M. Makowski, which appeared in the
Proceedings of the 2007 IEEE International Conference on Systems,
Man, and Cybernetics, Montreal, Canada, October 2007.c© 2007 IEEE.

1Control engineers could solve differential equations to optimize the
way they drive a car, but they do not need to do so.

analysis of relations between decisions and their conse-
quences. It is commonly known that accidents do happen.
However, everybody who drives either evaluates a utility
of driving higher than a disutility of an unlikelyaccident,
or does not even make such a kind of analysis. Analysis
of catastrophic risks (i.e., related to rare events with high
consequences) is actually a difficult problem, which is
beyond the scope of this paper. Yet, several key problems
related to analysis of trade-offs between conflicting goals
can be illustrated by even very simple deterministic prob-
lems, e.g., a choice from a set of discrete alternatives.

A more complete justification of the need for rational
management of conflicting goals, uncertainties and risks
comes from diverse applications of science-based support
for solving complex problems in policy-making, industry,
and management. While it is possible to accumulate
enough knowledge and experience to solve diverse prob-
lems, often even without understanding all the underlying
mechanisms, in many other decision-making situations
mathematical models and adequate methods of model-
based problem analysis are necessary for finding and/or
justifying rational decisions. Such situations are charac-
terized by at least one of the following issues:
• Complex relations between the decisions and the corre-

sponding outcomes (measures of consequences of their
implementations).
• Difficult to assess trade-offs between attainable goals

(preferred values of outcomes).
• Uncertainties and risks related to the decision-making

situation.
• The needs for supporting the transparency of the

decision-making process and enhancing public under-
standing of problems and the considered solutions.
Rational governance of conflicting goals, uncertainties

and risks requires concerted handling of all pertinent
elements of the decision-making process. A number of
methods has been developed for dealing witheach of
the issues listed above. The craft of decision-making
support consists of adopting an appropriate approach
to each element of the decision-making process while
remembering that the strength of a chain is determined
by its weakest link.

The remaining part of the paper is organized as follows.
The next Section presents the characteristics of models,
and of modeling processes aimed at decision-making
support for complex problems. Section III deals with
multicriteria analysis of trade-offs between conflicting
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goals. Novel approaches to coping with endogenous un-
certainties and catastrophic risks are discussed in Sec-
tion IV. Finally, the requirements for transparency and
public understanding are summarized in Section V.

II. D ECISIONS AND OUTCOMES

Rational decision-making always involves analysis of
relations between alternative decisions and the corre-
sponding consequences. One distinguishes two types of
problems:2

• There is a given set of (at least two) discrete alterna-
tives. One has to decide which should be selected. In
some situations a ranking of alternatives is additionally
required. Further on we refer to this type of problem
as Discrete Alternative (DA)choice problem. Typical
examples include: selecting a car, a house, a project.
• A decision is composed of a set of value(s) selected

from an infinite3 set of feasible decisions. Such a set is
typically given implicitly, i.e., by a specification of the
relations between decisions, optionally also involving
other factors that need to be considered when making
the decision. A simple (in terms of number of decision
variables) example: decide the amount of kerosene to
be tanked in an aircraft. A complex problem: decide
a portfolio of structural and financial instruments for
integrated management of catastrophic flood risks.
Although there are methods and tools specialized for

each of these two types of problems, there are also many
common methodological issues. Therefore it is worth to
consider both of them in terms of the mathematical pro-
gramming, which provides a powerful analytical frame-
work for analysis of different approaches to decision-
making.

A mathematical model describes the modeled problem
by means of variables that are abstract representations of
those elements of the problem which need to be consid-
ered in order to evaluate the consequences of implement-
ing a decision (usually represented by a vector composed
of many variables). More precisely, such a model is
typically developed using the following concepts:
• Decisions (inputs)x , which are controlled by the user;
• External decisions (inputs)z , which are not controlled

by the user;
• Outcomes (outputs)y , used for measuring the conse-

quences of the implementation of inputs;
• Auxiliary variables introduced for various reasons (e.g.,

to simplify model specification, or to allow for easier
computational tasks); and
• Relations between decisionsx andz , and outcomesy ;

such relations are typically presented in the form:

y = F(x , z ), (1)

whereF(·) is a vector of functions.

2We discuss here only a single decision-maker support; therefore we
refrain from considering issues related to group decision-making.

3Or at least large enough to practically exclude analysis of each
individual alternative.

M a t h e m a t i c a l  m o d e l
y  =  F  ( x , z )

U s e r

y
P ( x , y )

z

Figure 1. Structure of the use of a mathematical model for decision-
making support.

A rational decision-making support aims at finding
values of decision variablesx which will result in a
solution of the problem that best fits preferences of the
decision-maker. Such preferences can be represented by
a preferential structureP (x , y), which typically induces
partial ordering of solutions obtained for different com-
binations of values of decisions. Thus, the basic function
of decision-making support is to help the decision-maker
find values for his/her decision variablesx which will
result in a solution of the problem that best fits his/her
preferences represented byP (x , y).

A typical decision problem has an infinite number of
solutions therefore the relations (1) need to be represented
by a mathematical model. One should note that also the
discrete alternative choice problem can be represented as
an algebraic model. This is particularly needed if values of
criteria for (possibly many) alternatives must be computed
from parameterized complex relations, see e.g., [1], and/or
for problems with a large number of alternatives.

A structure of the use of a model for decision-making
support is illustrated in Figure 1. Such a support is
composed of two stages:
• Development and maintenance of a model that ade-

quately represents relations (1);
• Organizing a process of the model analysis in which

the user can specify and modify his/her preferences
upon combining their own experience and intuition with
learning about the problem from the analyses of various
solutions.
These two stages are briefly summarized below.

A. Modeling process

Modeling is a network of activities, often referred to as
a modeling process. Such a process should be supported
by a modeling technology that is a craft of a systematic
treatment of modeling tasks using a combination of per-
tinent elements of applied science, experience, intuition,
and modeling resources. The latter being composed of
knowledge encoded in models, data, and modeling tools.
In most publications which deal with modeling, small
problems are used as an illustration of the modeling
methods and tools presented. Often, these can also be
applied to large problems. This is especially true for the
DA type of problems for which the model development
stage consists of selecting sets of alternatives and at-
tributes, adapting an existing data management utility, and

1034 JOURNAL OF COMPUTERS, VOL. 4, NO. 10, OCTOBER 2009

© 2009 ACADEMY PUBLISHER



collecting the data. While also for this type of problems
it is strongly advisable to follow principles of structured
modeling, conforming to these principles is practically a
must for model-based support of any complex problem.
We stress that the complexity is characterized primarily
not by the size, but rather by the structure of the problem
and by the requirements for the corresponding modeling
process.

Here, we outline the modeling process based on the
Structured Modeling Technology(SMT) [2]. SMT is
based on two successful paradigms: theStructured Mod-
eling (SM) paradigm developed by Geoffrion [3], which
provides a proven methodological background, and the
Object-Oriented Programming(OOP) paradigm which,
combined with DBMS, XML, and the Web technolo-
gies, provides an efficient and robust implementation
framework. SMT is used through the Web interface,
and all persistent elements of the modeling process are
maintained by a DBMS. Thus the Web and a DBMS
provide an integrating framework for collaborative work
of interdisciplinary teams that use SMT applications for
various elements of the modeling process.

A detailed presentation of SMT can be found in [2].
Here we only outline basic features of three SMT com-
ponents, not including the analysis of trade-offs between
conflicting goals, which is discussed in Section III.

1) Model Specification:Model specification is a sym-
bolic definition of the model composed of variables and
algebraic relations between them. In order to efficiently
handle large and complex models the specification ex-
ploits the power of OOP combined with core concepts
of SM, such as sets, relations, hierarchy, primitive and
compound entities. Primitive entities have attributes and
functions common for the derived types, namely param-
eters, variables, and constraints (representing parametric
relations between variables), each possessing additional
attributes specific for each of them. Compound entities
are derived from the corresponding primitive entities and
accompanying indexing structures.

2) Data: Data for large models comes from different
sources (also as results from analyses of various models),
and larger subsets of data are maintained by teams. SMT
exploits the concept ofData Warehouse(DW) for support-
ing persistency and efficiency of data handling. The latter
is achieved by defining a base dataset, and supporting
incremental modifications of this set (which allows for
avoiding duplications of large amounts of data needed
in more traditional approaches requiring the storage of
complete datasets even when only a small fraction of the
data is modified).

The data structures of a DW are generated automati-
cally from the model specification. This not only assures
consistency between the declarations of the parameters
in the model specification and the data used for their
instantiations, but also saves substantial resources that
would otherwise have been needed for preparing and
maintaining data structures for any complex model.

3) Documentation:SMT exploits the XML capabili-
ties for handling the documentation. In SMT an XML
document type is defined for enabling a single-source
symbolic model specification that can be used for all
relevant tasks of the whole modeling process. The doc-
umentation of other elements of the modeling process is
done on different levels of detail. The basic information
(such as date, user name, options requested for each object
to be used) is automatically stored in the DW by each
SMT application. Additionally, a user accessing a DB
with privileges for data creation or modification is asked
to write comments, which are logged.

B. Model analysis

Development of a proper model representation of the
relations between decisions and their consequences (out-
comes) is obviously a key necessary condition for appro-
priate support of rational decision-making. However, it
has to be stressed that this is not a sufficient condition:
one also needs a proper support for model analysis. Both
these elements complement each other, and the quality of
the weaker one determines the quality of the decision-
making support.

Model analysis is probably the least-discussed element
of the modeling process. This results from the focus that
each modeling paradigm has on a specific type of analysis.
However, the essence of model-based decision-making
support is precisely the opposite; namely, to support
various ways of model analysis, and to provide efficient
tools for evaluations of various solutions.

The traditional approach to decision-making support
is to represent a decision problem as a mathematical
programming problem in the form:

x̂ = arg min
x∈X0

P(x ,F(x , z )), (2)

which provides optimal decisionŝx . However, this ap-
proach does not work for complex decision-making prob-
lems. The main reasons for that are:
• There is no unique representation of preferencesP(·);
• There is no unique definition of the set of admissible

solutionsX0 (becauseX0 is defined also by the bounds
for values of the criteria not included inP(·));
• Sensitivity analysis recommended for post-optimization

problem analysis has very limited applicability to actual
complex problems, see e.g., [4]; and
• Large optimization problems usually have an infinite

number of very different solutions with almost the same
value of the original goal function, see e.g., [4].
Thus, optimization in supporting decision making for

solving complex problems has a quite different role from
its function in some engineering applications or in very
early implementations of Operational Research (OR) for
solving well-structured military or production planning
problems. This point has already been clearly made e.g.,
by Ackoff [5], and by Chapman [6], who characterized
the traditional way of using OR methods for solving prob-
lems as composed of the following five stages: describe
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the problem; formulate a model of the problem; solve the
model; test the solution; and implement the solution. The
shortcomings of such an approach are discussed in many
other publications, see e.g., [4] and [7] for more details,
and have been the main driving force for developing
methods of model analysis that better serve the needs of
decision makers.

The basic function of a model-basedDecision Support
System(DSS, illustrated in Fig. 1) is to support the
user in finding values for his/her decision variablesx
that will result in a solution of the problem that best
fits his/her preferences. A countless number of actual
applications shows that to meet such requirements a well-
organized model analysis phase of the modeling process
is composed of several stages, see e.g., [4], each serving
different needs. Thus, not only are different forms ofP (·)
typically used for the same problem, but also different
instances of each of these forms are definedupon analyses
of previously obtained solutions.

The analysis of the model instance is composed of
a sequence of steps, each of which consists of:
1. Selection of the type of analysis, and the definition

of the corresponding preferential structure, which takes
different forms for different methods of model analysis,
e.g., for:
• Classical simulation, it is composed of given values

of input variables;
• Soft simulation, it is defined by desired values of

decisions and by a measure of the distance between
the actual and desired values of decisions;
• Single criterion optimization, it is defined by a se-

lected goal function and by optional additional con-
straints for the other (than that selected as the goal
function) outcome variables;
• Multicriteria model analysis, it is defined by

an achievement scalarizing function, which represents
the trade-offs between the criteria used for the eval-
uation of solutions.

2. Selection of a suitable solver, and specification of
parameters that will be passed to a solver.

3. Generation of a computational task representing a
mathematical programming problem, the solution of
which best fits the user preferences.

4. Monitoring the progress of the computational task, es-
pecially if it requires a substantial amount of computing
resources.

5. Translation of the results to a user-friendly form.
6. Documenting and filing the results, and optional com-

ments of the user.
Various specifications of the preferential structure sup-

port diversified analyses of decisions problem aimed at:
• Suggesting decisions for reaching specified goals;
• Analyses of trade-offs between conflicting goals; and
• Evaluations of consequences of decisions specified by

the user.
The first two types of analyses are goal oriented and are

discussed in Section III. Now, we briefly comment on the
third one, which focuses on the analysis of alternatives.

For large problems it is difficult to specify values of
decision variables without a prior knowledge of feasible
alternatives, but such alternative solutions are provided by
the goal-oriented model analysis, and users typically are
interested in examining consequences of various modi-
fications of such alternatives. A frequent problem with
using the classical simulation is caused by infeasibility
of the modified decisions. The soft simulation methods
provide the same functionality without the risk of getting
infeasible solutions.

Several generalizations of the soft simulation are useful
for a more comprehensive simulation-type analysis. We
briefly outline three of them. The first, calledinverse sim-
ulation, provides similar functionality in the space of out-
come variables (i.e. the user specifies the desired values of
outcome variables instead of the decision variables). The
second, calledgeneralized inverse simulationconsists of
a combination of the analysis provided by the soft and
inverse simulations. Finally, thesoftly constrained inverse
simulation supports the analysis of trade-offs between
goals (specified in a more general form as in the inverse
simulation) and violations of a selected set of constraints
(which are for this purpose treated as soft constraints).
However, all these (and other) generalizations of the
soft simulation are in fact specific applications of the
multicriteria model analysis discussed below. A more
detailed discussion of these issues is provided in [4].

III. T RADE-OFFS BETWEENATTAINABLE GOALS

In reality, almost all actual decision problems have
a large (or infinite) number of solutionsx ; the essence of
decision-making is to select one of them that optimizes
the preferencesP (x , y). Solving a decision-making prob-
lem as a single criterion optimization seems to be very
attractive because offering a unique solution based on
solid mathematical foundations is appealing, especially
if one considers that an abundant choice (even among
discrete alternatives) typically creates problems, such as
dissatisfaction or regret, see [8]. However, as summarized
above, the traditional OR approaches are based on the
assumption that the best solution of a decision problem
is the one that minimizes a given criterion, e.g., (2). This
assumption is applicable only to a specific class of well
structured problems; already over 50 years ago Simon [9]
demonstrated that such an assumption is wrong for most
of actual decision making problems. Recent studies, see
e.g., [8], [10] confirm Simon’s results.

Most decision problems require an actual4 analysis of
several criteria, which are typically conflicting, e.g., cost,
quality, performance, safety. Criteria (denoted byq are
defined by selected outcome variablesy) are typically de-
fined in different measurement units. It is usually possible
to compute at least a good approximation of the ranges
of values for each criterion.

4Based on a proper analysis of trade-offs between criteria, without
a prior aggregation of criteria into a single-criterion goal function.
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Figure 2. Trade-offs between Pareto solutions.

A rational decision can be selected from a subset of
all solutions called thePareto set.5 A solution is called
Pareto-efficient, if there is no other solution for which
at least one criterion has a better value while values of
remaining criteria are the same or better. In other words,
one cannot improve any criterion without worsening at
least one other criterion. Solutions that are not Pareto
efficient are called dominated.

Pareto-optimal solutions are not comparable in a math-
ematical programming sense, i.e., one can not formally
decide which is better than another one. A choice of a so-
lution depends on preferences of the user that implicitly
define properties of the corresponding solution. Thus, in
order to find a Pareto-efficient solution that corresponds
best to the user’s preferences one needs to support the
user in analysis of trade-offs between criteria.

The basic concepts related to multicriteria analysis are
illustrated in Fig. 2, which shows the Pareto set (segments
between the extreme points marked by E and D) for
two minimized criteria. Assume thatq1 represents cost,
and q2 pollution emission. Then solution D is expensive
but clean, solution E is cheap but dirty, and solutions
located on the Pareto frontier between these two extreme
solutions match different trade-offs between costs and
the corresponding emission; solutions B and M are sub-
stantially cheaper than D and for both the corresponding
worsening of emission is substantially smaller than for
yet cheaper solutions L, K, and C. Analysis of trade-
offs, and finding the solution having a preferred trade-off
between the criteria values is easy for two-criteria prob-
lems. However, when dealing with more criteria it is much
more difficult to identify attainable goals6 that correspond
best to the decision-maker preferences typically expressed
as trade-offs between the corresponding criteria values.
Such preferences can practically be elicited only during
an interactive analysis which supports the user in learning
about the attainable trade-offs.

5Also called: Pareto-efficient solutions, Pareto frontier, non-dominated
solutions. For the sake of brevity we don’t deal here with more advanced
concepts, e.g., properly efficient solutions; these are discussed e.g.,
in [7].

6Values of criteria that can be achieved simultaneously.

Multicriteria analysis is an iterative process supporting
the user in the Pareto set exploration that aims at finding
subsets of solutions with desired properties (e.g., cheap,
or moderately priced, or expensive). For each iteration the
user analyzes which criteria he/she wants to improve and
which should be compromised, and then sets values of
method-specific parameters that support the selection of
another Pareto solution that hopefully fits his/her prefer-
ences better. At each iteration the multicriteria problem
is converted into an auxiliary parametric single-objective
problem, the solution of which provides a Pareto solution
hopefully having a better trade-off between criteria than
the previous solution.

Multicriteria analysis methods differ by the type of
parameters/procedures used for specification of the user
preferences, and by a conversion to the corresponding
single-objective problem, but all commonly known meth-
ods can be interpreted in terms of the Achievement Scalar-
izing Function (ASF),7 see [11] for details. A necessary
condition for acceptability of a method is that it allows
for analysis of all Pareto solutions.8 From the user point
of view the most important features of a method are:
(1) intuitive interpretation of parameters and procedures
used for preference specification, and (2) support of an
easy navigation through those parts of the Pareto set that
are interesting for the user.

To illustrate these issues we first comment on the
weighted sum approach, and then characterize the ref-
erence point methods.

A. Linear aggregation of criteria

One of the oldest approaches to multicriteria analysis
is known as the weighted sum approach. It uses the ASF
in the form:

ASF =
n∑
i=1

wiqi, wi ≥ 0,
n∑
i=1

wi = 1, (3)

where n is the number of criteria, and weightswi are
specified (directly or indirectly) by the user. Typically,
the original values of criteria are linearly mapped into:

qi ∈ [0, 1], i = {1, . . . , n} (4)

where qi = 0 and qi = 1 correspond to the worst and
best values, respectively; weightswi are interpreted as
compensation ratios between criteria.

This approach is still popular because it is believed
to be simple, intuitive, and reliable. However, in fact it
supports poorly analysis of Pareto sets, is often contra-
intuitive, and unreliable.

To illustrate the basic problems of using linear criteria
aggregation let us consider two-criteria problems, and the
ASF (3) in a more convenient (for analysis of the method
properties) form:

ASF = q1 + αq2, α = w2/w1. (5)

7The concept of ASF was introduced by Wierzbicki see, e.g., [7].
8Each method should guarantee that for each Pareto solution there

exists a specification of user preferences such that this solution will be
selected as fitting best these preferences.
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Figure 3. Limitations of the weighted-sum approach.

The value ofα determines the ratio of: (1) improvement
(measured in the percentage of the corresponding criterion
value) of one criterion, and (2) its compensation by
worsening the other criterion. In other words, a stronger
preference forq1 (than forq2) implies a smaller value of
α; therefore to compensate (in terms of keeping the ASF
value unchanged) an improvement (worsening) ofq2 by
sayx%, the value ofq1 has to change byαx%.

The interpretation of values ofα appears to be natural,
and therefore the linear aggregation is believed to support
intuitive and robust analysis. To show that this is not
true let us consider two values ofα, namely those
corresponding to the slopes represented byα1 and α2

shown in Fig. 3a. For anyα < α1 solution A will be
selected, and forα1 < α < α2 andα > α2 solutions B
and C, respectively. For the other two cases (α = α1 and
α = α2) there is no unique solution (thus any solution
from either segment AB or BC can be selected). Thus
the weights used for linear criteria aggregation support
poorly examination of the Pareto set. In some situations
the same solution is returned even if substantial changes
of weights were made; e.g., the cheapest solution A will
be selected not only when the cost criterionq1 is infinitely
more important than the emissionq2 but also if q1 is
only slightly more important thanq2. In other situations
a tiny change in preferences (represented byα1 in Fig. 3a)
results in a substantially different solution.9

The second serious flaw of the weighted sum approach
is that many Pareto-efficient solutions are never shown to
the user. This is illustrated for two types of problems in
Fig. 3. For a continuous LP model (Fig. 3a) a typical LP
solver will return a solution corresponding to a vertex,
therefore infinite number of solutions located between
vertices A, B, C will never be shown. For discrete
problems only efficient solutions located on a convex
cover defined by the alternatives will be found by this
method (e.g., solutions B, C, E, F in Fig. 3b will never
be shown to the user). Limiting the user choice to only a
subset of Pareto solutions is not only an ethical problem
of restricting the user sovereignty. Actually, many of the
solutions excluded from the analysis can represent the

9In many problems the distance between some vertices is large.

tradeoffs between criteria that are preferred by the user,
see e.g., examples in [12]. To illustrate this point let us
consider two maximized criteria and three alternatives:
A = {0, 1}, B = {0.49, 0.49}, C = {1, 0}. Assume that
a user selectsα = 1 (i.e., assigns equal weights to both
criteria). SolutionB corresponds perfectly to these pref-
erences, but the weighted-sum approach never finds it.

The third shortcoming is due to a common belief
that using weights is intuitive because there is always
a positive correlation between increasing the weight for
a criterion and the corresponding improvement of the
criterion value. Simple examples (cf e.g., [12], [13]) show
that also this is not true.

In addition to the fundamental problems summarized
above, the linear aggregation has a number of other draw-
backs, including double-counting (of dependent criteria),
and a tacit assumption of a fully compensatory character
of criteria (with constant substitution rates for the whole
ranges of criteria).10 More details can be found e.g., in [4],
[11], [12], and [13].

B. Reference point methods

Most of the successful multicriteria analysis methods
are based on the two-step approach:
• define a reference (aspiration, goal) point composed of

the desired values of all criteria; further on we denote
the reference point as RFP;
• find a Pareto solution that is (in a sense) closest to this

point.
The displaced ideal point method [14] uses the Utopia

(marked by U in Fig. 2) as the RFP, and the family
of methods known asGoal Programming(originating
from [15]) assumes that the RFP is defined by the user.

Two types of methodological problems had to be solved
in order to effectively represent user preferences in this
two-stage procedure: first, a sequential specification of
RFPs; second, the selection of a measure for the distance
between the RFP and the Pareto set. This led to the
development of theory, software and application of the
aspiration-based decision support-summarized in [16];
their relations to the Goal Programming are summarized
in [17]. Another stream of the developments in this field
is outlined in [13]. A comprehensive discussion of the
theoretical background of the reference point methodol-
ogy, tools for their implementation as well as a detailed
presentation of several applications can be found in [7].
Here we only outline the basic features of this approach.

The Utopia point (composed of best values of all
criteria, and marked by the letter U in Fig. 2) is an obvious
initial RFP. However, in most practical applications the
Utopia point is far away from the Pareto set; the Utopia
point is therefore a clearly unrealistic goal. Thus for an
effective multicriteria analysis it is essential to represent
the user preferences using two mechanisms in a concerted
way: first, sequential specifications of RFPs supporting

10If one of the criteria is expressed in monetary units, then this is
equivalent to accepting the principles of monetarization (i.e., that all
criteria can be converted to monetary units).
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their convergence to attainable goals; second, applying a
measure for the distance between the RFP and the Pareto
set that results in the selection of Pareto solutions fitting
best (in terms of tradeoffs between criteria values) the user
preferences. In other words, the two mechanisms have the
following roles:
• a selected RFP provides a focus on a subset of the

Pareto solutions that have trade-offs between criteria
similar to those implied by the chosen RFP; the user has
full control on selecting any RFP, therefore no Pareto
solution is excluded from the analysis;
• the distance measure implies the selection of a Pareto

solution that has criteria values with the tradeoffs cor-
responding to the user preferences.
Let us illustrate the RFP approach by the examples

shown in Fig. 2. Obviously, any of the Pareto-optimal
solutions between points E and D can be obtained for
various definitions of the distance between the aspiration
point U and the Pareto set. Thus, for a unique (for a given
specification of preferences) selection of a Pareto solution
one needs to define either another point (which together
with the aspiration point define a direction) or an ASF
that provides a unique selection of solutions.

The first approach is exploited by the Aspiration-
Reservation Based Decision Support (ARBDS) method,
which requires a specification of two points, called aspi-
ration and reservation, composed of the desired and the
worst acceptable values of criteria, respectively. A well
implemented ARBDS does not impose any restrictions
on the feasibility of the aspiration nor of the reservation
values. E.g., in Fig. 2 there are three pairs of aspiration
and reservation points, denoted by{A, R}, {A1, R1},
and {A2, R2}, respectively. The corresponding Pareto-
solutions are marked by K, P, and C, respectively. A
selection of a pair like{A, R} (i.e., a not attainable
aspiration and a feasible reservation level) is typical for
users who have learned the properties of the problem
and have a good feeling about the attainable ranges of
criteria values. Selection of a non-attainable reservation
level (e.g., R2) is typical for early stages of the model
analysis, when unrealistic reservation levels are specified.
However, specifications of not attainable aspiration levels
(e.g., A1) are not as rare as one can expect; especially,
if some criteria are interdependent. More details on the
ARBDS methods are provided in [18].

The second approach has been implemented in the
MCMA [18], which exploits an ASF is defined as:

ASF = min
1≤i≤n

ui(qi, q̄i, qi) +
ε

n

n∑
i=1

ui(qi, q̄i, qi) (6)

whereui(·) denotesi-th Component Achievement Func-
tion (CAF),qi, q̄i, qi, are the value, aspiration and reserva-
tion levels ofi-th criterion, respectively;n is the number
of criteria, andε is a small positive number.

Two examples of CAFs are illustrated in Fig. 4. The
first CAF is defined by four points, with values of the
criterion, U, A1, R, and N, corresponding to the values
of utopia, aspiration, reservation, and nadir, respectively.

1

U A A 1

P 1

P 2

R N

S

q i

u i

Figure 4. Component achievement scalarizing function.

The second CAF is defined by a modification of the first
CAF, where the previously defined aspiration level A1

was moved to the point A and two more points – P1 and
P2 – were interactively defined.

Values of CAF have a very easy and intuitive inter-
pretation in terms of the degree of satisfaction from the
corresponding value of the criterion. Values of 1 and 0
indicate that the value of the criterion exactly meets the
aspiration and reservation values, respectively. Values of
CAF between 0 and 1 can be interpreted as the degree of
goodnessof the criterion value, i.e., to what extent this
value is close to the aspiration level and far away from the
reservation level. These interpretations correspond to the
interpretation of the membership function of the Fuzzy
Sets, which is discussed in [18].

By using an interactive tool for specification of the
CAF illustrated in Fig. 4 such as MCMA [18] a user can
analyze various parts of a Pareto set that best correspond
to various preferences for trade-offs between criteria.
These preferences are typically different for various stages
of analysis; they are often modified substantially during
the learning process, when both aspiration and reservation
levels for criteria values are confronted with the attainable
values, which correspond best to the user preferences.
In such an interactive learning process, a user gradually
comes to recognize attainable goals that correspond best
to his/her trade-offs.

C. Discrete Alternatives with Large Number of Criteria

Analysis of more than several discrete alternatives char-
acterized by large number of criteria can hardly be done
by commonly used methods; in particular methods based
on interactive pairwise comparisons are not applicable.
Moreover, in some situations users have no experience
in multicriteria analysis. Additionally, some problems are
analyzed by many (say, several hundreds) of users. For
effectively addressing needs of such types of problems
and users new methods for multicriteria analysis, and new
types of user interface have been recently developed.

Challenges related to this class of problems, and
initial results can be found in [12] and [19] (more
publications are under preparation). Information about
these developments will be available in 2009 at:
http://www.iiasa.ac.at/ ∼marek .
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D. Opportunities and pitfalls

Multicriteria analysis can be a powerful tool for rational
decision-making. However, if not used properly, may
provide very misleading results. A main advantage is an
efficient support for identifying attainable goals having
desired trade-offs between conflicting criteria. Another
advantage is active participation of decision-makers in
the problem analysis, which through interactive learning
about the problem properties builds trust that selected so-
lutions indeed fit his/her preferences. However, to achieve
such desired outcomes one should avoid pitfalls associ-
ated with multicriteria analysis. We comment here on only
two such traps caused by common misunderstandings.

First, the fitness of a solution to the user preferences
should always be assessed in the criteria space, i.e., by
a pattern of criteria values. Interpretations of the ASF
values are typically misleading. This remark can easily
be justified by recalling that any Pareto solution can be
obtained by rather different specifications of preferences
(thus the corresponding values of ASF are different). One
should also remember the contra-intuitive features of the
linear criteria aggregation, see Section III-A.

Second, ranking alternativesaccording to the ASF
values is likely to be inconsistent with the actual user
preferences.11 As already mentioned, the preferences are
iteratively modified based upon analysis of criteria values
of a selected Pareto solution, and the iterative analysis
stops when the selected Pareto solution has the desired
tradeoffs between criteria values. However, the fact that
the solution fits the user preferences does not imply12

that the ASF values are good representations of these
preferences. Therefore, when a multicriteria ranking is
needed one should make a sequence of analyses of sets
of alternatives; the set for a next analysis is equal to the
current set without the alternative selected as the best one.

IV. U NCERTAINTIES AND RISKS

The discussion so far clearly shows the challenges of
decision-making even without considering the two other
elements of decision making, which are the key charac-
teristics of many problems, namely, uncertainty and risk.
Appropriate treatment of uncertainties and risks also calls
for new approaches. Traditional models in economics,
insurance, risk-management, and extreme value theory
require evaluations based on corresponding assumptions
and large-enough sets of data. For example, standard
insurance theory essentially relies on the assumption
of independent, frequent, low-consequence (conventional)
risks, such as car accidents, and extensive sets of data
aboutaccidents/losses, owners, etc. Thus insurance com-
panies use well established models (exploiting rich sets
of historical data) for making decisions on premiums,
estimating claims and the likelihood of insolvency. Ex-
isting extremal value theory also deals primarily with

11This problem is also known as therank reversal.
12Because of the many-to-one relation between preferences and each

solution.

independent events and assumes that these events are
quantifiable by a single number [20].

However, there is a class of problems for which es-
tablished methods cannot provide adequate support. Such
problems are characterized by a vast variety of inherent,
practically irreducible uncertainties and/or ”unknown”
risks, and/or by spatial or temporal or social heterogene-
ity, see e.g., [21], [22]. The risks often involve events
with catastrophic consequences due to either irrecoverable
shocks (e.g., insolvency), or a magnitude of impact that
may affect at once large territories and communities (e.g.,
natural or man-made catastrophes).

Traditional approaches are not applicable to problems
with irreducible uncertainties because they require ade-
quate sets of data from either real observations or experi-
ments; such data are not available for new13 problems or
for problems involving rare events. Experiments aiming
at collecting data, even if possible, may be very expensive
and/or dangerous. However, in many situations, especially
in policy making and management, experiments are sim-
ply impossible.

Moreover, traditional approaches are not applicable
to problems involving catastrophes (understood as rare
events with large consequences). Catastrophes typically
result in abrupt irreversible changes occurring on large
spatial, temporal, and social scales. Large-scale potential
catastrophic impacts, and in particular magnitudes of
uncertainties that surround them, are critically important
for the climate-change policy debates and the associated
decision-making processes, see e.g., [23], [24]. However,
traditional risk analysis (based on the concept of expected
cost-benefit analysis) actually ignores catastrophic events.
Thus, extreme events are treated as improbable during a
human lifetime, and consequently are not rationally con-
sidered in decision-making processes. However, a 1000-
year disaster (i.e., an extreme event that occurs on average
once in 1000 years) may, in fact, occur even today.14

Moreover, it is impossible to perform a proper evalua-
tion of complex heterogeneous processes on ”average”.
Such processes have significantly diversified spatial and
temporal patterns and induce heterogeneity of losses and
gains which makes it inappropriate to use average (aggre-
gate) characteristics. E.g., on average residents may even
benefit from some climate-changes, while some regions
may incur dramatic loses.

Novel approaches are therefore needed for scientific
support of decision-making on problems characterized by
at least one of the above summarized attributes: inher-
ent uncertainty, catastrophic risks, heterogeneity. Rational
support should not be based on ”an average” or on
a selected scenario.15 Although even good evaluations

13Newalso represents old/known types of problems which, however,
are not stationary, i.e., whose parameters change over time. This in turn
may imply that even large existing sets of data are not adequate for
identification of parameters of models representing such problems.

14The Chernobyl disaster of 1986 was quantified as a 1,000,000-year
event; yet it occurred in 9 years after the power-plant was commissioned.

15Note that the probability of occurrence of any given scenario is
typically equal to zero.
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of particular decisions are impossible, the preference
structure among decisions can provide a stable basis for
a relative ranking of alternatives. Thus the essence of
identifying robust decisions is to perform comparative
analyses of feasible decisions and to design robust policies
with respect to the uncertainties and risks involved. Such
decisions don’t attempt to be ”optimal” for any given sce-
nario; they reflect trade-offs between being (1) possibly
best for most likely situations, and (2) good enough for
extreme events.

A more detailed discussion of novel approaches to
coping with uncertainties and risks can be found e.g.,
in [25], [26], [27].

V. TRANSPARENCY ANDPUBLIC UNDERSTANDING

By now it is commonly agreed that the provision of
information is critical to public acceptance, and that in
reality some commonly discussed problems are actually
incorrectly understood. Selected issues of modeling for
knowledge exchange are discussed in [28]. The relevance
of this publication for policy making is illustrated e.g.,
by Sterman [29], who points out that although the Kyoto
Protocol is one of the most widely discussed topics, most
people believe that stabilizing emissions at near current
rates will stabilize the climate. Recent debates on pension
system reforms in several European countries also clearly
show a wide misunderstanding of the consequences of
population structure dynamics on economies in general
and on pension systems in particular. These, and many
other problems, can also be explained to the public by
adapting relevant models for use in presentations that
the public can understand. Unfortunately, various mod-
els developed for policy-making problems use different
assumptions, and often different sets of data; therefore
a comparative analysis of their results can at best be done
and understood by a small community of modelers. The
need for public access to knowledge pertinent to policy-
making will certainly grow, see e.g., [30] for the discus-
sion of access to environmental information; thus the role
of models in public life will also grow accordingly.

VI. CONCLUSIONS

Development of models for complex problems does,
and will, require various elements of science, craftsman-
ship, and art (see, e.g. [4] for a collection of arguments
that supports this statement). Moreover, development and
comprehensive analysis of a complex model requires
collaboration of interdisciplinary teams, and thus a sub-
stantial amount of time and other resources. Therefore
new modeling tools are needed for an effective support
of collaborative modeling (both model development and
exploitation) by interdisciplinary teams working at distant
locations. SMT addresses these needs by supporting the
development of models with complex structures and huge
amounts of data, and diversified analyses of such models;
moreover, it provides automatic documentation of the
whole modeling process. Thus, SMT promotes modeling
quality and transparency, which are critically important

for model-based support of decision-making, especially
in actual policy-making.

Web-based modeling environments (like the SMT) not
only support interdisciplinary modeling, but also provide
opportunities for involving a larger audience in model
analysis. In particular, a Web-based multicriteria analysis
of discrete alternatives (called MCAA) has been recently
developed;16 it is currently being used for several appli-
cations, including analysis of future energy technologies
(the latter to be done remotely by a large number of
stakeholders).

The composition of this paper was also motivated
by the requirements of scientific support for decision-
making. Each decision problem typically has amain
focus. However, eachnon-trivial problem requires an
integrated analysis of all relevant aspects, including the
decision-making process, the data quality, uncertainties,
and risks. Focusing on only one (even main) aspect
and/or selecting too early a specific modeling paradigm is
dangerous because it may neglect factors that can damage
the quality of an incomplete analysis.

Science-based support for policy-making is a process,
and quality of the support is determined by its weakest
element. This paper focuses mainly on multicriteria anal-
ysis of attainable goals. However, it also discusses recent
developments in the modeling technology, integrated risk
management, and transparency and public understand-
ing. All these topics are relevant to supporting rational
decision-making, therefore recent developments might be
interesting for researchers and practitioners.
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