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Abstract—Rational decision-making requires governance of
attainable trade-offs between conflicting goals, uncertainties
and risks, which in turn demands both novel modeling
methods and appropriate modeling technology. The paper
deals with recent developments in applied modeling that
have been motivated by the requirements for model-based
support of solving complex problems. It starts with pre-
senting novel modeling technology and integrated methods
of integrated model analysis aimed at supporting decision-
makers in diversified ways of analysis of the underlying
decision problem. Then, multicriteria analysis is discussed
in more detail with a focus on an extension of the reference
point optimization, which supports an effective analysis
of trade-offs between conflicting criteria aiming at anal-
ysis of attainable goals. Next, new approaches to coping
with endogenous uncertainty and catastrophic risks are
characterized, followed by a summary of issues related to
transparency and public understanding.

Index Terms—multicriteria optimization, decision-making
support, uncertainty, risk, structured modeling, modeling

analysis of relations between decisions and their conse-
guences. It is commonly known that accidents do happen.
However, everybody who drives either evaluates a utility

of driving higher than a disutility of an unlikelgccident,

or does not even make such a kind of analysis. Analysis
of catastrophic risks (i.e., related to rare events with high

consequences) is actually a difficult problem, which is

beyond the scope of this paper. Yet, several key problems
related to analysis of trade-offs between conflicting goals
can be illustrated by even very simple deterministic prob-

lems, e.g., a choice from a set of discrete alternatives.

A more complete justification of the need for rational
management of conflicting goals, uncertainties and risks
comes from diverse applications of science-based support
for solving complex problems in policy-making, industry,
and management. While it is possible to accumulate
enough knowledge and experience to solve diverse prob-

systems and languages, model management, database man-lems, often even without understanding all the underlying

agement systems.

I. INTRODUCTION

Everybody deals with conflicting goals, uncertainties
and diverse risks all the time. In most cases we mana
even complex problems by successfully making decisions
based on experience and intuition. Consider driving a car
for example. Each driver controls a car subconsciousl
applying quite complex principles of adaptive control,
typically without even understanding the dynamics of

the cart Moreover, in a congested traffieach driver

mechanisms, in many other decision-making situations
mathematical models and adequate methods of model-
based problem analysis are necessary for finding and/or
justifying rational decisions. Such situations are charac-

terized by at least one of the following issues:
9§ Complex relations between the decisions and the corre-

sponding outcomes (measures of consequences of their
' implementations).

¥ Difficult to assess trade-offs between attainable goals

(preferred values of outcomes).
e Uncertainties and risks related to the decision-making
situation.

constantly monitors the behavior of other drivers and.
every few seconds subconsciously predicts their behavior,
assessing the risk related to various combinations of the
predicted behavior. Given the complexity of this everyday

activity, it is amazing how well (measured e.g., by the
frequency of mistakes that lead to accidents) the proble

of controlling cars is solved by drivers with very diversi- methods has been developed for dealing vétith of
fied backgrounds and experience. If every driver can d‘?he issues listed above. The craft of decision-making

thlls’. then olr;Ie Shotlrjlldt ask WTy Lormal rr|1eth0ds may heI%upport consists of adopting an appropriate approach
solving problems that seem 1o be simpler. to each element of the decision-making process while

The simplest answer to Fh's question may result frorT}emembering that the strength of a chain is determined
a more careful consideration of diverse approaches tBy its weakest link

This paper is based on “Rational Governance of Conflicting Goals, 1h€ remaining part of the paper is organized as follows.
Uncertainties and Risks,” by M. Makowski, which appeared in theThe next Section presents the characteristics of models,

Proceedings of the 2007 IEEE International Conference on System ; ; AN ;
Man, and Cybernetics, Montreal, Canada, October 2@ 2007 EEE. and of modeling processes aimed at decision-making

LControl engineers could solve differential equations to optimize thesum?or_t fc_)r complgx problems. Section [l deals. W'th
way they drive a car, but they do not need to do so. multicriteria analysis of trade-offs between conflicting

The needs for supporting the transparency of the
decision-making process and enhancing public under-
standing of problems and the considered solutions.

Rational governance of conflicting goals, uncertainties
and risks requires concerted handling of all pertinent
Blements of the decision-making process. A number of
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goals. Novel approaches to coping with endogenous un-
certainties and catastrophic risks are discussed in Sec- User le

tion IV. Finally, the requirements for transparency and
public understanding are summarized in Section V.

Il. DECISIONS ANDOUTCOMES P(x,y) > Mathematical model

>y

Rational decision-making always involves analysis of zZ—> y=F (x.2)
relations between alternative decisions and the corre-
sponding consequences One distinguishes two types Bipure 1. Structure of the use of a mathematical model for decision-
’ making support.
problems?
e There is a given set of (at least two) discrete alterna-
tives. One has to decide which should be selected. In A rational decisi Ki ¢ ai t findi
some situations a ranking of alternatives is additionally ational gecision-maxing support aims at finding

e, Further on we refe to tis ype of problem/ucs, O G200 Warabies wnieh wh e &
as Discrete Alternative (DA)xhoice problem. Typical P b

: : . decision-maker. Such preferences can be represented b
examples include: selecting a car, a house, a project. b P y

e A decision is composed of a set of value(s) selected prgferentia_l structureP(w, Y, Wh.iCh typica!ly induces
from an infinité set of feasible decisions. Such a set ispf"m"”.II ordering of solut|o_n§ obtained for d|ﬁergnt com-
typically given implicitly, i.e., by a specification of the binations of values of decisions. Thus, the basic function

relations between decisions, optionally also involvingOf decision-making support is to help the decision-maker

other factors that need to be considered when makin&]:ul\t/a}lr?zss];)olzjtri]cl)i/hoirtﬁ:usrlc())tr)]e\ﬁr;izltei(\a,vs?I(f:i? in" Iher
the decision. A simple (in terms of number of decision P s hisihe

variables) example: decide the amount of kerosene tgri‘etrer;ggls drsgr;gﬁntfgbiﬁnf’ﬁgé an infinite number of
be tanked in an aircraft. A complex problem: decide yp P 0

a portfolio of structural and financial instruments forzc’llglfnnastrtreurerg?crael trr;%aeelf “822 (Slg;u(elgdng:?hrjtp;sssr;id
integrated management of catastrophic flood risks. y X

Although there are methods and tools specialized fotrdlscrete alternative choice problem can be represented as

each of these two types of problems, there are also ma an algebraic model. This is particularly needed if values of

ny.. - X .
common methodological issues. Therefore it is worth t Chiteria for (possibly many) alternatives must be computed

consider both of them in terms of the mathematical procifrom parameterized complex relations, see e.g., [1], and/or

. . . X for problems with a large number of alternatives.
gramming, which provides a powerful analytical frame-

work for analysis of different approaches to decision- A structure of the use of a model for decision-making
making y PP support is illustrated in Figure 1. Such a support is

composed of two stages:

A mathematical model describes the modeled problem Development and maintenance of a model that ade-

tbr?/ mealns of \{arla:cbtlﬁs thatb ?re abr?trﬁct regrtesebntatlons_;dofqu ately represents relations (1);
ose elements of the probiem which need 1o be consicg Organizing a process of the model analysis in which

gred '3 or_d.er to eval:fate the cor;sgqbuences tOf mplemengthe user can specify and modify his/her preferences
ing a decision (usually represented by a vector compose upon combining their own experience and intuition with

of many variables). More preC|seI_y, such a model is learning about the problem from the analyses of various
typically developed using the following concepts: solutions

e Decisions (inputs), which are controlled by the user; These two stages are briefly summarized below.

e External decisions (inputg), which are not controlled
by the user;

e Outcomes (outputsy, used for measuring the conse-
guences of the implementation of inputs;

o Auxiliary variables introduced for various reasons (e.g.,
to simplify model specification, or to allow for easier
computational tasks); and

¢ Relations between decisionsand z, and outcomey;
such relations are typically presented in the form:

A. Modeling process

Modeling is a network of activities, often referred to as
a modeling processSuch a process should be supported
by a modeling technology that is a craft of a systematic
treatment of modeling tasks using a combination of per-
tinent elements of applied science, experience, intuition,
and modeling resources. The latter being composed of
knowledge encoded in models, data, and modeling tools.

y = F(x,2), (1) In most publications which deal with modeling, small
) ) problems are used as an illustration of the modeling
where F'(-) is a vector of functions. methods and tools presented. Often, these can also be

applied to large problems. This is especially true for the
2We discuss here only a single decision-maker support; therefore WBHA type of problems for which the model development
refrain from considering issues related to group decision-making. . . .
30r at least large enough to practically exclude analysis of eacﬁtage consists of SeIeCtmg sets of alternatives and at-
individual alternative. tributes, adapting an existing data management utility, and
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collecting the data. While also for this type of problems 3) Documentation:SMT exploits the XML capabili-

it is strongly advisable to follow principles of structured ties for handling the documentation. In SMT an XML
modeling, conforming to these principles is practically adocument type is defined for enabling a single-source
must for model-based support of any complex problemsymbolic model specification that can be used for all
We stress that the complexity is characterized primarilyelevant tasks of the whole modeling process. The doc-
not by the size, but rather by the structure of the problenumentation of other elements of the modeling process is
and by the requirements for the corresponding modelingone on different levels of detail. The basic information
process. (such as date, user name, options requested for each object

Here, we outline the modeling process based on th be used) is automatically stored in the DW by each
Structured Modeling Technolog¢gSMT) [2]. SMT is SMT application. Additionally, a user accessing a DB
based on two successful paradigms: Steuctured Mod- with privileges for data creation or modification is asked
eling (SM) paradigm developed by Geoffrion [3], which t0 write comments, which are logged.
provides a proven methodological background, and the
Object-Oriented ProgrammingOOP) paradigm which, g Model analysis

combined with DBMS, XML, and the Web technolo- Devel ¢ del ) £ th
gies, provides an efficient and robust implementation evelopment of a proper mode! representation of the

framework. SMT is used through the Web intaré relations between decisions and their consequences (out-

and all persistent elements of the modeling process a@qmes) is obviously a key necessary cohdition for appro-
maintained by a DBMS. Thus the Web and a DBMSPriate support of rational decision-making. However, it

provide an integrating framework for collaborative work has tcl) be strgssed that this is nc;t a suffici‘ient lcopdition;‘
of interdisciplinary teams that use SMT applications forON€ also needs a proper support for mode analysis. Bot
various elements of the modeling process. these elements complement each other, and thiyjoh

) i . the weaker one determines the quality of the decision-
A detailed presentation of SMT can be found in [2]. making support.
Here we only outline basic features of three SMT com- ;. qe| analysis is probably the least-discussed element
ponents, not including the analysis of trade-offs betweeRyt \he modeling process. This results from the focus that
conflicting goals, which is discussed in Section Ill. each modeling paradigm has on a specific type of analysis.
1) Model SpecificationModel specification is a sym- However, the essence of model-based decision-making
bolic definition of the model composed of variables andsupport is precisely the opposite; namely, to support
algebraic relations between them. In order to efficientlyarious ways of model analysis, and to provide efficient
handle large and complex models the specification extools for evaluations of various solutions.
ploits the power of OOP combined with core concepts The traditional approach to decision-making support
of SM, such as sets, relations, hierarchy, primitive ands to represent a decision problem as a mathematical
compound entities. Primitive entities have attributes angorogramming problem in the form:
functions common for the derived types, namely param- . )
eters, variables, and constraints (representing parametric T =arg P(z, F(z, z)), (2)
relations between variables), each possessingtiadal i i i L )
attributes specific for each of them. Cpaund entities WNich provides optimal decisions. However, this ap-
are derived from the corresponding primitive entities angPr@ach does not work for complex decision-making prob-

accompanying indexing structures. lems. Th.e main reasons for that are:
e There is no unique representation of prefererieés;

2) Data: Data for large models comes from different o There is no unique definition of the set of admissible
sources (also as results from analyses of various models),so|utionsX, (becauseX, is defined also by the bounds
and larger subsets of data are maintained by teams. SMTfor values of the criteria not included iR(-));
exploits the concept ddata Warehous€DW) for support- o sensitivity analysis recommended for post-optimization
ing persistency and efficiency of data handling. The latter proplem analysis has very limited applicability to actual
is achieved by defining a base dataset, and supportingcomplex problems, see e.g., [4]; and
incremental modifications of this set (which allows for 4 | arge optimization problems usually have an infinite
avoiding duplications of large amounts of data needed nymber of very different solutions with almost the same
in more traditional approaches requiring the storage of ygjye of the original goal function, see e.g., [4].
complete datasets even when only a small fraction of the Thys, optimization in supporting decision making for
data is modified). solving complex problems has a quite different role from

The data structures of a DW are generated automatits function in some engineering applications or in very
cally from the model specification. This not only assuresearly implementations of Operational Research (OR) for
consistency between the declarations of the parametesslving well-structured military or production planning
in the model specification and the data used for theiproblems. This point has already been clearly made e.g.,
instantiations, but also saves substantial resources thay Ackoff [5], and by Chapman [6], who characterized
would otherwise have been needed for preparing anthe traditional way of using OR methods for solving prob-
maintaining data structures for any complex model. lems as composed of the following five stages: describe
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the problem; formulate a model of the problem; solve theFor large problems it is difficult to specify values of
model; test the solution; and implement the solution. Thelecision variables without a prior knowledge of feasible
shortcomings of such an approach are discussed in mamjternatives, but such alternative solutions are provided by
other publications, see e.g., [4] and [7] for more detailsthe goal-oriented model analysis, and users typically are
and have been the main driving force for developingnterested in examining consequences of various modi-
methods of model analysis that better serve the needs &tations of such alternatives. A frequent problem with
decision makers. using the classical simulation is caused by infeasibility
The basic function of a model-bas&ecision Support of the modified decisions. The soft simulation methods
System(DSS, illustrated in Fig. 1) is to support the provide the same functionality without the risk of getting
user in finding values for his/her decision variables infeasible solutions.
that will result in a solution of the problem that best Several generalizations of the soft simulation are useful
fits his/her preferences. A countless number of actudior a more comprehensive simulation-type analysis. We
applications shows that to meet such requirements a welbriefly outline three of them. The first, calléuverse sim-
organized model analysis phase of the modeling procesgation, provides similar functionality in the space of out-
is composed of several stages, see e.g., [4], each serviagme variables (i.e. the user specifies the desired values of
different needs. Thus, not only are different forms{f)  outcome variables instead of the decision variables). The
typically used for the same problem, but also differentsecond, calledyeneralized inverse simulatiaonsists of
instances of each of these forms are definpdn analyses a combination of the analysis provided by the soft and

of previously obtained solutions. inverse simulations. Finally, treoftly constrained inverse
The analysis of the model instance is composed o$imulation supports the analysis of trade-offs between
a sequence of steps, each of which consists of: goals (specified in a more general form as in the inverse

1. Selection of the type of analysis, and the definitionsimulation) and violations of a selected set of constraints
of the corresponding preferential structure, which take§which are for this purpose treated as soft constraints).
different forms for different methods of model analysis, However, all these (and other) generalizations of the

e.g., for: soft simulation are in fact specific applications of the
e Classical simulation, it is Composed of given Va|uesmulticriteria model analySiS discussed below. A more
of input variables; detailed discussion of these issues is provided in [4].

e Soft simulation, it is defined by desired values of
decisions and by a measure of the distance between
the actual and desired values of decisions;

e Single criterion optimization, it is defined by a se-
lected goal function and by optional additional con-
straints for the other (than that selected as the goaﬁ

function) outcome variables; the preference®(x, y). Solving a decision-making prob-

° Multlcr_lterla model "’.‘”.a'ys's' .'t IS Qefmed by lem as a single criterion optimization seems to be very
an achievement scalarizing function, which representy active because offering a unique solution based on

the trade-offs between the criteria used for the eval'solid mathematical foundations is appealing, especially

uatlo_n of SOIUUO”TQ" e g’f one considers that an abundant choice (even among
2. Selection of a suitable solver, and specification o

) discrete alternatives) typically creates problems, such as
parametgrs that will be passe d to a solver. . dissatisfaction or regret, see [8]. However, as summarized
3. Generatpn of a compgta’uonal task representmg actbove, the traditional OR approaches are based on the
ma_themaﬂcgl programming problem, the  solution Ofassumption that the best solution of a decision problem
Wh'Ch. bPTSt fits the user preferences, . is the one that minimizes a given criterion, e.g., (2). This
4 Mo_mtor.m_g the progress of thg computational taSK'.eséssumption is applicable only to a specific class of well
pecially if it requires a substantial amount of computinggy ctured problems; already over 50 years ago Simon [9]
resources. . demonstrated that such an assumption is wrong for most
> Translatlop of the rg;ults to a user-friendly _form. of actual decision making problems. Recent studies, see

6. Documenting and filing the results, and optional com—e_g_, [8], [10] confirm Simon’s results.

mer.1ts of the .u.ser: i Most decision problems require an actuahalysis of
Various specifications of the preferential structure supgg, erg criteria, which are typically conflicting, e.g., cost,

port diversified analyses of decisions problem aimed at:quality, performance, safety. Criteria (denoted dyare

¢ Suggesting decisions foeaching specified goals;. defined by selected outcome variabigsare typically de-
¢ Analyses of trade-offs between conflicting goals; and fined in different measurement units. It is usually possible

e Evaluations of consequences of decisions specified b% compute at least a good approximation of the ranges

the user. _ of values for each criterion.
The first two types of analyses are goal oriented and are

d'_Scussed n Sectlon IIl. Now, we briefly .Comment on_the 4Based on a proper analysis of trade-offs between criteria, without
third one, which focuses on the analysis of alternativesa prior aggregation of criteria into a single-criterion goal function.

I1l. TRADE-OFFS BETWEENATTAINABLE GOALS

In reality, almost all actual decision problems have
large (or infinite) number of solutions the essence of
ecision-making is to select one of them that optimizes
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Multicriteria analysis is an iterative process supporting
the user in the Pareto set exploration that aims at finding
subsets of solutions with desired properties (e.g., cheap,
or moderately priced, or expensive). For each iteration the
user analyzes which criteria he/she wants to improve and
which should be compromised, and then sets values of
method-specific parameters that support the selection of
another Pareto solution that hopefully fits his/her prefer-
ences better. At each iteration the ltieriteria problem
is converted into an auxiliary parametric single-objective
problem, the solution of which provides a Pareto solution

> hopefully having a better trade-off between criteria than

the previous solution.

Figure 2. Trade-offs between Pareto solutions. Multicriteria anaIySiS methods differ by the type of
parameters/procedures used for specification of the user
preferences, and by a conversion to the corresponding

ingle-objective problem, but all commonly known meth-

ds can be interpreted in terms of the Achievement Scalar-

izing Function (ASF), see [11] for details. A necessar
Pareto-efficient, if there is no other solution for which g ( ) [11] y

o . ondition for acceptality of a method is that it allows
at least one criterion has a better value while values o?

. iteri th better. In oth q or analysis of all Pareto solutiofsFrom the user point
remaining criteria are the same or better. In other WorSys ey " the most important features of a method are:

:)ne tcannot tlr:n provi any cgttlar[[(?n W':[[L]O;J t Worsetnllgg it 1) intuitive interpretation of parameters and procedures
ef?s_ one o eIT aneno.n. 3“ lons that aré not Farelfseq for preference specification, and (2) support of an
efficient are called dominated. easy navigation through those parts of the Pareto set that

Pareto-optimal solutions are not comparable in a mathére interesting for the user.

ematical programming sense, i.e., one can not formally 14 jjjystrate these issues we first comment on the

decide which is better than another one. A choice of a SQeighted sum approach, and then characterize the ref-
lution depends on preferences of the user that impliCitly, o ce point methods. ’

define properties of the corresponding solution. Thus, in
order to find a Pareto-efficient solution that correspond$, | inear aggregation of criteria

best to the user’s preferences one needs to support theO t the old h lticriteri vsi
user in analysis of trade-offs between criteria. ne of the oldest approaches to multicriteria analysis

The basic concepts related to multicriteria analysis ar&® I:QO\;V” as the weighted sum approach. It uses the ASF
illustrated in Fig. 2, which shows the Pareto set (segment§ € Torm: . )
between the extreme points marked by E and D) for ASF — Zwi(b', w; >0, ZW 1 @
i=1 i=1

A rational decision can be selected from a subset oi
all solutions called théPareto seP A solution is called

two minimized criteria. Assume that; represents cost,

and ¢» pollution emission. Then solution D is expensive . o .
but clean, solution E is cheap but dirty, and soIutions\'\’her.(;j‘.”d'Sdt.he tr|1umbe_,-rdqf Cf['lte“;" ?Ed We'gh?" gre”
located on the Pareto frontier between these two extrem&oec' 1e¢ (I |re|c y 0; '”.t'“?c ) I'y el USer. yg)lp atl y
solutions match different trade-offs between costs and'© 09Nl values ot criteria are finearly mapped into-
the corresponding emission; solutions B and M are sub- g; €10,1], i={1,...,n} 4)
stantially cheaper than D and for both the correspondin _ _
worsening of emission is substantially smaller than for%blgsir?/giu;sorzzdeqéti;ell 'C\?vrerfsrﬁ)t;ngr;oi:\r:zr\/\gitcj a;sd
yet cheaper solutions L, K, and C. Analysis of trade- ompensatién ra?ios betz\;een griteria P
offs, and finding the solution having a preferred trade-off° This approach is still populardcatjse it is believed
between the criteria values is easy for two-criteria prob- . o . : .
. ; o to be simple, intuitive, and reliable. However, in fact it
lems. I—!oyvever, \_Nhen_ dealmg with more criteria it is mUChsupports poorly analysis of Pareto sets, is often contra-
more difficult to identify attainable go&shat correspond '

best to the decision-maker preferences typically expresse'HtUiti\./e’ and unreliabl_e. oo .
To illustrate the basic problems of using linear criteria

as trade-offs between the corresponding criteria Value%ggregation let us consider two-criteria problems, and the

hASF (3) in a more convenient (for analysis of the method

an interactive analysis which supports the user in Ieamin%roperties) form:

about the attainable trade-offs.
ASF = q1 + aqa, a = wy/w;. (5)

5Also called: Pareto-efficient solutions, Pareto frontier, non-dominated
solutions. For the sake of brevity we don't deal here with more advanced “The concept of ASF was introduced by Wierzbicki see, e.g., [7].
concepts, e.g., properly efficient solutions; these are discussed e.g.,8Each method should guarantee that for each Pareto solution there
in [7]. exists a specification of user preferences such that this solution will be
Svalues of criteria that can be achieved simultaneously. selected as fitting best these preferences.
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g G2l Ax tradeoffs between criteria that are preferred by the user,
\ see e.g., examples in [12]. To illustrate this point let us
A \ consider two maximized criteria and three alternatives:
\ A=1{0,1}, B={0.49,0.49}, C = {1,0}. Assume that
D™\ a user selectsr =1 (i.e., assigns equal weights to both
N criteria). SolutionB corresponds perfectly to these pref-
a’ g N erences, but the weighted-sum approach never finds it.
N The third shortcoming is due to a common belief
o S ™ that using weights is intuitive because there is always
a positive correlation between increasing the weight for
a criterion and the corresponding improvement of the
criterion value. Simple examples (cf e.g., [12], [13]) show
Figure 3. Limitations of the weighted-sum approach. that also this is not true.
In addition to the fundamental problems summarized
above, the linear aggregation has a number of other draw-
: . ) . backs, including double-counting (of dependent criteria),
The value qfa determines the ratio of: (1) 'mpfo"e”!e”F and a tacit assumption of a fully compensatory character
(measured in the percentage of the corresponding Criterno% criteria (with constant substitution rates for the whole

value) ,Of one crlterlorj, gnd (2) its compensation byranges of criteriaj® More details can be found e.g., in [4],
worsening the other criterion. In other words, a strongefll] [12], and [13]

preference fog; (than forgs) implies a smaller value of
«; therefore to compensate (in terms of keeping the ASE ,
value unchanged) an improvement (worseningyoby B Reference point methods
say z%, the value ofg; has to change byx%. Most of the successful multicriteria analysis methods
The interpretation of values of appears to be natural, are based on the two-step approach:
and therefore the linear aggregation is believed to suppo#t define a reference (aspiration, goal) point composed of
intuitive and robust analysis. To show that this is not the desired values of all criteria; further on we denote
true let us consider two values af, namely those  the reference point as RFP;
corresponding to the slopes representedaByand o2  ® find a Pareto solution that is (in a sense) closest to this
shown in Fig. 3a. For anyx < o' solution A will be point.
selected, and fon! < o < o2 anda > o2 solutions B The displaced ideal point method [14] uses the Utopia
and C, respectively. For the other two cases=(a! and (marked by U in Fig. 2) as the RFP, and the family
a = a?) there is no unique solution (thus any solutionof methods known asGoal Programming(originating
from either segment AB or BC can be selected). Thudrom [15]) assumes that the RFP is defined by the user.
the weights used for linear criteria aggregation support Two types of methodological problems had to be solved
poorly examination of the Pareto set. In some situationd) order to effectively represent user preferences in this
the same solution is returned even if substantial changd¥/o-stage procedure: first, a sequential specification of
of weights were made; e.g., the cheapest solution A wilRFPs; second, the selection of a measure for the distance
be selected not only when the cost criterigris infinitely ~ between the RFP and the Pareto set. This led to the
more important than the emissiap but also if ¢; is  development of theory, software and application of the
only slightly more important thag,. In other situations aspiration-based decision support-summarized in [16];
a tiny change in preferences (representedibin Fig. 3a)  their relations to the Goal Programming are summarized
results in a substantially different solutidn. in [17]. Another stream of the developments in this field
The second serious flaw of the weighted sum approaci$ outlined in [13]. A comprehensive discussion of the
is that many Pareto-efficient solutions are never shown tg1eoretical background of the reference point methodol-
the user. This is illustrated for two types of problems in09Y. tools for their implementation as well as a detailed
Fig. 3. For a continuous LP model (Fig. 3a) a typical LPPresentation of several applications can be found in [7].
solver will return a solution corresponding to a vertex,Here we only outline the basic features of this approach.
therefore infinite number of solutions located between The Utopia point (composed of best values of all
vertices A, B, C will never be shown. For discrete criteria, and marked by the letter U in Fig. 2) is an obvious
problems only efficient solutions located on a convexinitial RFP. However, in most practical applications the
cover defined by the alternatives will be found by thisUtopia point is far away from the Pareto set; the Utopia
method (e.g., solutions B, C, E, F in Fig. 3b will never point is therefore a clearly unrealistic goal. Thus for an
be shown to the user). Limiting the user choice to only s£ffective multicriteria analysis it is essential to represent
subset of Pareto solutions is not only an ethical problenthe user preferences using two mechanisms in a concerted
of restricting the user sovereignty. Actually, many of theway: first, sequential specifications of RFPs supporting
solutions excluded from the analysis can represent the o , ; o
one of the criteria is expressed in monetary units, then this is

equivalent to accepting the principles of monetarization (i.e., that all
9In many problems the distance between some vertices is large.  criteria can be converted to monetary units).

94 94
(a) Continuous LP (b) Discrete LP
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their convergence to attainable goals; second, applying:%a _

measure for the distance between the RFP and the Pareto | !

set that results in the selection of Pareto solutions fitting | ! 3

best (in terms of tradeoffs between criteria values) the user i |

preferences. In other words, the two mechanisms have the | |

following roles: | |

e a selected RFP provides a focus on a subset of the i |
Pareto solutions that have trade-offs between criteria || 1 ‘

similar to those implied by the chosen RFP; the user has Y A A R\ NUoa

full control on selecting any RFP, therefore no Pareto |
solution is excluded from the analysis;

o the distance measure implies the selection of a Pareto
solution that has criteria values with the tradeoffs cor-
responding to the user preferences.

Let us illustrate the RFP approach by the exampledhe second CAF is defined by a modification of the first
shown in Fig. 2. Obviously, any of the Pareto-optimal CAF, where the previously defined aspiration level A
solutions between points E and D can be obtained fowas moved to the point A and two more points Ldhd
various definitions of the distance between the aspiratioR® — were interactively defined.
point U and the Pareto set. Thus, for a unique (for a given Values of CAF have a very easy and intuitive inter-
specification of preferences) selection of a Pareto solutiopretation in terms of the degree of satisfaction from the
one needs to define either another point (which togetherorresponding value of the criterion. Values of 1 and 0
with the aspiration point define a direction) or an ASFindicate that the value of the criterion exactly meets the
that provides a unique selection of solutions. aspiration and reservation values, respectively. Values of

The first approach is exploited by the Aspiration- CAF between O and 1 can be interpreted as the degree of
Reservation Based Decision Support (ARBDS) methodgoodnesf the criterion value, i.e., to what extent this
which requires a specification of two points, called aspivalue is close to the aspiration level and far away from the
ration and reservation, composed of the desired and theservation level. These interpretations correspond to the
worst acceptable values of criteria, respectively. A wellinterpretation of the membership function of the Fuzzy
implemented ARBDS does not impose any restrictionsSets, which is discussed in [18].
on the feasibility of the aspiration nor of the reservation By using an interactive tool for specification of the
values. E.g., in Fig. 2 there are three pairs of aspiratio®AF illustrated in Fig. 4 such as MCMA [18] a user can
and reservation points, denoted @, R}, {Al, R'}, analyze various parts of a Pareto set that best correspond
and {A2%, R?}, respectively. The corresponding Pareto-to various preferences for trade-offs between criteria.
solutions are marked by K, P, and C, respectively. AThese preferences are typically different for various stages
selection of a pair like{A, R} (i.e., a not attainable of analysis; they are often modified substantially during
aspiration and a feasible reservation level) is typical foithe learning process, when both aspiration and reservation
users who have learned the properties of the problertevels for criteria values are confronted with the attainable
and have a good feeling about the attainable ranges oflues, which correspond best to the user preferences.
criteria values. Selection of a non-attainable reservatiofn such an interactive learning process, a user gradually
level (e.g., R) is typical for early stages of the model comes to recognize attainable goals that correspond best
analysis, when unrealistic reservation levels are specifiedo his/her trade-offs.

However, specifications of not attainable aspiration levels

(e.g., A') are not as rare as one can expect; especially; piscrete Alternatives with Large Number of Criteria

if some criteria are interdependent. More details on the . . .
b Analysis of more than several discrete alternatives char-

ARBDS methods are provided in [18]. . "
The second approach has been implemented in tt‘%denzed by large number of criteria can hardly be done

MCMA [18], which exploits an ASF is defined as: y c;ommor]ly usgd methods; m_partlcular methods' based
on interactive pairwise comparisons are not applicable.

. ~ € — ~ Moreover, in some situations users have no experience
ASF = ;glgnw(% i q;) + n Z“i(% i:4;) () in multicriteria analysis. Additionally, some problems are
- =1 analyzed by many (say, several hundreds) of users. For
wherew;(-) denotesi-th Component Achievement Func- effectively addressing needs of such types of problems
tion (CAF),q;, q;, i, are the value, aspiration and reserva-and users new methods for multicriteria analysis, and new
tion levels ofi-th criterion, respectively; is the number types of user interface have been recently developed.
of criteria, ande is a small positive number. Challenges related to this class of problems, and
Two examples of CAFs are illustrated in Fig. 4. Theinitial results can be found in [12] and [19] (more
first CAF is defined by four points, with values of the publications are under preparation). Information about
criterion, U, A', R, and N, corresponding to the valuesthese developments will be available in 2009 at:
of utopia, aspiration, reservation, and nadir, respectivelyhttp://www.iiasa.ac.at/ ~marek ..

Figure 4. Component achievement scalarizing function.
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D. Opportunities and pitfalls independent events and assumes that these events are

Multicriteria analysis can be a powerful tool for rational duantifiable by a single number [20]. _
decision-making. However, if not used properly, may However, there is a class o.f problems for which es-
provide very misleading results. A main advantage is af{aPlished methods cannot provide adequate support. Such
efficient support for identifying attainable goals havingProblems are characterized by a vast variety of inherent,
desired trade-offs between conflicting criteria. AnotherPractically irreducible uncertainties andfor "unknown”
advantage is active participation of decision-makers irfiSks, and/or by spatial or temporal or social heterogene-
the problem analysis, which through interactive learnind®: Se€ €.g., [21], [22]. The risks often involve events
about the problem properties builds trust that selected sd¥ith catastrophic consequences due to either irrecoverable
lutions indeed fit his/her preferences. However, to achiev&"Ocks (€.g., insolvency), or a magnitude of impact that
such desired outcomes one should avoid pitfalls associ@y affect at once large territories and communities (e.g.,
ated with multicriteria analysis. We comment here on onlyatural or man-made catastrophes).
two such traps caused by common misunderstandings. _1raditional approaches are not applicable to problems

First, the fitness of a solution to the user preference¥ith irreducible uncertainties because they require ade'—
should always be assessed in the criteriacepi.e., by —duate sets of data from either real observations or experi-
a pattern of criteria values. Interpretations of the ASFMeNts; such data are not available for figproblems or
values are typically misleading. This remark can easilyfor Problems involving rare events. Experiments aiming
be justified by recalling that any Pareto solution can b collecting data, even if possible, may be very expensive
obtained by rather different specifications of preference@nd/or dangerous. However, in many situations, especially
(thus the corresponding values of ASF are different). On&" Policy making and management, experiments are sim-
should also remember the contra-intuitive features of th@ly impossible.
linear criteria aggregation, see Section IlI-A. Moreover, traditional approaches are not applicable

Second, ranking alternativesccording to the ASF 10 problems involving catastrophes (understood as rare
values is likely to be inconsistent with the actual userévents with large consequences). Catastrophes typically
preferences! As already mentioned, the preferences ard€sult in abrupt irreversible changes occurring on large
iteratively modified based upon analysis of criteria valuesPatial, temporal, and social scales. Large-scale potential
of a selected Pareto solution, and the iterative analysisatastrophic impacts, and in particular magnitudes of
stops when the selected Pareto solution has the desirgdcertainties that surround them, are critically important
tradeoffs between criteria values. However, the fact thafor the climate-change policy debates and the associated
the solution fits the user preferences does not iAfply decision-making processes, see e.g., [23], [24]. However,
that the ASF values are good representations of thedéaditional risk analysis (based on the concept of expected
preferences. Therefore, when a multicriteria ranking i€oSt-benefit analysis) actually ignores catastrophic events.
needed one should make a sequence of analyses of saf3us, extreme events are treated as improbable during a
of alternatives; the set for a next analysis is equal to th@Uman lifetime, and consequently are not rationally con-

current set without the alternative selected as the best ongidered in decision-making processes. However, a 1000-
year disaster (i.e., an extreme event that occurs on average

once in 1000 years) may, in fact, occur even totfay.
Moreover, it is impossible to perform a proper evalua-
The discussion so far clearly shows the challenges dfion of complex heterogeneous processes on "average”.
decision-making even without considering the two otheiSuch processes have significantly diversified spatial and
elements of decision making, which are the key charactemporal patterns and induce heterogeneity of losses and
teristics of many problems, namely, uncertainty and riskgains which makes it inappropriate to use average (aggre-
Appropriate treatment of uncertainties and risks also callgate) characteristics. E.g., on average residents may even
for new approaches. Traditional models in economicsbenefit from some climate-changes, while some regions
insurance, risk-management, and extreme value theorpay incur dramatic loses.
require evaluations based on corresponding assumptionsNovel approaches are therefore needed for scientific
and large-enough sets of data. For example, standasiipport of decision-making on problems characterized by
insurance theory essentially relies on the assumptioat least one of the above summarized attributes: inher-
of independent, frequent, low-consequence (conventionaBnt uncertainty, catastrophic risks, heterogeneity. Rational
risks, such as car accidents, and extensive sets of dasapport should not be based on "an average” or on
aboutaccidents/losses, owners, etc. Thus insurance cona- selected scenart8. Although even good evaluations
panies use well established models (exploiting rich sets
of historical data) for making decisions on premiums, 3Newalso represents old/known types of problems which, however,
estimating claims and the likelihood of insolvency. Ex-2are not stationary, i.e., whose parameters change over time. This in turn

.. | | h | deal . i ith may imply that even large existing sets of data are not adequate for
Isting extremal value theory also deals primarily Withigensfication of parameters of models representing such problems.

14The Chernobyl disaster of 1986 was quantified as a 1,000,000-year

IV. UNCERTAINTIES AND RISKS

11This problem is also known as thank reversal event; yet it occurred in 9 years after the power-plant was commissioned.
12Because of the many-to-one relation between preferences and each!®Note that the probability of occurrence of any given scenario is
solution. typically equal to zero.
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of particular decisions are impossible, the preferencéor model-based support of decision-making, especially
structure among decisions can provide a stable basis fam actual policy-making.

a relative ranking of alternatives. Thus the essence of Web-based modeling environments (like the SMT) not
identifying robust decisions is to perform comparativeonly support interdisciplinary modeling, but also provide
analyses of feasible decisions and to design robust policiespportunities for involving a larger audience in model
with respect to the uncertainties and risks involved. Suclanalysis. In particular, a Web-based multicriteria analysis
decisions don't attempt to be "optimal” for any given sce-of discrete alternatives (called MCAA) has been recently
nario; they reflect trade-offs between being (1) possiblydeveloped? it is currently being used for several appli-

best for most likely situations, and (2) good enough forcations, including analysis of future energy technologies
extreme events. (the latter to be done remotely by a large number of

A more detailed discussion of novel approaches tastakeholders).
coping with uncertainties and risks can be found e.g., The composition of this paper was also motivated

in [25], [26], [27]. by the requirements of scientific support for decision-
making. Each decision problem typically has naain
V. TRANSPARENCY ANDPUBLIC UNDERSTANDING focus However, eachnon-trivial problem requires an

By now it is commonly agreed that the provision of inte_gr.ated anglysis of all relevant aspegts, includin'g 'Fhe
information is critical to public acceptance, and that indecision-making process, the data quality, uncertainties,
reality some commonly discussed problems are actuall@"d risks. Focusing on only one (even main) aspect
incorrectly understood. Selected issues of modeling fopnd/or selecting too _early a specific modeling paradigm is
knowledge exchange are discussed in [28]. The relevand@ngerous because it may neglect factors that can damage
of this publication for policy making is illustrated e.g., the quality of an incomplete analysis.
by Sterman [29], who points out that although the Kyoto SCIencg-based support fqr pollcy-makmg is a process,
Protocol is one of the most widely discussed topics, mos@nd quality of the support is determined by its weakest
people believe that stabilizing emissions at near currerfil®ment. This paper focuses mainly on multicriteria anal-
rates will stabilize the climate. &ent debates on pension YSiS Of attainable goals. However, it also discusses recent
system reforms in several European countries also clearf§€velopments in the modeling technology, integrated risk
show a wide misunderstanding of the consequences §fanagement, and transparency and public understand-
population structure dynamics on economies in generd'd- All these topics are relevant to supporting rational
and on pension systems in particular. These, and ma@eusmr}-makmg, therefore recent deyt_alopments might be
other problems, can also be explained to the public byhteresting for researchers and practitioners.
adapting relevant models for use in presentations that
the public can understand. Unfortunately, various mod- ACKNOWLEDGMENTS
els developed for policy-making problems use different The author gratefully acknowledges diversified con-
assumptions, and often different sets of data; thereforgibutions of Y. Ermoliev, T. Ermolieva, J. Granat, and
a comparative analysis of their results can at best be doreP. Wierzbicki. Many discussions and joint activities on
and understood by a small community of modelers. Thearious modeling issues have contributed over many years
need for public access to knowledge pertinent to policyto the development of the modeling methodology, novel
making will certainly grow, see e.g., [30] for the discus- methods for multicriteria analysis, and for integrated
sion of access to environmental information; thus the rolenanagement of inherent uncertainties and catastrophic

of models in public life will also grow accordingly. risks, and their applications to many diversified policy-
making processes.
VI. CONCLUSIONS Recent research on mtigriteria analysis of discrete al-

Development of models for complex problems doesternatives has been partly financially supported by the EC—
and will, require various elements of science, craftsmanfunded Integrated Project NEEDS, and by the Austrian
ship, and art (see, e.g. [4] for a collection of argumentd@deral Ministry of Science and Research.
that supports this statement). Moreover, development and
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