

GHG Intensity of Different Transport Modes: What do the numbers mean? Shipping a ton over 10,000 km = 0.1 ton CO₂ Shipping Rail Bus Freight rail 2-wheelers Road freight Passengers LDVs Air I Air 10 100 50 100 150 200 250 300 350 1000 ò GHG intensity (gCO2 eq/tkm, log scale) GHG intensity (gCO2 eq/pkm) US average: 25,700 pass-km/capita @ 170 g CO₂/pass-km = 4.3 tons CO₂ Private car travel in US is equivalent of importing 43 tons of goods from China for each person, so if you worry about your C-footprint worry about driving to the shopping mall rather than about CO2 from shipping imports from China

Mobility Drivers

Amplifiers:

- Interconnectedness
- Income
- Technology (speed)

Constraints

- Time
- Money
- Space (congestion)

Mediator: Lifestyles & Policy

7

USA - AVERAGE PASSENGER TRANSPORT COST RAIL-CAR-AIR average transp costs per pass (vehicle) mile 1967 c/mile avg. US factory sales value of ca 1967 \$ average US sales value of cars 1967 \$ domestic air carriers avg. expenses c/pass-mile K 1870 1880 1900 1910 1920 Data Source: Garrison, 1988 and US DOC, 1975 & 1987 A. Grübler, IIASA, 1988

Purpose (US), 1990 Data		
Trip purpose*	10º pass-km	Percent
Work (commute)	1,190	17.7%
Family & HH	2,981	44.5%
Leisure#	2,484	37.0%
"go for a ride"	55	0.8%
TOTAL US	6,710	100.0%
Total mobility in:		
China	607	
Ex-USSR	1,770	
France	704	
Norway	47	

Transport & Environment

- Travel & Communication: Complements rather than substitutes
- · Unabated demand growth
- Path dependency (prices matter after all)
- · Gender differences weakening
- Technology improvements "taken back" by behavioral change (load factors, SUVs)

Technik & Umwelt

User Behavior More Powerful than Technological Efficiency: Example Energy End Use in Transport			
Toyota Prius	Cadillac Escalade		
50 miles/gal	15 miles/gal	8 miles/gal	
1 Yalie in Zipcar	Soccer mom + 3 kids	Driver + 20 school children	
Distance traveled (all examples) : 100 km			
1.5	1.25	0.50	
Energy use: MJ per passenger-km traveled			

Summary 8 (End-use: Transport)

- Most important changes with industrial revolution: time and money budgets Time: life expectancy increases, working time decreases •
- Money: increasing personal income (2%/Jahr), stability (housing) and structural shifts (communication) in expenditures
- Translation of above into increased mobility •
- Translation of above into increased mobility Zahavi's transport model: maximize mobility under time (1 hr/day) and money constraints (15% of disposable income) Importance of technology and infrastructure in influencing space-time-money triangle of mobility Increasing environmental importance of HOW technologies are used

Technik & Umwelt

Arnulf Grübler