8

Case Study IV End Use: Transport

World Transport Energy Use in 2017 (Mtoe, IEA, 2019)

World

Million tonnes of oil equivalent											
SUPPLY AND CONSUMPTION	Coal & peat	Crude oil	Oil products	Gas	Nuclear	Hydro	Geotherm. solar etc.	Combust. renew. & waste	Electricity	Heat	Total
TRAN SPORT	0.08	0.00	2688.61	104.71	-	2		88.69	\$1.27	12	2808.16
World aviation bunkers		-	195.37	-	-	- X		-		- 10 0	195.37
Domestic aviation	-	-	128.04	-	-			1.000		- 6÷	128.04
Road	an an Al		1960.37	43.81	-		2	82.73	4.55	372	2091.45
Rall	0.05	100	28.84	-	17.1	57	1973	0.50	22.12	3.5	51.52
Pipeline transport	-	-	0.25	60.62	-	- 19 I			2.89	- 8÷	63.75
World marine bunkers		-	216.87	0.06	-	- 16 I		0.22			217.15
Domestic navigation	0.00		54.48	0.07	•		-	0.14		- 19 -	54.69
Non-specified	0.01	0.00	4.29	0.15		-		0.00	1.71	38 .	6.17
	final energy		service								
		Ν	Atoe 10	e12 pa	ss-/ton-	km	Dou	ah ac	امرينير	000	• .
People		~1600 32			Rough equivalence.						
Goods	~1200					46	1 passenger = 1.5 tons				

Transport Energy Use Trends (in Mtoe)

Source: GEA KM9 (2012) based on IEA

Modal Share in Transport Output (Source: GEA KM9 2012)

GHG Intensity of Different Transport Modes: What do the numbers mean?

Private car travel in US is equivalent of importing 43 tons of goods from China for each person, so if you worry about your C-footprint worry about driving to the shopping mall rather than about CO2 from shipping imports from Chin

France - Growth in Motorized Mobility (pass-km per day per capita)

Technik & Umwelt

Mobility Drivers

Amplifiers:

- Interconnectedness
- Income
- Technology (speed)
 Constraints
- Time
- Money
- Space (congestion)

Mediator: Lifestyles & Policy

FRANCE: 1913 FF GNP AND TRANSPORT TON- AND PASS-KM

London – Edinburgh Travel Time

NAKICENOVIC, IIASA, 1987

USA - AVERAGE PASSENGER TRANSPORT COST RAIL-CAR-AIR

A. Grübler, IIASA, 1988

Urban Transport Modal Split (share in # of trips) Source: GEA KM18 (2012)

Transport Energy Use vs. Modal Split

Source: GEA KM18 2012

Y. Zahavi's Transport Demand Model (controversial theory but sound empirics)

- Maximization of travel range ("contact/exchange surfaces" or "encounter potentials" = miles traveled)
- Subject to:
 travel time budget (~1 hr/day)
 income (~15% of family income)
 constraints

Weekly Travel Time Budgets in the USSR

(Variation across 12 countries: 0.65-1.48 hrs/day/person; Szalai, 1972)

Technik & Umwelt

Travel Money Budgets (% of Income) Source: Schafer & Victor, 2000, Trnsp.Res.A. 34(3):171-205

Technik & Umwelt

Western and Eastern Europe Passenger Modal Split Based on Schafer & Victor, SciAmer. October 1997:56-59

Technik & Umwelt

Arnulf Grübler

Individual Mobility by Country and Purpose (US), 1990 Data

Trip purpose*	10 ⁹ pass-km	Percent
Work (commute)	1,190	17.7%
Family & HH	2,981	44.5%
Leisure [#]	2,484	37.0%
"go for a ride"	55	0.8%
TOTAL US	6,710	100.0%
Total mobility in:		
China	607	
Ex-USSR	1,770	
France	704	
Norway	47	

* Based on NTPS, 1992. [#] vacation, seeing friends, other social and recreational activities.

Technik & Umwelt

Transport Choices and Technology

- Importance of logistical chains
- Subjective weighting of travel time (waiting time = 3x travel time)
- Policy leverage:
 "back end" (parking fees/restrictions) over "front end" (subsidized public transport)
- Infrastructures: "orgware" (schedules, reliability, hassle) and "hardware" (speed, cleanliness, security) more important than costs

Vienna Public Transport Trips per Year (cumulative) and Car Ownership per Capita

Technik & Umwelt

Transport & Environment

- Travel & Communication: Complements
 rather than substitutes
- Unabated demand growth
- Path dependency (prices matter after all)
- Gender differences weakening
- Technology improvements "taken back" by behavioral change (load factors, SUVs)

France – Transport & Communication Volume (Index 1985=100)

Technik & Umwelt

Motorized Mobility vs GDP/capita Based on Schafer & Victor, SciAmer. October 1997:56-59

Technik & Umwelt

Path Dependent Vehicle Ownership Trends

Source: GEA KM9 (2012) based on IPCC AR4 (2007)

Germany: Car Ownership by Gender and Age Cohorts Source: Buttner&Grubler, 1995.

Technik & Umwelt

Arnulf Grübler

"Take-back" Effects

Technik & Umwelt

Percent Change since 1970 in US Automobile CO₂ Emissions and Driving Forces

Technik & Umwelt

User Behavior More Powerful than Technological Efficiency: Example Energy End Use in Transport

US Poster From WW II

The "Sharing Economy": Mobility Case Studies

Transport Forum

Shared Mobility Innovation for Liveable Cities

Reductions (%) in shared mobility scenario compared to status quo

	vehicle	con-	mobility	CO2	
	fleet	gestion	costs	emissions	
Auckland	-95%	-49%	-43%	-54%	
Dublin	-98%	-43%	-50%	> -31%	*
Helsinki	-96%	-37%	-43%	> -34%	*
Lisbon	-97%	-30%	-50%	-62%	
* IC vehicl					

Shared Taxi

Disruptive Change

Easter Parade on Fifth Avenue, New York, 13 years apart

1900: where's the car?

1913: where's the horse?

Source: Carbontracker, 2018

Summary 8 (End-use: Transport)

- Most important changes with industrial revolution: time and money budgets
- Time: life expectancy increases, working time decreases
- Money: increasing personal income (2%/Jahr), stability (housing) and structural shifts (communication) in expenditures
- Translation of above into increased mobility
- Zahavi's transport model: maximize mobility under time (1 hr/day) and money constraints (15% of disposable income)
- Importance of technology and infrastructure in influencing space-time-money triangle of mobility
- Increasing environmental importance of HOW technologies are used