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Abstract

In this thesis we establish a theory of evolutionary dynamics that accounts for the
following requirements.

The evolutionary process is considered in a coevolutionary context.
The theory describes the full dynamics of the coevolutionary process.
The coevolutionary dynamics are derived from the underlying population dynamics.
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The theory accounts for the stochastic aspects of the evolutionary process.

To our knowledge the mathematical framework advanced here is the first to simultane-
ously combine these four key features of evolution.

We present a hierarchy of three dynamical models for the investigation of coevolution-
ary systems; each of these models stands for a different balance between descriptive
capacity and corresponding analytic tractability. Deductions are given to clarify the
interconnections between the models; from the assumptions necessary for these deriva-
tions we infer their domains of validity. Equations central to the fields of evolutionary
game theory, replicator dynamics and adaptive dynamics are recovered as specialized
cases from our mathematical framework. In particular, the canonical equation of adap-
tive dynamics, which so far has been used on the grounds of plausibility arguments, is
underpinned by a formal derivation.
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Introduction

Fluctuations are caused by the discrete nature
of matter.

N.G. van Kampen (1981)

The self-organisation of systems of living organisms is elucidated most successfully by
the concept of Darwinian evolution. The processes of reproduction, variation, inheri-
tance and interaction are sufficient to enable organisms to adapt to their environments
by means of natural selection. Yet, the development of a general and coherent math-
ematical theory of Darwinian evolution built from the underlying ecological processes
is far from complete.

Progress on these ecological aspects of evolution will critically depend on properly
addressing at least the following four requirements.

1. The evolutionary process needs to be considered in a coevolutionary comtest.

amounts to allowing feedbacks to occur between the evolutionary dynamics of
a species and the dynamics of its environment (Lewontin 1983). In particular,
the biotic environment of a species can be affected by adaptive change in other
species (Futuyma and Slatkin 1983). Evolution in constant or externally driven
environments thus are special cases within the broader coevolutionary perspective.
Maximization concepts, already debatable in the former context, are insufficient in
the context of coevolution (Emlen 1987; Lewontin 1979, 1987).
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2. A proper mathematical theory of evolution should be dynamiddthough some
insights can be gained by identifying the evolutionarily stable states or strategies
(Maynard Smith 1982), there is an important distinction between non-invadability
and dynamical attainability of evolutionary states (Eshel and Motro 1981; Eshel
1983; Taylor 1989). It can be shown that in a coevolutionary community compris-
ing more than a single species even the evolutionary attractors generally cannot be
predicted without explicit knowledge of the dynamics (Marrow et al. 1994). Con-
sequently, if the mutation structure affects the evolutionary dynamics, it must not
be ignored when investigating evolutionary outcomes. Furthermore, a dynamical
perspective is required in order to deal with evolutionary transients and nonequi-
librium evolutionary attractors.

3. The coevolutionary dynamics ought to be underpinned by a microscopic theory.
Rather than postulating measures of “fitness” and assuming plausible adaptive dy-
namics, these should be rigorously derived. Only by accounting for the ecological
foundations of the evolutionary process in terms of the underlying population dy-
namics, is it possible to incorporate properly both density and frequency dependent
selection into the mathematical framework (Brown and Vincent 1987a; Abrams et
al. 1989, 1993; Saloniemi 1993). Yet, there remain further problems to overcome.
First, analyses of evolutionary change usually can not cope with nonequilibrium
population dynamics (but see Metz et al. 1992; Rand et al. 1993). Second, most
investigations are aimed at the level of population dynamics rather than at the level
of individuals within the populations at which natural selection takes place; in con-
sequence, the ecological details between the two levels are bypassed.

4. The evolutionary process has important stochastic elemdrtte. process of muta-
tion, which introduces new phenotypic trait values at random into the population,
acts as a first stochastic cause. Second, individuals are discrete entities and con-
sequently mutants that arise initially as a single individual are liable to accidental
extinction (Fisher 1958). A third factor can be demographic stochasticity of resident
populations, this can only be ignored provided that population sizes are sufficiently
large (Wissel and $tker 1989). The importance of these stochastic impacts on the
evolutionary process has been stressed by Kimura (1983) and Ebeling and Feistel
(1982).



Introduction 11

In this thesis we establish a theory of evolutionary dynamics that accounts for the above
requirements. To our knowledge the mathematical framework advanced here is the first
to simultaneously combine these four key features of evolution. We present a hierarchy
of three dynamical models for the investigation of coevolutionary systems; each of these
models stands for a different balance between descriptive capacity and corresponding
analytic tractability. Deductions are given to clarify the interconnections between the
models; from the assumptions necessary for these derivations we infer their domains of
validity. Equations central to the fields of evolutionary game theory, replicator dynamics
and adaptive dynamics can be recovered as specialized cases from our mathematical
framework. In particular, the canonical equation of adaptive dynamics, which so far
has been used on the grounds of plausibility arguments, is underpinned by a formal
derivation.

The thesis is devided into three parts. Bart A we outline definitions, empirical
evidence and mathematical descriptions of coevolutionary dynamics. In thePagin

B the hierarchy of our three models of coevolutionary dynamics is established and
analyzed. InPart C we give an application of the derived framework to a specific type
of coevolutionary community.

After a brief introduction to the biological background of evolutionary and coevolution-
ary processes iChapter 1 Chapter 2sketches the models that have been employed

in the mathematical literature to describe such processesChapter 3we summa-

rize some limitations of these approaches and conclude a profile of desiderata that has
served to shape the present work.

Based on the minimal conditions for the incidence of evolution by means of natural
selection, Chapter 4 presents a general framework for describing the simultaneous
evolution of an arbitrary number of species in terms of individual birth, death and
mutation processes. The resulting generalized replicator equation defines our first model
of coevolutionary dynamics, the polymorphic stochastic model. After introducing the
monomorphic regime irChapter 5we employ the generalized replicator equation to
derive as a limiting case the reduced description of adaptive dynamics which we call
the monomorphic stochastic model. This second model of coevolutionary dynamics still
retains the important stochastic features of the adaptive process and explicitly accounts
for random mutational steps and the risk of extinction of rare mutants. From this,
our third model of coevolutionary dynamics, the monomorphic deterministic model,
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is obtained as a deterministic approximation@hapter 6 The canonical equation

of adaptive dynamics is recovered and we demonstrate its validity up to first order.
We refine this result by means of higher order correction terms allowing for increased
accuracy. Algorithms for implementing our three models of coevolution are provided
throughout Chapters 4 to 6 and the richness of resulting coevolutionary phenomena
is illustrated by means of examples. Ghapter 7the two monomorphic models are
analyzed in more detail. Stability conditions for the adaptive dynamics are established,
and the higher orders of the monomorphic deterministic model are shown to give
rise to new, unexpected evolutionary effects. Moreover, the complicated principle of
mutual exclusion is proved for a special case, and a method for constructing variable
adaptive landscapes for the dynamics of adaptation is present€thajter 8we further
extend our mathematical framework such as to encompass more complex evolutionary
scenarios.

Chapter 9is concerned with predator-prey coevolution. We employ the hierarchy of
coevolutionary models derived so far to investigate a prototypic community of such
species. Possible evolutionary outcomes are classified and the conditions for their
occurrence analyzed. In particular, we focus on the phenomenon of evolutionary cycling
and show that so called Red Queen dynamics are a likely outcome of coevolutionary
processes.

Parts of the work described here have been reported in the following papers

1. Dieckmann, U., Law, R.:The dynamical theory of coevolution: A derivation
from stochastic ecological processeAccepted for publication by the Journal of
Mathematical Biology.

2. Marrow, P., Dieckmann, U., Law, R.Evolutionary dynamics of predator-prey
systems: an ecological perspectivéccepted for publication by the Journal of
Mathematical Biology.

3. Dieckmann, U., Marrow, P., Law, REvolutionary cycling in predator-prey inter-
actions. Submitted for publication.

and were presented in talks at the University of Warwick, the University of Utrecht,
the Humboldt-Universét Berlin and as an invited lecture at the “Symposium Adaptive
Dynamics” of the European Science Foundation.
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Basic Notation

i Species index.

k Individual index.

) Trait index.

N Number of species making up the coevolutionary community.

n; Number of individuals in species n = (ni,...,ny).

v Number of adaptive traits in species

8 Adaptive trait value(s) or phenotype in species = (s1,...,snN).
pi(s;) Distribution of adaptive trait values in speciesp = (p1,...,pn).
n;(si, pi) Number of individuals with adaptive trait valug in species as given

by the distributionp;.
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List of Symbols

Time and Timescales

t

T

Process time.

Average waiting time between two subsequent events in the stochastic
models.

Typical timescale of a particular dynamic (specified by an index).

Ecological Rates

filsh,p)

fi](si'v S,n)

bi, b7, b;

7

di, d!, d;

7

Per capita growth rate of an individual of speciesith adaptive trait
value s; in an environment determined by the phenotypic distributions
p. When a dependence of the environment on external influences is
considered, this is indicated by an extra argunent

Per capita growth rate of individuals in speciesvith adaptive trait
valuess’ in an environment determined by the phenotypic distributions
p = <n1 ST 7 I R S T PR (N (5SN>. Resident popula-
tions are assumed to be monomorphic and a single mutant population,
formally taking the index = 0, is considered in species When a
dependence of the environment on external influences is considered,
this is indicated by an extra argument

Time-averaged per capita growth rate of rare mutant individuals in
species: with adaptive trait values’ in an environment determined

by the monomorphic resident populations with adaptive trait vatlues
The time average is trivial for resident population dynamics attaining
equilibria but is essential for coevolution under nonequilibrium popu-
lation dynamics. When a dependence of the environment on external
influences is considered, this is indicated by an extra argument

Per capita birth rates of individuals. Definitions are equivalent to those
of fi(si,p), f;j(sg,s,n) andﬁ»(sg,s) above.

Per capita death rates of individuals. Definitions are equivalent to those
of fi(si,p), f;j(sg,s,n) andﬁ»(sg,s) above.
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Mutation Properties

M,(s;, s; — s;) Mutation distribution in species for mutations in individuals with

mji(s;)

Bi(si, s; — si)

Probabilities

P

w(p'|p)

adaptive trait values; giving rise to others with adaptive trait values
st. When only homogeneous mutation distributions are considered, this
is indicated by dropping the then superfluous first argumgnt

Jth mutation moment of the mutation distributidd; at the adaptive
trait value s;. When only homogeneous mutation distributions are
considered, this is indicated by dropping the then superfluous argument

S

Variance of the mutation distributiof/; at the adaptive trait valus; .
When only homogeneous mutation distributions are considered, this is
indicated by dropping the then superfluous argument

Mutation ratio in species at the adaptive trait value;. When
only homogeneous mutation ratios are considered, this is indicated by
dropping the then superfluous argument

Probability distribution in species of offspring adaptive trait values

s, arising from adaptive trait values;. When only homogeneous
mutation processes are considered, this is indicated by dropping the
then superfluous first argument. B;(s;, st — si) = (1 — pi(si)) -

8(sj — si) + palsi) - Mi(si, s; — si).

Probability density distribution. Example®:(p, t), P(n,t) andP(s,1).

Transition probability per unit time from the phenotypic distributigns
to p’. When a dependence of the environment on external influences is
considered, this is indicated by an extra argunent

Transition probability per unit time for a change of the phenotypic
distribution in species from p; to p! in an environment determined

by p. When a dependence of the environment on external influences is
considered, this is indicated by an extra argunent
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environment on external influences is considered, this is indicated by
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¢ in an environment determined by, When a dependence of the
environment on external influences is considered, this is indicated by
an extra argument.

Transition probability per unit time from the adaptive trait value®
s'. When a dependence of the environment on external influences is

considered, this is indicated by an extra argunent

Transition probability per unit time for a trait substitution in species

¢ from the adaptive trait value; to s in an environment determined

by the monomorphic resident populations with adaptive trait values
s. When a dependence of the environment on external influences is
considered, this is indicated by an extra argunent

Probability density per unit time for a mutation within the popula-
tion of species from s; to s, in an environment determined by the
monomorphic resident populations with adaptive trait value$Vhen

a dependence of the environment on external influences is considered,
this is indicated by an extra argument

Probability of a mutans, within the population of speciesto success-
fully escape extinction in an environment determined by the monomor-
phic resident populations with adaptive trait valueswhen a depen-
dence of the environment on external influences is considered, this is
indicated by an extra argument



List of Symbols 17

Spaces and Subspaces
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Mappings

Polymorphic trait space of species P = x, P;.
Population size space of speciesN = x| N;.
N

Monomorphic trait space of spemesS = X; 3"
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S, = {s € §|m(s) >0 forall i=1,...,N},
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Absolute value function.z| = 4/ Z:z;?

Expectation value function{ f = [ f(=
Product of Heaviside function and identical functidn,), = x - ©(x).

Abbreviations for derivativesd, f = 2 f andd;f = ;= f.

Convention: When evaluating a functson which is obtained as a deriva-
tive and takes particular arguments, the derivation precedes the substi-
tution of the arguments.

Kronecker symbol.é;; = 1 for ¢ = j, 6;; = 0 for ¢ # j.

Dirac’s é-function. [ f(z) - 6(z) de = f(0) and [ f(z) - 6y(x) dx =

J (@) 8(x —y) de = f(y).

A-functional in function space. Used only in combination with a
functional integration indicated b®. [ F'(f)- A(f —g) Df = F(g).

Differentiation symbol employed instead dfto denote a functional
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A(f—g) Df = F(g).
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Miscellaneous Constructs
n Population sizes at fixed points of the population dynamics.

Adaptive trait values either located on isoclines or at fixed points of
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the adaptive dynamics.
@i(8) Invasion angle of. a;(8) = arctan (9% f;(5,3), 97 f;(3i, 3)).

Ri(s) Range of adaptive trait valua$ that have a positive per capita growth
rate when being rare in an environment determined by the monomorphic
resident populations with adaptive trait values
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aji(s) Jth jump moment of speciesfor resident adaptive trait values
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1 Vector with components’ = &;;.

ki(s) Evolutionary rate coefficient of speciesfor resident adaptive trait
valuess.

W Adaptive landscape or “fitness” function. Examplég;(s., s), variable

adaptive landscape for specie@xtented ins; and parameterized by,
andW (s', s), variable adaptive landscape for the entire coevolutionary
community (extented in’ and parameterized by).



Part A
Background and Previous Work

The process of evolution by means of natural selection is fundamental to our understand-
ing of nature. It underpins many of the phenomena of self-organization encountered at
all sorts of levels in the complex hierarchy of being.

Evolution taking place in a constant environment is an abstraction. This simplified view
sometimes is justified to facilitate the analysis of single adaptive features observed in
the world of living organisms; yet, in its idealized form it is seldom met in reality.
The real world is coevolving: adaptive systems are situated in environments which in
turn are adaptable.

In this part we give a brief introduction to evolutionary and coevolutionary thought
and indicate some of the major empirical evidence for coevolution in nature (Chapter
1). We then sketch the key concepts that have been advanced in the past to promote
mathematical analyses of coevolutionary dynamics (Chapter 2). From a discussion of
these ideas we conclude a profile for a dynamical theory of coevolution (Chapter 3)
contributions to which are presented in the next part.






Chapter 1
The Concept of Coevolution

1.1 Origin of Coevolutionary Thought

In the following we introduce definitions for evolutionary and coevolutionary processes
and outline the evidence for the occurrence of the latter.

Evolution

The theory ofevolution by natural selectiomas been developed independently by
Darwin and Wallace (Figure 1.1). In constructing his theory, Darwin combined insight
gained both from observing the abundance of offspring in numerous species, which
he had noticed during his voyage on the H.M.S. "Beagle”, and from studying Malthus’
work on a principle of competition in the “Essay on the Principle of Population” (1798).
Darwin’s seminal book “The Origin of Species by Means of Natural Selection, or The
Preservation of Favoured Races in the Struggle for Life” was published in 1859 and
advanced two major hypotheses: that all organisms have descended with modifications
from common ancestors, and that the chief agent of modification is the process of
natural selection acting on individual variation.

It is generally agreed that there exisinimal conditiongor a process of self-organization
in living organisms to be enacted by natural selection. A general and abstract charac-
terization of such features is theplicator conceptproposed by Dawkins (1976). He
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Figure 1.1 Fathers of evolutionary thought. (a) Charles Robert Darwin (1809-1882), (b) Alfred Russel
Wallace (1823-1913). Their theory of evolution by means of natural selection was presented at the
Linnaean Society of London in 1858.

argues that units, called replicators, which are capable of (i) reproduction, (ii) inher-
itance of traits allowing for (iii) variability, and (iv) interaction causing reproduction
or survival of replicators to be trait-dependent, inevitably will undergo evolution by
natural selection. Similar conditions have been given by Eigen and Schuster (1979)
and by Ebeling and Feistel (1982) who emphasize in addition that evolutionary units
physically are realized as systems open to fluxes of energy and matteod®ciar
1944). In Chapter 4 we will translate Dawkins’ replicator concept into mathematical
language by establishing what we call theneralized replicator equation

Coevolution

We will use the terntoevolutionto indicate adaptation to an environment that in turn

is adaptive. In other words, the selective factor that stimulates adaptation in a species is
itself responsive to that adaptation. Bgaptationwe refer to the process of evolution

by natural selection described above.

The idea of coevolution is already implicit in Darwin’s original work. When discussing
pollination of flowers by insects he remarks “Thus | can understand how a flower and
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a bee might slowly become, either simultaneously or one after the other, modified
and adapted in the most perfect manner to each other” (Darwin 1959). The explicit
notion of coevolution was introduced by Ehrlich and Raven (1964) when analyzing
mutual evolutionary influences of plants and herbivorous insects. Janzen (1980) defines
coevolution — more restrictively than we do — to mean that a trait in one species has
evolved in response to a trait in another species, which trait itself has evolved in
response to the trait in the first. Futuyma and Slatkin (1983) point out that this definition
requires not only reciprocal change (both traits must evolve) but also specificity (the
evolution in each trait is due to the evolution of the other). Like Janzen’s definition
suggests, coevolutionary phenomena are most easily conceived in terms of a single pair
of species. However, since most species interact with a variety of other species, we
do not restrict the meaning of coevolution to the adaptation of pairwise relations. The
reciprocal evolutionary change of interactions among classes of species isditilled
coevolution

The concept of coevolution overcomes the conceptual limitations of traditional biologi-
cal fields like population genetics. Due to the formidable asperities inherit in a detailed
description of the genetic background of evolutionary change, here each species is con-
sidered in isolation, with the environment and associated species relegated to the back-
ground which is assumed to be unchanged (Futuyma and Slatkin 1983). Coevolutionary
dynamics explicitly encompass the feedback loop between a species and its environ-
ment (Lewontin 1983) when analyzing evolutionary phenomena. In consequence, the
study of coevolutionary processes also spawns a more elaborate view of the time course
of evolution. When considering only one species, this would be expected to evolve
by means of natural selection towards a state where it has met whatever challenges it
faced in terms of its environment. Such endpoints of evolution are clearly unrealistic
on a larger evolutionary timescale. In contrast, if two or more species are adapting in
response to each other, continued evolutionary progress can take place.

Evidence for Coevolution

The existence of coevolutionarily evolved interactions between species is underpinned
by observations from a variety of fields. From observation of genetic change, over
indications from the fossil record, the evidence ranges to taxonomic considerations and
results from morphology and ethology. Details are given in Futuyma and Slatkin (1983).
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The challenge in any potential instance of coevolution is, however, to show explicitly
that traits have evolved in response to particular interactions; the decision between such
a coevolutionary explanation and the assertion of the interaction being established only
after the traits considered had evolved, is sometimes debatable. The examples given in
the next section illustrate these considerations.

1.2 Classical Examples of Coevolutionary Dynamics

In this section we briefly review three classical cases giving empirical evidence for
coevolutionary dynamics. In passing, we introduce ecological scenarios that have
fostered the incidence of coevolution.

Mimetic Coevolution

The observation of mimicry is probably the earliest instance of adaptation suggesting
coevolutionary processes to have occurred in nature. Fisher called mimicry theory “the
greatest post-Darwinian application of natural selection” (Gilbert 1983).

Mimicry, defined generally as “resemblance of birds, animals and insects to their natural
surroundings, giving some protection from enemies” (Hornby 1977), in a coevolutionary
context means the phenotypic convergence in the outer appearance of a model species
and a mimetic species owing to common selective pressure by the biotic environment.
Even more specific, Wickler (1968) defines mimicry as the sending of fake signals
by a mimetic species; the signals are fake or deceptive relative to those sent by a
model species to a third species such as a predator. From this it is clear that mimicry
is expected to evolve only on the basis of well-established communication systems.
In consequence the incidence of mimicry is more likely under circumstances of tight
ecological association between species and has therefore been suggested as a rough
index to the degree of specificity and long-term stability of behavioural interactions in
an ecosystem (Gilbert 1983).

There are two specific kinds of mimicryBatesianand Mullerian. Bates (1862)
suggested edible species of butterflies to have acquired a resemblance to warningly
colored and noxious or distasteful species. With birds acting as selective agents,
effective communication has evolved between the birds and the unpalatable butterflies
(model species), protecting the latter from predation and the former from wasting time
and energy in pursuit of unsuitable prey. The edible butterflies (mimetic species) take
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Figure 1.2 Coevolutionary outcomes in parallel races of two butterfly species. Odd numbers refer to races
of Heliconius erato, the immediately following even numbers to the corresponding races of Heliconius
melpomene from the same geographical area. Each pair of corresponding races has developed a closely
resembling color pattern. (after Eltringham 1916)

advantage of this established signalling by imitating the model species’ color pattern
and in consequence benefit from the same protection from predation. In contudist, M~
(1879) explained phenotypic convergence of color patterns in two species of butterflies
that both are distasteful. Due to cooperative education of predators, two species in a
common area should benefit by employing the same signalling. Although in this case
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both species mutually act as model and mimic, the less abundant species will essentially
converge to the more frequent one. The Batesialdian distinction, however, is
often considered to characterize the limits of a continuum (Sbordoni et al. 1979).

Figure 1.2 shows one of the best-documented exampleuleNtin convergence. The

two species of butterflies, Heliconius erato and Heliconius melpomene, have several
parallel races showing some strong phenotypic affinities despite the fact that the two
species represent distinctive radiations within the genus Heliconius. These parallel races
are correlated spatially but not genetically — as far as genes not involved in determining
color pattern are concerned (Turner 1971; Turner et al. 1979). It has been shown
explicitly that Heliconius melpomene has influenced the evolution of Heliconius erato
and vice versa (Gilbert 1983), thus this system is an example of mimetic coevolution.

Predator-Prey Coevolution

As an effect of individual selection on the ecological interactions among predator and
prey species the latter should evolve protective characteristics against predation whereas
the former is expected to become more efficient in harvesting the prey.

Simple though this prediction is, several complications can arise. First, the simultaneous
evolution in the prey and predator species can lead t@rans racein the traits affecting

their interactions (Dawkins and Krebs 1979). The resulting potential for so daked
Queen evolutioifVan Valen 1973) is discussed in more detail in Chapter 9. Furthermore,
predator-prey coevolution can be diffuse rather than tight. In this case coevolution is
likely to be slower and less refined as each species can be involved in a multiplicity
of predator-prey interactions, and the coevolutionary process of the entire predator-prey
community (then containing numerous species) will often include the extinction of one
group of species and its replacement by another (Futuyma 1986).

Figure 1.3 illustrates these aspects. Considered as phenotypic trait for prey and predator
is a morphological index that has been shown to be positively correlated with running
speed (Bakker 1983). The index measures the depth of the astragular groove relative to
the width of the trochlea; it determines the degree to which the limb is constrained to
move in a single plane. Low values of the index correspond to ankle joints that enable
rotation, a feature that facilitates motions which are useful for climbing or moving over
uneven ground. High values indicate that flexibility has been sacrificed to minimize the
danger of dislocation in high-speed runs. From the fossil record the temporal evolution
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Figure 1.3 Coevolutionary dynamics in North American ungulates and several of their carnivory
predators. Plotted is the temporal evolution of a speed index over the past 60 million years. As speed
index serves the ratio of astragular groove depth and trochlea width, two features of the ankle joint.
Dots connected by solid lines refer to the group of prey species (ungulates, i.e. hoofed mammals), letters
to different groups of predator species (mesonychid, hyaenodontid, amphicyonid, borophagine, neofelid,
canine). Each index value shown was computed by averaging within the particular group of species. The
temporal increase in prey speed index appears to be accompanied by a simultaneous increase in some

of the predator speed indices. (after Bakker 1983)

of this index is evaluated over the past 60 million years for a group of prey species
and several groups of predator species (see figure legend). The data provides evidence
for coevolution by an increase in the prey speed index accompanied by a simultaneous
increase in the speed index of some of the predators. Nevertheless, the adaptation in the
predator phenotypes is less pronounced than in the prey phenotypes; this can either be
interpreted as an effect of diffuse coevolution (Futuyma 1986), attributed to a smaller
diversity of predator species compared to prey species (Bakker 1983), or explained by
the fact that predator species typically have evolved additional morphological features
to increase running speed, like a flexible backbone, that have not been considered in

the above analysis (Maynard Smith 1989).
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Parasite-Host Coevolution

Despite various similarities to predator-prey coevolution the evolutionary relationships
among parasites and their hosts have some singular features.

Though hosts will — like prey species — benefit from more effective defence mechanisms,
the extent to which a parasite weakens or kills its host is — in contrast to the case of
predation — often correlated with the reproductive rate of the parasite (Futuyma 1986).
If this correlation is positive, the evolution in the parasites will tend to maximize their
virulence. If, however, the parasites are mainly exchanged between live hosts, the death
of the host will hinder the parasites from being transmitted. Consequently, the virulence
of the parasite may evolve towards intermediate values.

Notice that within one host strains of the virus possessing a large rate of reproduction and
thus a high virulence will be advantageous in terms of individual selection. Nevertheless,
between hosts those virus populations are favored that have a large effective transmission
rate. This is a seldom case gfoup selectiorcounteracting individual selection; it is
based on the existence of temporarily isolated trait groups of parasites within hosts
(Wilson 1983).

An example of parasite-host coevolution with a negative correlation between virulence
and transmission is provided by the spread of the myxoma virus in the wild rabbit
population of Australia after its release in 1950. The myxoma virus is the causative
agent of myxomatosis, a disease that is mild in South American rabbits, from which it
originated, but usually is fatal in European and Australian rabbits that have not yet been
in contact with the virus (Fenner and Ratcliffe 1965). While the disease successfully was
reducing the Australian rabbit population size, which had grown to become a serious
pest of sheep and cattle grazing land, both virus and host were undergoing evolutionary
changes. The coevolutionary dynamics of this case are summarized in Figure 1.4. The
vector (transmitting species) of this epidemic is a mosquito that feeds on rabbits only
when they are alive; therefore the chance of transmission of the parasite from rabbits
that carry a high load of viruses is reduced as such rabbits are likely to be the first to
die. This explains the shift in the frequency distribution of the virus population towards
more benign strains (Figure 1.4a) and thus the decrease in the virulence of the parasite
(Figure 1.4b). Simultaneously, the rabbit population has built up an increased resistance
against the myxoma virus (Figure 1.4d) such that the symptomatology of the disease
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Figure 1.4 Coevolutionary dynamics in the Australian wild rabbit and the myxoma virus. One trait in
each species is considered: the virulence of the virus (measured as mortality probability of a standard
rabbit strain infected by the virus) and the resistance of the rabbit (measured as survival probability of the
rabbit infected by a standard virus strain). Plots (b) and (d) show the temporal evolution of these traits
after the introduction of the myxoma virus to Australia in 1950. In addition, plots (a) and (c) illustrate
the change in the frequency distributions of virus and rabbit populations; on the horizontal axes standard
classifications of virus virulence and rabbit resistance have been used. Initially the myxoma virus has
been introduced as a highly virulent strain (belonging to class I) while the resistance of the rabbit was
very low (corresponding to severe symptomatology of the infection). In the following decade virus and
rabbit populations have coevolved towards more benign virulence and increased resistance. (data from
Fenner and Ross 1994)

became more and more moderate (Figure 1.4c). It is interesting to observe that during
the past decades the virulence of the myxoma strains has shown signs of slight increase
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(right part of Figure 1.4b); this might be interpreted as a counteraction to the acquired
resistance of the rabbits.

Due to the relatively fast evolutionary changes and the detailed monitoring of the
populations, the Australian myxoma disease is one of the best-documented instances
of coevolutionary dynamics.



Chapter 2
Models of Coevolution

The traditional fields for the mathematical investigation of evolutionary phenomena
are population geneticand quantitative genetic§gBulmer 1980; Falconer 1989). To
assess coevolutionary dynamics at the level of genes appears to be virtually impossible
(Levin 1983). Numerous simplifying assumptions have to be employed before feasible
equations are obtained (Lande 1979), for two recent approaches see e.g. lwasa et
al. (1991) and Saloniemi (1993). We only briefly mention that in the resulting models the
evolutionary process is treated deterministically and that usually “fitness” functions are
employed whose relations to the interactions among individuals are not always obvious.

These circumstances have fostered the development of various simpler mathematical
models of coevolutionary dynamics. Below we sketch research éasfutionary game
theoryas well as from the areas aéplicator dynamicsand adaptive dynamics

2.1 Invasion Criteria

Central Idea

Evolutionary game theory envisages individuals to adopt different strategies. With these
strategies, members of populations are pictured to play games against each other. As a
result of such contests, individuals receive payoffs according to their success in these
games. A strategy can invade a population of other strategies if its payoff exceeds that
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of the other strategies. When a strategy is non-invadable by any other strategy it is
said to be evolutionarily stable.

Mathematical Description

The condition for arevolutionarily stable strateg{ESS) is given by (Maynard Smith
and Price 1973; Maynard Smith 1982; Parker and Maynard Smith 1990)

Wes > W . (2.1)

Here, Wy, denotes the payoff of strategy received in a game against strategy
When inequality (2.1) holds for a population mainly of strateggigainst all possible
strategiess’ thens is an evolutionarily stable strategy.

In contrast, if inequality (2.1) does not hold for a population mainly of strategnd
a particular strategy’ thens is vulnerable to invasion by'.

In the caselV,; = Wy inequality (2.1) has to be replaced by the conditibi, >
Wse; Rand et al. (1993) show that this amounts to a second order condition which is
generally not needed when payoffs are nonlinear.

Traditionally, evolutionary game theory is concerned with the frequency of strategies,
not with their total density in the population. When dealing with games between species
this restriction needs to be overcome because, as Pimentel (1968) pointed out, the whole
game achieves more or less significance in the evolution of each species as the abundance
of the other species becomes respectively greater or lower. In evolutionary game theory
different species are only distinguished by the sets of strategies they can adopt.

In Section 5.3 we will recover the condition (2.1) for “evolutionary stability” from
the stochastic framework established in Part B for the description of coevolutionary
processes.

Conditions similar to inequality (2.1) can be derived when instead of payoffs population
dynamics are considered (Reed and Stenseth 1984; Metz et al. 1992; Rand et al. 1993).
We will tackle these more sophisticated invasion criteria in Section 8.2.
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2.2 Replicator Dynamics

Central Idea

The central assumption common to the various instances of replicator dynamics is that
the per capita growth rate of individuals is proportional to the difference between their
own “fitness” and the “average fitness” of the entire community.

Mathematical Description

When denoting the densities of different “species”Qywith : = 1,..., N and their
“fitness” by W;(x) the assumption above is equivalent to

d N
T Y Wila) - 2.2)

=1

T =y {VVZ(J}) —

o=

with ¢ = Ejvzl ;.

In the replicator equation no distinction is made between populations of different species
and populations of the same species with different trait values.

Mathematical structures analogous to equation (2.2) have been used in population
genetics (Fisher 1958), in the study of hypercycle dynamics (Eigen and Schuster 1979)
and in the extension of evolutionary game theory to a dynamical framework (Taylor
and Jonker 1978). The nammeplicator equationhas been suggested by Schuster and
Sigmund (1983) in resemblance of Dawkins’ replicator concept (Dawkins 1976).

2.3 Adaptive Dynamics

Central Idea

The concept underlying the model of adaptive dynamics given below is that the different
species in a coevolutionary community change their adaptive trait values according to
a hill-climbing process on adaptive landscapes defined by “fitness” functions.
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Mathematical Description

We summarize the results of numerous investigations of adaptive dynamics by means
of the following canonical equation

d 5,
%Si = ki(s) - a—SIZWZ<3;, 3) e (2.3)
Here, thes; with : = 1,..., N denote adaptive traits in a community comprisiNg

species. ThéV;(s!, s) are measures of “fitness” of individuals with trait valgein the
environment determined by the resident trait valueshereas thé;(s) are non-negative
coefficients, possibly distinct for each species, that scale the rate of evolutionary change.

Adaptive dynamics of the kind (2.3) have frequently been postulated, based either on
the notion of a hill-climbing process on an adaptive landscape or on some other sort of
plausibility argument (Brown and Vincent 1987a, 1987b, 1992; Rosenzweig et al. 1987;
Hofbauer and Sigmund 1988, 1990; Takada and Kigami 1991; Vincent 1991; Abrams
1992; Marrow and Cannings 1993; Abrams et al. 1993; Marrow et al. 1994). The notion
of the adaptive landscape or topography goes back to Wright (1931). A more restricted
version of equation (2.3), not yet allowing for intraspecific frequency dependence, has
been used by Roughgarden (1983). It has also been shown that one can obtain an
equation similar to the dynamics (2.3) as a limiting case of results from quantitative
genetics (Lande 1979; Iwasa et al. 1991; Taper and Case 1992; Vincent et al. 1993;
Abrams et al. 1993).

In Section 6.2 we will recover the canonical equation (2.3) of adaptive dynamics from
the stochastic framework established in Part B for the description of coevolutionary
processes. The assumptions underlying this equation thus will be revealed and the
functions £; and W; will be determined.



Chapter 3
Resulting Desiderata

3.1 Discussion of Previous Work

Here we briefly review some restrictions of the established models of evolution. These
limitations will provide us with directions for devising a more general theory of

coevolutionary dynamics.

Invasion Criteria

Investigating coevolutionary processes by means of the invasion condition, inequality
(2.1), can be misleading for several reasons.

1. Recognition has grown that the question of “evolutionary stability” of strategies,
based on the notion of non-invadability, is independent of the attainability of these
strategies. Strategies that are characterized by continuous trait values and that
maximize individual payoff can be unstable in the sense that evolution tends away
from these strategies (Eshel and Motro 1981).

2. When restricting attention to “evolutionarily stable strategies”, evolutionary tran-
sients and nonequilibrium evolutionary attractors are excluded from consideration.

3. In a coevolutionary context, the relative magnitude of evolutionary rates can be
essential for determining evolutionary outcomes, see Section 7.2. As invasion
criteria lack a notion of dynamics, in such cases even the prediction of evolutionary
endpoints is beyond their scope.
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Determining payoffs in evolutionary game theory is usually not underpinned by a
population dynamic (Maynard Smith 1982). We have noted in Section 2.1 attempts
to derive invasion criteria based on population dynamics (Reed and Stenseth 1984;
Metz et al. 1992; Rand et al. 1993); yet, the three limitations outlined above still apply.

Replicator Dynamics

Replicator dynamics, see equation (2.2), have been shown to provide a common frame-
work for various evolutionary models (Schuster and Sigmund 1983). Consequently,
these models share a common set of drawbacks.

1. There is no mechanism provided to generate variation in the considered community.
Only those species or trait values that are present initially undergo concurrent
population dynamics corresponding to a process of selection.

2. The population dynamics in the system are considered to be deterministic and
continuous, thus the replicators are not treated as individual entities. This requires
population sizes to be large.

3. The per capita growth rates in equation (2.2) are assumed to be of a special type,
constrained by the condition of constant organization (Eigen and Schuster 1979).

A stochastic replicator dynamic incorporating a mutation process has been suggested
by Ebeling and Feistel (1982); however, only a discrete set of species or trait values
is allowed here.

Adaptive Dynamics

The canonical equation (2.3) of adaptive dynamics might be unsatisfactory for the
following reasons.

1. The idea of modelling evolution as a hill-climbing process on an adaptive landscape
amounts to an ad-hoc approach. In the context of coevolution this type of dynamics
is not underpinned by a formal derivation. For this reason it is not clear how to
define the functiong; andW; in equation (2.3) independent of the dynamics (2.3)
itself.

2. It can be shown that an arbitrary dynamical system can be cast in the form of
equation (2.3) when appropriate choices fprand W; are made, see Section 7.5.

The significance of equation (2.3) thus is debatable unless specific assignments are
made to the functiong; and W;.
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3. The canonical equation describes the adaptive process as a deterministic process.
The stochasticity arising from random mutations and from the impact of demo-
graphic stochasticity of small populations thus is ignored.

Resume

We conclude that the reviewed approaches to evolutionary processes lack one or more
features which may be regarded as essential. We summarize these key features in the
next section, thus providing a basis for the construction of the extended perspective on

evolutionary processes offered in Part B.

3.2 Conclusions for Present Work

From the discussion in Sections 2.1, 2.2, 2.3 and 3.1 we extract the following four
desiderata for a mathematical theory of adaptive change. These requirements define a
profile serving to shape our approach to evolutionary processes in Part B.

Coevolution

The evolutionary process needs to be considered in a coevolutionary context.

Evolution taking place in a constant environment is an abstraction. It is necessary to
allow for feedbacks to occur between the evolutionary dynamics of a species and the
dynamics of its environment (Lewontin 1983). We have seen in Chapter 1 that the
biotic environment of a species can be affected by adaptive change in other species
(Futuyma and Slatkin 1983). Evolution in constant or externally driven environments
are special cases within the broader coevolutionary perspective.

Dynamics
A proper mathematical theory of evolution should be dynamical.

Due to the discrepancy between non-invadability and dynamical attainability (Eshel and
Motro 1981; Eshel 1983; Taylor 1989; Christiansen 1991; Takada and Kigami 1991)
invasion criteria are insufficient to determine evolutionary stability in a coevolutionary

context. A dynamical perspective is moreover required to account for evolutionary
transients, nonequilibrium evolutionary attractors, evolution under nonequilibrium pop-
ulation dynamics or in a varying environment.
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Individuals

The coevolutionary dynamics ought to be based at the level of individuals.

Rather than postulating measures of “fitness” and assuming plausible adaptive dynamics,
these should be rigorously derived. For this purpose we need to consider the interac-
tion between individuals in the coevolutionary community. Only by accounting for the
population dynamics underlying the evolutionary process, is it possible to incorporate
properly both density and frequency dependent selection into the mathematical frame-
work. Yet, the process of natural selection takes place at the level of individuals. Hence
it is important not to restrict attention to the level of population dynamics, otherwise
the ecological details between these two levels are bypassed.

Stochasticity

The evolutionary process has important stochastic elements.

The process of mutation, which introduces new phenotypic trait values at random into
the population, acts as a first stochastic cause. Second, individuals are discrete entities
and thus mutants arise initially as a single individual. In consequence they are liable
to accidental extinction (Fisher 1958). Also resident populations are subject to this
demographic stochasticity, although this third effect might be ignored provided that
population sizes are sufficiently large (Wissel andcBer 1989).



Part B
The Dynamical Theory of Coevolution

For a proper mathematical theory of evolutionary processes we suggest four criteria.
First, it should allow for coevolutionary interdependencies within the considered system.
Second, the theory needs to encompass the dynamics of evolution rather than predicting
only evolutionary outcomes. Third, it ought to be derived from those processes
underlying the adaptive change and should be based on interactions between individuals.
Fourth, the theory needs to be a stochastic one to account for the randomness of
mutations and the impact of demographic stochasticity.

Several areas of research have traditionally been concerned with the theoretical analysis
of evolutionary processes. As explained in the last section neither the fields of population
genetics and quantitative genetics nor those of evolutionary game theory, replicator
dynamics and adaptive dynamics can simultaneously meet the criteria above. For this
reason we rely on the replicator concept, as incorporating the minimal conditions for
the incidence of evolution by means of natural selection, for building up a dynamical
theory of coevolution.

In this part we present and analyze a hierarchy of three evolutionary models. We
begin by deriving the polymorphic stochastic model which is represented in form of
the generalized replicator equation and which serves as a fundamental description of
coevolutionary dynamics (Chapter 4). From this we deduce the monomorphic stochastic
model (Chapter 5) and the monomorphic deterministic model (Chapter 6) in order to
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obtain reduced descriptions of the coevolutionary process while retaining its essentials.
The latter models are investigated in detail (Chapter 7) and extensions to all three
models are provided (Chapter 8).

To illustrate the theoretical considerations of this part we will occasionally employ the

coevolutionary predator-prey community presented in the next part. A synopsis of all
assumptions needed for the deductions given is provided in Figure 1 of the Chapter
“Summary and Conclusions”.



Chapter 4
The Polymorphic Stochastic Model

In this chapter we present a fundamental representation of the coevolutionary processes
in ecological communities. We call the resulting mathematical descriptiorgdme
eralized replicator equation When excluding the effects of space, age structure and
genetics from consideration, this representation is as general as possible. It is from here
that the more reduced descriptions of coevolutionary dynamics are derived, which we
analyze in later chapters.

4.1 Characterization of Coevolutionary Communities

In this section notation and key concepts underlying our analysis of coevolutionary
dynamics are introduced.

Replicators

In Section 1.1 we already have mentioned the replicator concept, an attempt due to
Dawkins (1976) to capture the minimal conditions for evolution to occur by natural
selection. In other words, replicators are the smallest units capable of this type of
self-organization. They possess properties as below.

1. Reproduction.The replicator units can multiply by producing replicas.
2. Inheritance. The units have certain distinctive features that are basically inherited
in the process of replication.
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3. Variability. There exists some variation in the features of replicas with respect to
the original unit, not all replicas are true.

4. Interaction. The replicators exhibit some kind of interaction causing a dependence
of their reproduction or survival on the inherited features.

The following mathematical description of individuals in a community closely matches
these characteristics of Dawkins’ replicators. To allow not only for evolutionary but
for coevolutionary dynamics we consider communities comprising several species of
replicators.

Individuals, Populations and Species

The coevolutionary community under analysis is allowed to be made up of an arbitrary
numberN of speciesthe species are characterized by an inflex1,..., N. At time

t there aren; individuals in the population of speciésThese individuals are identified

by an indext = 1,....,n;.

The individuals within each species can be distinct with respeeidaptive traitss;,

taken from sets); and being either continuous or discrete. For convenience we scale the
adaptive trait values such that C (0,1). The restriction to one trait per species will be
relaxed in Section 8.1, it only obtains until then to keep the derivation conceivable and
the notation reasonably simple. Individuals have adaptive trait values or phenstypes
with &£ = 1,...,n; such that thgphenotypic distributiomn;(s;) in species is given by

Pi= Y beu (4.2)

with 6,(z) = 6(x — y) whereé denotes Dirac’$-function which in turn is defined by
[ f(z)-é6(x —y) dz = f(y) for an arbitrary test-functiorf. A population made up of
individuals with many different adaptive trait values is calfgmlymorphic

The development of the coevolutionary community is caused by the process of mutation,
introducing new mutants, and the process of selection, determining survival or extinction
of these mutants. The change of the population sizesonstitutes thepopulation
dynamics that of the adaptive trait values is called adaptive dynamics Together
these make up theoevolutionary dynamicef the community.
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Selection

We first consider the process of selection. In an ecological community the environment
e;r Of an individual% in species is affected by influences that can be either internal

or external with respect to the considered community. The former effects are functions
of the phenotypic distributiong = (p;,...,py) in the community, the latter may
moreover be subject to external effects like seasonal forcing which render the system
non-autonomous. We thus write

ek = eir(pit) . (4.2)

The quantitied;;, andd;; are introduced to denote thper capita birth and death rates
of an individualk in species. These rates are interpreted stochastically as probabilities
per unit time and can be combined to yield the per capita growth rate

Jik = bix — dig (4.3)

of the individual. They are affected by the trait valgg of the individual as well as
by its environmenk;;, thus with equation (4.2) we have

bit. = bi(sig,p,t) and di = d;i(si, p,t). (4.4)

Notice that the function$; and d; are in fact functionals as they take the vector of
phenotypic distributions as an argument. By assuming in equation (4.4) these functions
not to depend on the particular individuél of species: we take the environment

to be spatially homogeneous. Since we are mainly interested in the phenomenon of
coevolution — an effect internal to the community — we will not always consider the
extra time-dependence in equations (4.4) which may be induced by external effects on
the environment.

Mutation

We now consider the process of mutation. In order to describe its properties we introduce
the quantitiesy;; and M;y.

The former denote thigaction of births that give rise to a mutatian the trait values;y.
Again, these fractions are interpreted stochastically as probabilities for a birth event to
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produce an offspring with an altered adaptive trait value. These quantities may depend
on the phenotype of the considered individual itself,

fik = pa(sir) (4.5)
although this complication is not frequently considered.

The quantities
M, = Mi(sik, Si, — Sik) (4.6)

determine theprobability distribution of mutant trait values;, around the original trait
value s;;. The functionsM; are not dependent on the indéxof an individual other
than via its adaptive trait valug;. If the functionsM; andy; are independent of their
first argument, the mutation process is callemmogeneoysf M; is invariant under a
sign change of its second argument, the mutation process is cyihachetric

In the next two sections we show that the above functigns;, x; and M; suffice to
construct a formal representation of the coevolutionary dynamics.

4.2 Stochastic Description
of Coevolutionary Community Dynamics

In this section the fundamental equation describing the polymorphic stochastic dynamics
of coevolutionary communities is introduced. When combined with the transition
probabilities per unit time derived in the next section we call the resulting representation
the generalized replicator equation

Markov Property

The dynamics of the coevolutionary community are taking place inpthlgmorphic
trait space]3 of phenotypic distributiong. The events of birth, death and mutation of
individuals constitute a stochastic process}%n

The coevolutionary dynamics possess no memory, for mutation and selection depend
only on the present state of the community. The corresponding stochastic process in
p thus will be Markovian provided that the knowledge o¢f suffices to determine the
potential for coevolutionary change in the immediate future. To meet this requirement
for real biological systems, a sufficient number of adaptive traits may need to be
considered, see Section 8.1.
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Master Equation

The coevolutionary dynamics of the community thus is described by a functional master
equation

%P(p,t) =/ {w(plp',t) PP, 1) —w(pp, 1) -P(p,t)} Dy (4.7)

for P(p,t), the probability density i’ of phenotypic distributionp = (p1,...,pn)

to be realized at timeé. The probabilities per unit time for the transitipn— p' at

time ¢ are denoted byv(p'|p, ). The functional integration oveP is indicated by the
symbol D.

The equation (4.7) for the stochastic dynamic9 iis an instance of a master equation
(see e.g. van Kampen 1981) and simply reflects the fact that the probahifity) is
increased by all transitions to (first term) and decreased by all those frpnisecond
term).

4.3 Transition Probabilities per Unit Time

The probabilities per unit timev(p'|p, ) for the transitionp — p' at time¢ can be
constructed as below.

Preliminary Considerations
We start be introducing three helpful constructs.

1. Thenumber of individuals with adaptive trait value in the population of species
¢ is obtained by

si+e
wlep) = [ mi(s)) @8)
for an arbitrarily smalls > 0.
2. Theprobability distributions of offspring adaptive trait valug/sarising from a birth
event in an individual with trait; is given by
Bi<3i7 sk — Si) = (1 — wi(si)) - 5(5; — Si)—l—
pi(si) - Mi(si, s, — si)

where the first term on the right hand side corresponds to birth events without

(4.9)

mutation and the second to those events with mutation.
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3. We define dunctional A in the spacesﬁ by means of the identity
/F(pi') - A(ph — pi) Dl = F(p;) (4.10)
holding for an arbitrary test functiondl'.

From General Events to Events in a Single Species

Due to the nature of the master equation (4.7) it is only necessary to consider a single
stochastic event to cause a chawde of the probability distribution”(p,t) during the
infinitesimal time intervallt (van Kampen 1981). Therefore the probabilities per unit
time w(p'|p, t) for the transitionp — p' at time¢ can be decomposed according to

N

w(p'|p,t) Z (wopst) - [T AW, — i) - (4.11)
7

Equation (4.11) can be read as guaranteeingihgltp, ¢) does not contribute to the right

hand side of equation (4.7) if # p; happens to hold for more than one- 1,..., N.

From Events in a Single Species to Single Birth or Death Events

Let the considered stochastic event happen in speciéBis event can remove or insert
a single individual to the population of speciesNhen we denote this individual’s trait
value bys;, the stochastic event is described by either= p; — o, or p; = p; + 6.
Since the stochastic event in specigsan occur at any adaptive trait valdewe have

et = f [0 50 ) "
w:'r (8;7}7, t) .A<p2 - <pi + 55;>> } dsi» )

Single Birth or Death Events

The removal of an individual can only be due to a death event, #jus!, p,t) is
given by

wi (s}, p,t) = di (s}, p,t) - pi(sopi) (4.13)

as multiplying the per capita death probability per unit tidges!, p, ¢) of an individual
with trait s; by the densityp;(s., p;) of individuals with that trait value yields the
transition probability density per unit time for a death event at that particular trait value.
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The insertion of an individual is due to a birth event either without a mutation or
accompanied by a mutation. By the same argument as above we obtaip(fQrp, ¢)

wf(%’a?; ) b( 855 Py ) pi(‘S;’vpi)‘l'
/bi(si,p,t) 'pi(Siapi) - M; <517 Sy — ) ds; (4_14)

= /bi(sivpvt) 'pi(5i7pi) - Bi <517 S — ) ds; .

The term in the first line corresponds to a birth event without mutation, that in the
second line to a birth event giving rise to a mutation frento s;. In the third line the
constructB; has been used to condense the result.

Conclusion

By collecting the results above we arrive at

p |p7 Z/ zvpv < ;vpz)

A<p2 —pi + 5s;> :

—

=L

A(p; —pj)+

o 2
Sl

(4.15)
/bz(slvpvt)pl(slvpl)B <Slv S — 8 ) dSz

N

A<p2 — pi — 5s;> T A0 - p)) } ds; .

j=1

Notice that after introducing the transition probabilities per unit time (4.15) into the
master equation (4.7) each functional. .. p, ...) defined in the function spacd’

can be collapsed by a functional integratign.. Dp, over P;. This demonstrates

that neither the functional integration in equation (4.7) nor the occurrence ahthe
functionals in equation (4.15) causes problems in delineating the dynamics in terms
of the master equation; evaluated according to equation (4.10) they guarantee a well-
defined description of the function-valued stochastic process. In consequence, problems
of the sort having urged van Kampen to develop misthod of compounding moments
(van Kampen 1981) do not arise in our mathematical framework.
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The above equation completes the specification of the coevolutionary process of the
community. By combining equations (4.7) and (4.15) we obtain our first and funda-
mental model of coevolutionary dynamics, thelymorphic stochastic modeWe refer

to the resulting formula as thgeneralized replicator equation

4.4 An Algorithm for the Polymorphic Stochastic Model

An algorithm for the polymorphic stochastic model derived from equations (4.7,15)
is presented in Figure 4.1. In formulating the algorithm we choose first to restrict
attention to autonomous coevolutionary communities, i.e. systems without an extra
time dependence due to external effects on the environment. In this case the protocol
can utilize theminimal process metho(Gillespie 1976; Feistel 1977) to simulate the
functional master equation. As to the validity of the presented algorithm for non-
autonomous coevolutionary communities, notice the remark at the end of this section.

Distribution of Waiting Times

According to Step D in Figure 4.1 the waiting times between two events of a sto-
chastic realization follow aexponential distributior- the standard result for processes
described by master equations that are homogeneous in time.

This inference can easily be apprehended as below. Suppose that the stochastic process
at timet is in statep with certainty. Until the next event — p’ occurs at time + At

we thus haveP(p, 1) = 1o, A(p, — pi). In the time interval(,t + At) the master
equation (4.7) then reduces to

d

TPt = w(plp,t)'P(p,t)—/w(p'lp, t) Dp' - P(p,1). (4.16)

With w(p|p,t) = 0, the abbreviatiod'~!(p,t) = [w(p'|p,t) Dp' and equation (4.15)
we thus obtain for the decay in the probability dendityp, ¢) of the statep during the

considered time interval

1+ At
P(p,t + At) = exp {—/ T (p,1') dt’} . (4.17)
t

Since a decrease in the probability dendftyp,t + At) can only be due to an event
p — p at timet + At, the right hand side of equation (4.17) describes (after
normalization) the probability distribution of the waiting timle until the next event
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An Algorithm for the
Polymorphic Stochastic Model

A. Initialize the phenotypic distributiong; with : = 1,..., N at timet =0
and specify the time,,,; when to stop the dynamics.

B. Calculate the birth and death probabiliti&$s;., p) and d;(s;,p) for
each individuak = 1,.... N, £ = 1,...,n; with phenotypes;; in the
environment given by.

C. Construct the sumsy; = bi(sik, p) + di( ik, p), wi = > pq wy and
w = ElNzlwi with: =1,....N andk =1,...,n;.

D. Choose the waiting timé\¢ for the next event to occur according to
At = —% -Inr where() < r < 1 is a uniformly distributed random
number.

E. Choose specieswith probability% -w;. Choose individuak in species
¢ with probability -- - w;;. Choose then a birth or death event with
probability w% - bi(six, p) and w% - d;(s;1,p), respectively.

F. If in Step E a birth event occurs for an individual with phenotype
choose a new phenotypé, with probability densityB; (s, s, — six)-

G. Update time and phenotypic distributions according te- ¢t + At and
P — pi + 5% or p; — p; — 6, for a birth or death event in species
respectively.

H. Continue from Step B untit > ¢.,4.

Figure 4.1 An algorithm for the polymorphic stochastic model. The protocol employs the minimal
process method described in the text.

happens, given that an event just has occurred at tim&or homogeneous master
equationsI'~! is independent of and equation (4.17) reduces to

P(p,t+ At) = exp{—At/T(p)} . (4.18)

In this case waiting times simply are distributed exponentially with mégn .
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The Minimal Process Method

The distribution of waiting times, calculated above, is the backbone of the minimal
process method (Gillespie 1976; Feistel 1977; see also Fricke and Schnakenberg 1991).
The general algorithm can be decomposed into the repetition of four simple steps which
are outlined below.

1. Initialization of time and state.
(— Step A in Figure 4.1)
2. Calculation of all relevant transition probabilities per unit time.
(— Steps B and C in Figure 4.1)
3. Choice of a waiting time according to an exponential distribution.
(— Step D in Figure 4.1)
4. Choice of a particular event according to its relative transition probability.
(— Steps E and F in Figure 4.1)
5. Update of time and state; unless simulation completed, continuation from Step 2.
(— Steps G and H in Figure 4.1)

A set of random numbers.,, exponentially distributed according tB.,(r.,) =
exp{—res/(rez)}/{res) for re, > 0 and Pe,(re,) = 0 elsewhere, can be obtained
from another set of random numbetg, equally distributed according t8.,(r¢,) = 1

for 0 <r., <1 andP.,(r) = 0 elsewhere, by means of the following transformation
(see e.g. Schnakenberg 1991)

Feg = —(Teg) - I Teq . (4.19)

This relation can be used to implement Step 3 above.

The minimal process method turns out advantageous compared to the simulation of a
stochastic process employing a constant time step not only because of efficiency but also
because of precision. The latter method has to simulate numerous time steps without
an event occurring and it can produce arbitrarily large deviations from the exact result
for large simulation times (Feistel 1977).
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Autonomous and Non-Autonomous Systems

Waiting times of homogeneous master equations (corresponding to autonomous systems)
have been shown above to be distributed exponentially.

Since the difference between equations (4.17) and (4.18) becomes negligible for time
stepsAt being small compared to the time scale on whith! (p, ¢) changes, exponen-

tially distributed waiting times and thus the minimal process method may be applied
approximately even to non-homogeneous master equations (corresponding to systems
with an external time dependence), provided only that the typical number of events on
the timescale of the external perturbations is large. For reasonably large population sizes
within the non-autonomous coevolutionary community this simplification will usually
hold in good approximation; for more details see Section 8.2.

4.5 Sample Simulations and Further Inquiry

To illustrate the descriptive capacity of the polymorphic stochastic model, we present
some stochastic realizations of the generalized replicator equation. Examples are based
on the coevolutionary predator-prey community that is described in detail in Chapter 9.

Mutation Catastrophe

A high mutation ratiou; for a species amounts to replicas seldom being true in this
population of replicators. Under these circumstances the broadening effect of mutation
on the phenotypic distributiop; is hardly counteracted by the narrowing impact of
selection. The variance of the distributipnwill continually grow, and consequently

the information comprised ip;, when initially narrow, gradually is lost. In resemblance

of the error catastropheintroduced by Eigen and Schuster (1979) we call this process
mutation catastrophe

An example of such an almost unbiased broadening of a phenotypic distribution caused
by too large a mutation ratio is shown in Figure 4.2.
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p1(s1)
0.475
|__._ -?
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. t/10
p2(s2)
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Figure 4.2 Realizations of the polymorphic stochastic model. The phenotypic distributions (&))

and (b)p.(s2) at each point in time are depicted by grayscales (black corresponds to the population
number of the prevalent adaptive trait value and white to absent adaptive trait values). The figures show
evolutionary dynamics characteristic for high mutation ratios: the broadening effect of mutation on the
phenotypic distributions is hardly counteracted by the narrowing impact of selection. The realizations
given are made up of roughly 100 000 single birth and death events in each species. Parameters of the
coevolutionary predator-prey community are as given in Figure 4.4 exgept5 - 1072, uo = 5 - 1071

andoy = o9 = 2- 103,

Evolutionary Branching

The phenomenon of phenotypic distributions that were unimodal initially to gradually
become bimodal in the course of an adaptation process is ddibedgptive selection
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Figure 4.3 Realizations of the polymorphic stochastic model. The phenotypic distributions (&))

and (b)p-(s2) at each point in time are depicted by grayscales (black corresponds to the population
number of the prevalent adaptive trait value and white to absent adaptive trait values). The figures show
evolutionary dynamics characteristic of the monomorphic regime: evolution occurs via sequences of trait
substitutions. The trait substitution sequences given are made up of roughly 10 000 000 single birth
and death events in each species. The inset in (b) depicts a single trait substitution, the population of
the resident adaptive trait value is decreasing in size while that of the mutant trait value increases until
it has completely replaced the former resident. The dynamics displayed in this figure are a subset of
that presented in Figure 4.4, for comparison see the dotted box there. Parameters of the coevolutionary
predator-prey community are the same as in Figure 4.4.
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Evolutionary processes of this kind are important to notice as after the occurrence
of disruptive selection has caused the phenotypic distribution in a species to become
bimodal, describing the dynamics of this distribution in terms of its average adaptive

trait value obviously is misleading.

When phenotypic or mutation variances are large and moreover the environment, in
which a particular phenotypic distribution has evolved towards a unimodal shape, is
abruptly changed such as to make selection disruptive, bimodality is the expected
outcome. On the other hand, if phenotypic and mutation variances are small, disruptive
selection is more difficult to generate by external manipulations of the environment. For
this reason it is interesting to ask whether the evolutionary or coevolutionary process
itself could generate an environment that gives rise to disruptive selection. Such an
event has been callexolutionary branchindpy Metz et al. (1994) and has been shown

to be feasible when (i) considering only a single species’ adaptation to its constant
environment or (ii) assuming deterministic population dynamics.

The relevance of evolutionary branching for the present work stems from the fact that
its incidence would violate thprinciple of mutual exclusiomtroduced in Section 5.1.

The mathematical system for the description of coevolutionary dynamics as presented
in Chapters 5 and 6, resting on this principle, then ought to be extended. Fortunately,
the analytic framework developed up to Chapter 7 allows to narrow down substantially
the circumstances under which evolutionary branching can occur, see Section 7.3. Even
in the remaining cases the potential for evolutionary branching is moot: when allowing
both for coevolution and for stochasticity in the species’ population dynamics — two
requirements met by the generalized replicator equation established above — no instance
of evolutionary branching has been observed by the author.

Trait Substitution Sequences

When mutation ratiog:; are low, u; < 1, the change of the phenotypic distributions
p; over time takes an altogether different shape compared to the case of the mutation
catastrophe.

Now the process of selection is not dominated by that of mutation and consequently
the distributions of adaptive trait values remain narrow. In fact, the temporal change

of these distributions can accurately be described by a single adaptive trait value in
each species being replaced from time to time by another one. This is the characteristic
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Figure 4.4 Realizations of the polymorphic stochastic model. Trait substitution sequences starting at the
five initial conditions (indicated by asterisks) are depicted by continuous lines. Each of these five trait
substitution sequences is made up of roughly 500 000 000 single birth and death events. The dotted box
indicates the region corresponding to the trait substitution sequences shown in detail in Figure 4.3. The
discontinuous oval line is the boundary of the region of coexistence, see Section 5.1. The coevolution
of both species drives their adaptive trait values towards a common equiliBriuRarameters of the
coevolutionary predator-prey community are:= 0.2, ¢; = 2.0, c; = 8.0, 01 = 03 = 5-1072 and

w1 = 10~*; the remaining parameters are as given in Figure 9.3.

feature of what we designate th@onomorphic regimeWe call the adaptive trait value

that is prevalent at a point in time thesidentadaptive trait value and the event of

its replacement by a mutant adaptive trait valuéraat substitution The process of
evolution in each species consequently is described in terms toditasubstitution
sequence The population processes underlying a single trait substitution are analyzed
in Section 5.1. The results obtained there underpin the derivation of the stochastic
dynamics for trait substitution sequences in Section 5.2 and 5.3.

Instances of such trait substitution sequences, as described by the generalized replicator
equation, are presented in Figure 4.3. The inset shows a single trait substitution: after
a mutant trait value has entered the population, it gradually increases in number such
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that resident and mutant trait values coexist until the mutant one has gone to fixation
by replacing the former resident one. In Figure 4.4 we have used the polymorphic
stochastic model to picture the combined dynamics of trait substitution sequences in
two coevolving species originating from different initial conditions. We will use these
five particular coevolutionary processes as running examples to illustrate the parallel
predictions made by our three dynamical models of coevolution (Figure 4.4, Figure 5.3,
Figure 5.4 and Figure 6.2).



Chapter 5
The Monomorphic Stochastic Model

In this chapter we establish a stochastic description of the monomorphic coevolutionary
dynamics. Under certain conditions it is possible to deduce from the generalized replica-
tor equation, which defines the polymorphic stochastic model, a reduced representation
of the coevolutionary process; this reduction leads us to the monomorphic stochastic
model. The central idea here is to envisage a sequence of trait substitutiodsexted
random walk in trait spaceetermined by the processes of mutation and selection.

5.1 The Monomorphic Regime and Trait Substitutions

In this section we take the first steps to deduce from the generalized replicator equation
the monomorphic stochastic model. In particular we stress the assumptions on which
the latter is based.

Conditions for Monomorphism

In Section 4.5 we have seen that the complexity inherent in the polymorphic stochastic
model can be substantially alleviated if only two requirements are met. First, when no
evolutionary branching occurs in the species 1, ..., N, the phenotypic distributions

p; stay unimodal in the course of the coevolutionary process. There is no disruptive
selection acting on the distributions which might turn them bimodal. Second, ig
sufficiently small for all: = 1,..., N, the phenotypic distributiong; in each species
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will be sharply concentrated on a single phenotype, the resident phenotype. In this
case selection is strong enough to counteract the impact of mutation to broaden the
phenotypic distributions.

To proceed with the analysis of coevolutionary dynamics we now raise these observa-
tions to acquire the status of assumptions.

Al. The mutation ratiog; are sufficiently small for alf = 1,..., N.
A2. No two adaptive trait values; and s, can coexist in the populations of species
1 =1,...,N for t — oo when not renewed by mutations.

These two condition specify what we call tmonomorphic regime The second
condition is sometimes referred to as §enciple of mutual exclusian Prerequisites
for this principle are investigated in Section 7.3.

Structure of Trait Substitutions

With these two provisions, we can take the phenotypic distributions as being given by
pi = n; - b, at almost any point in time, where; is the population size of species

: = 1,..., N and s; its resident phenotype. We call such a distribution of resident
phenotypesmonomorphic

The simulations presented in Section 4.5 have shown that in this monomorphic regime
adaptive change occurs via a sequence of trait substitutions, where a resident phenotype
sj with y € 1,...,N is replaced by a mutant phenotypg. The time period
corresponding to a single such trait substitutign— 3;» can be partitioned into four
phases.

1. Stasis.Throughout a time intervat, the phenotypic distributiop; in species; is
given byp; = n; - 6,,. Mutations occurring during this phase are not successful in
invading the resident populations.

2. Mutation. At the end of that time interval a mutation occurs introducing a mutant
phenotypes; into the population of specieg such thatp, = n; - 65, + 553. This
mutant is going to be successful.

3. Invasion. The mutant grows in population size to exceed the critical threshold for
accidental extinction (Wissel anddgker 1991). We then hayg = nj-55J+n;-553.
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4. Fixation. The principle of mutual exclusion requires that after invasion the mutant
phenotype will replace the once resident phenotype suchpthat n; . 553, this
happens some timey after the mutation had occurred.

Note that in the above equations f@r the quantities:; and n; denote the population
sizes of resident and mutant phenotype at the end of the particular phase considered
rather than the same fixed numbers throughout.

The four steps outlined above can be repeated many times. The resulting process is
a trait substitution sequence. According to condition Al above we have 7, and
hence the phases 2, 3 and 4 take place on a timescale much shorter than that of phase 1.

Reduction of the Generalized Replicator Equation

We now utilize the generalized replicator equation (4.7,15) to analyze in detail the
successive steps of the trait substitution process.

Let us consider a trait substitution in specjesWe formally assign the population of
the mutant adaptive trait value the index 0: s = s}, ng = n';, by = b; anddy = d;.

In the course of this trait substitution the phenotypic distributions in the coevolutionary
community are given by

p= <n1-551,...,nj-5sj —|—n0-550,...,nN-55N> . (5.1)
To simplify notation we write P(n,t) = P(p,t), Z{(si,s,n,t) = bi(s;,p,t) and
@J(Si,s,n,t) = d;(si,p,t) fore =0,..., N.
When introducingp = p into equations (4.7) and (4.15) and accounting for the fact

that effectively only one mutation ought to be considered during a trait substitution
we arrive at

/w<pl|§7 t) ) P(ﬁvt) Dpl

N oo . (5.2)
:Z {dz?(sivsvn?t) "N+ bg(sivsvnvt) "Nyt P(nvt)
1=0
and
[ pw.o oy
:Z{dg@i,s,n—l—l’,t)-(ni—l—l)-P<n—|—1’,t>—|— (5.3)

0
Zg<5i,5,n—1i,t>‘(ni_l)'P<n_1ivt>} .

7
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The 1! are vectors with componen1§ = 0;; whereé;; denotes the Kronecker symbol.
Note that??{ (si,s,m —1',t) = 0 for n; = 0. Combining these two results according
to equation (4.7) we obtain a stochastic description for the population dynamics in the

course of a trait substitution
N

%P(mt):Z{Jg(si,s,n—l—li,t)-(ni+1)-P<n+1i,t>—|—
1=0
Zg<5i,5,n—1i,t> -(ni—l)-P<n—1i,t>— (5.4)
@1(8i787n7t) "y 'P(nvt)_
Zg(si,s,n,t)-ni-P(n,t)} .

To account for the single successful mutation in phase 2 of such a trait substitution,
see above, we use in equation (5.4) initial conditiéti®,?) « &, for phase 1 and
P(n,t) < 61, for phase 3.

Resident Population Dynamics

To further simplify this stochastic description of the population dynamics during a trait
substitution we introduce additional assumptions.

A3. The populations of the resident adaptive trait values are sufficiently large during
the stasis phase of a trait substitution in order not to be subject to accidental
extinction.

A4. The population dynamics of the resident adaptive trait values settle (apart from
fluctuations) towards an equilibrium point.

A5. There is no external impact on the environment of the coevolutionary community
that renders the system non-autonomous.

Relaxations of conditions A4 and A5 are provided in Section 8.2.

Owing to condition A3 we may safely describe the population dynamics of the resident
adaptive trait values during phase 1 of the trait substitution by means of a deterministic
approximation

d ~
pEa [ (siys,m) (5.5)
following from equation (5.4) for resident population sizes- (0, nq,...,ny) treated

as continuous variables and with

fij(Si,S,n) :/Z;g(Si,S,n)—dlj(Si,S,n). (56)
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We then exploit condition A4 in combination with equations (5.5) to defineetina-

librium population sizes = (0,74, ...,ny) of the resident adaptive trait valuedy
F (sir5,0(s)) = 0 (5.7)
forall «: = 1,...,N. According to condition A3 these population sizes are also

approximately valid in the course of phases 2 and 3 of the trait substitution during
which the mutant is rare.

For a given set of resident adaptive trait values, equations (5.7) determine whether
these trait values can coexist. As we are interested in the coevolutionary dynamics of
the N-species community, we need to consider the subspace ohdn@morphic trait
space§ in which the resident populations of all species have positive population sizes,

§c:{s€§|m(s)>0forallz’:l,...,N}. (5.8)

We call this subspace of the region of coexistenceSince equations (5.5) are only
valid for large resident population sizesg, extinction of a resident population is not
only certain for resident adaptive trait valuesutside the regio:?fc but is also probable

for those close to the bounda@@c of S,

Mutant Population Dynamics

By virtue of conditions A3 to A5 together with equation (5.4) we can finally approximate
the stochastic population dynamics of the mutant adaptive trait value during phase 3 of
the trait substitution by means of the following equation

SP (1) =Ty(,8) - (5 + 1) PO+ 10)+
R ! I‘ o o
?(3],3> n 1) P(n; 1,t> (5.9)
dj (s, s) -y - P(nfj 1) =
By (s)5) -+ P 1)
Here we have introduced the abbreviations
b, (39, 3) = Zj (39, 5,7%(5)) (5.10)

and

dj(sh,s) = d!(s),s,n(s)) (5.11)
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for the per capita birth and death rates of a mutant adaptive trait \z%}IUB an
environment determined by the monomorphic resident populations with adaptive trait
values s.

Note that although these probabilities per unit time can formally be combined to yield
7]» (39,3) = Ej(S},S) - Ej (39,3) , (5.12)

the per capita growth rate of a mutant adaptive trait vaslyein an environment
determined by the monomorphic resident populations with adaptive trait values
essential to recognize that a deterministic approximation of mutant population dynamics,
%n; = nl;- f;(s},s), is not permitted during the invasion phase 3 as the mutant then
is rare. Mutants enter the system at population $izeence there is no alternative to

a stochastic treatment of their population dynamics.

The equations derived above are the bases of our stochastic description of trait sub-
stitution sequences and will be employed in Section 5.3 to derive the monomorphic
stochastic model of coevolutionary dynamics.

5.2 Stochastic Description
of Trait Substitution Sequences

In this section we present a stochastic description of the monomorphic coevolutionary
dynamics by envisaging trait substitution sequences as directed random walks in the
monomorphic trait space. The stochastic description is completed by the transition
probabilities per unit time derived in the next section.

Markov Property

The adaptive dynamics of th€-species coevolutionary community are taking place in
the subspacé?c of the monomorphic trait space of adaptive trait valuesThe trait
substitution events constitute a stochastic process, oiStochasticity is imposed by (i)

the process of mutation and (ii) the impact of demographic stochasticity on rare mutants.

The adaptive dynamics possess no memory, for mutation and selection depend only on
the present state of the community. The corresponding stochastic procegsiswill

be Markovian, provided that the knowledge «0éuffices to determine the potential for
adaptive change in the immediate future. To meet this requirement for real biological
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systems, a sufficient number of adaptive traits might need to be considered, see Section
8.1.

Master Equation

The stochastic adaptive dynamics of tNespecies community iy, thus is described
by a master equation

%P(S,t) = / {w<3|5',t> -P(S',i) — w<5'|3,t> - P(s,1) } ds'. (5.13)
for P(s,t), the probability density of resident adaptive trait values (s, ..., s,) to

be realized at time. The probabilities per unit time for the transitions— s’ at time
t are denoted byo(s'[s, ).

The equation above in principle is capable of describing the stochastic adaptive process
in the coevolutionary community even for environments that are subject to time-
dependent external influences. Yet, in the following sections we will restrict attention to
autonomous systems, where such a time dependence is absent. The reason for this is that
the principle of mutual exclusion, see also Section 7.3, on which in turn the assumption
of monomorphism rests, is not generally valid for arbitrarily varying environments. We
come back again to the general case in Section 8.2.

5.3 Transition Probabilities per Unit Time

We now turn to the derivation of the transition probabilities per unit tinie'|s).

From General Events to Trait Substitution Events in a Single Species

Since the changéP in the probabilityP (s, t) is only considered during the infinitesimal
evolutionary time intervalit it is understood that only transitions corresponding to a
trait substitution in a single species have a nonvanishing probability per unit time. This
is denoted by

n n

w(s]s) = Z w;(sh, s) - H 5(59 — s) (5.14)

1=1 7=1
JF#i

where $ is Dirac’s delta function.

For a givens, theith component of this sum can be envisaged in the space gf-al}
as a singular probability distribution that is only nonvanishing on:theaxis.
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From Trait Substitution Events in a Single Species

to Mutation and Selection Events

The derivation ofw;(s., s), the transition probability per unit time for the trait substi-
tution s; — s., comes in three parts.

0
First, as explained in Section 5.1, a trait substitution comprises four phases: stasis,
mutation, invasion and fixation. The latter two correspond to the process of selection. As
the phases of mutation, invasion and fixation are statistically uncorrelated, the probability
per unit timew; for a complete trait substitution event can be decomposed into the
probability per unit timeM; that the mutant enters the population (phase 2: mutation)
times the conditional probability; for invasion given mutation, i.e. the probability of a
single mutant individual to successfully escape accidental extinction (phase 3: invasion)

wi(sh, s) = M;(s},s) - Si(si, s) . (5.15)

An additional factor (phase 4: fixation) would have been required, had we not assumed
the principle of mutual exclusion which guarantees that invasion implies fixation.
Therefore the corresponding conditional probability of fixation given invasion is of
value 1.

Mutation Events

Second, we compute the probability per unit timdé; that the mutant enters the
population.

The processes of mutation in distinct individuals are statistically uncorrelated. Thus the
probability per unit timeM; is given by the product of the following three terms.

1. The per capita mutation ratg(s;) - b;(s;, s) for the traits;,. The termb;(s;, s) is
the per capita birth rate of resident individuals of itfespecies in the environment
determined by the monomorphic resident populations with adaptive trait values
andy;(s;) denotes the fraction of births that give rise to mutations in the species

2. The population sizé;(s) of the ith species. The product of this factor with the
first term yields the overall mutation rate in the population of species

3. The probability distributionV/;(s;, s; — s;) for the mutation process in the trai.



Chapter 5 The Monomorphic Stochastic Model 65

Figure 5.1 Invasion success of a rare mutant. The probab#fitis;, s) of a mutant population initially

of size 1 with adaptive trait value; in a community of monomorphic resident populations with adaptive
trait valuess to grow in size such as to eventually overcome the threshold of accidental extinction is
dependent on the per capita growth and death rgi¢s;, s) andd;(s., s), of individuals in the mutant
population. Deleterious mutants wiff)(s;, s) < 0 go extinct with probabilityl but even advantageous
mutants withf, (s}, s) > 0 have a survival probability less thdn Large per capita deaths rates hinder
invasion success while large per capita growth rates of the mutant favor it.

Collecting the expressions above we obtain
M (si, s) = pi(si) - bil(siys) - 1i(s) - M;(si, 85 — s5) (5.16)
as the probability per unit time that the mutant enters the population.

Selection Events

Third, we consider the process of selection determining the probalSilityf escaping
extinction.

Since mutants enter initially in a single individual, the impact of demographic stochas-
ticity on their population dynamics must not be neglected (Fisher 1958). The situation is
different, however, for the resident populations; here we have assumed that the equilib-
rium population sizes;(s) are large enough for there to be negligible risk of accidental
extinction.
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Two results stem from this.

1. Frequency-dependent effects on the population dynamics of the mutant can be
ignored when the mutant is rare relative to the resident.

2. The actual equilibrium size of the mutant after fixation is not important as long as
it is large enough to exceed a certain threshold. Above this threshold the effect of
demographic stochasticity is negligible (Wissel andcBer 1991).

The probability that the mutant population reaches sizarting from sizel depends

on its per capita birth and death ratésndd. Based on equation (5.9) and considering
the result 1 above, this probability can be calculated analytically . The result is given by
[1 —(d/b)]/[1 —(d/b)"] (Bailey 1964; Goel and Richter-Dyn 1974) with the per capita
birth and death rates of the rare mutat= b,(s!, s) andd = d;(s},s). We exploit
result 2 by taking the limit: — oo.

The probabilityS; of escaping extinction is thus given by
1 —d;(sh,s)/bi(sh,s) for ( 5)/bi(sh, s) <
(52) 0 for  di(st )/ 5) = 517)
——1 —
=b; (s;,8) - ([i(s59)),
where the function(...), : = — x - ©(x) leaves positive arguments unchanged and
maps negative ones to zero.

In consequence of equation (5.17), deleterious mutants (with a per capita growth rate
smaller than that of the resident type) have no chance of survival but even advantageous
mutants (with a greater per capita growth rate) experience some risk of extinction, see
Figure 5.1.

Conclusion
We conclude that the transition probabilities per unit time for the trait substitutions
s; — s, are given by
wi(s5,8) =pi(si) - bi(siy ) - fls) - Mi(si, 8 = si)-
b (shs) - (Filshis)),

This result completes the stochastic representation of the mutation-selection process in

(5.18)

terms of the master equation. By combining equations (5.13), (5.14) and (5.18) we have
derived our second model of coevolutionary dynamics, ni@omorphic stochastic
model
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Recovery of Invasion Criterion

From equation (5.18) it is easy to conclude that a sufficient condition for a resident
population with adaptive trait valug not to be invadable by a mutant adaptive trait
values! (in an environment determined by the monomorphic resident populations with
adaptive trait values) is given by f;(s!, s) < 0 or equivalently by

Filsivs) > fi(siys) . (5.19)
This condition closely resembles the inequality (2.1) for evolutionarily stable strategies,

which is thus recovered from our stochastic approach.

We only note in passing that when resident populations are not assumed to be sufficiently
large for not being subject to accidental extinction, invasion always is possible with
some finite probability per unit time.

5.4 An Algorithm for the Monomorphic Stochastic Model

An algorithm for the monomorphic stochastic model derived from equations (5.13,14,18)

is presented in Figure 5.2. As in the case of the polymorphic stochastic model we again
restrict attention to autonomous coevolutionary communities in order to employ for the

algorithm the minimal process method introduced in Section 4.4.

Distribution of Waiting Times

According to Step C in Figure 5.1 the waiting times between two events of a stochastic
realization follow an exponential distribution. By the same line of reasoning as given in
Section 4.4 we obtain for the distribution of waiting times between two subsequent trait
substitution events in the monomorphic stochastic model (apart from normalization)

t+At
P(s,t+ At) = exp {—/ T_1<5,t'> dt'} : (5.20)
t

with 771(s,t) = [w(s'|s,t) ds'. For homogeneous master equations (5.13) equation
(5.20) reduces to

P(s,t+ At) =exp{—At/T(s)}. (5.21)
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An Algorithm for the
Monomorphic Stochastic Model

A. Initialize the adaptive trait values with: =1,..., NV at time¢ = 0 and
specify the timel.,,; when to stop the dynamics.

B. Construct the integrals; = [w;(s},s) ds, with : = 1,..., N and the
sumw = EZNZI w;.

C. Choose the waiting timé\¢ for the next event to occur according to
At = —% -Inr where() < r < 1 is a uniformly distributed random
number.

D. Choose specieswith probability 1 - w;.

E. Choose for speciesa new phenotype’ with probability densitywii .

wi(sg, s).

.'"'

Update time and adaptive trait values according-te ¢+ At ands; — s..
G. Continue from Step B until > ¢.,4.

Figure 5.2 An algorithm for the monomorphic stochastic model. The protocol employs the minimal
process method described in Section 4.4.

Autonomous and Non-Autonomous Systems

The remarks in Section 4.4 on the validity of the presented algorithm for non-
autonomous coevolutionary communities apply equally to the monomorphic stochastic
model. For time stepa¢ being small compared to the time scale on whith! (s, ?)
changes, exponentially distributed waiting times and thus the minimal process method
may be applied approximately even to non-homogeneous master equations (correspond-
ing to systems with an external time dependence), provided only that the typical number
of events on the timescale of the external perturbations is large.

This prerequisite coincides with the condition that is required for the principle of mutual
exclusion to hold even in the case of varying environments. For more details see
Sections 7.3 and 8.2.
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Figure 5.3 Realizations of the monomorphic stochastic model. Five directed random walks in trait
space for each of the five initial conditions (indicated by asterisks) are depicted by continuous lines. The
discontinuous oval line is the boundary of the region of coexistence. The coevolution of both species
drives their adaptive trait values towards a common equilibriumParameters of the coevolutionary
predator-prey community are the same as in Figure 4.4.

5.5 Sample Simulations and Further Inquiry

The information contained in the stochastic representation of the adaptive process can
be used in several respects.

Bundles of Trait Substitution Sequences

First, we can employ the algorithm presented in the last section to obtain actual
realizations of the stochastic mutation-selection process.

We again illustrate this method by means of an example of predator-prey coevolution. A
portion of the two-dimensional monomorphic trait sp&ﬁ:ef this system is depicted in
Figure 5.3. The dashed line surrounds the region of coexistenceithin this region
several trait substitution sequendes(t), sy()) are displayed by continuous lines.
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Figure 5.4 Mean paths of the monomorphic stochastic model. Ten trait substitution sequences for each
of the five initial conditions (indicated by asterisks) are combined to obtain the mean paths, depicted by
continuous lines. The jaggedness of these lines is caused by the finite number of ten trait substitution
sequences used for constructing the mean paths. The discontinuous oval line is the boundary of the region
of coexistence. The coevolution of both species drives their adaptive trait values towards a common
equilibrium s. Parameters of the coevolutionary predator-prey community are the same as in Figure 4.4.

Note that trait substitution sequences starting from the same initial state are not identical.
This underlines the unique, historical nature of any evolutionary process. But, though

these paths are driven apart by the process of mutation, they are kept together by the
directional impact of selection.

Definition of Mean Paths

Second, the latter observation underpins the introduction of a further concept from
stochastic process theory.
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By imagining a large number of independent trait substitution sequencés) =
(s1(t),...,sh (1)), with j = 1,...,r, starting from the same initial state, it is straight-
forward to apply an averaging process in order to obtainniean path(s)(¢) by

(s)(t) = lim l-zsf(t). (5.22)

r—o0 T -
=1

The construction of these mean paths is illustrated in Figure 5.4 for the case of predator-
prey coevolution. By comparison of Figure 5.4 to Figures 5.3 and 4.4 it can be seen

that the mean paths appear to capture the essential features of the adaptive process. This
observation is further exploited in the next chapter.






Chapter 6
The Monomorphic Deterministic Model

The mean paths of the monomorphic stochastic model, introduced in Section 5.5,
obviously summarize the essential features of the adaptive process. Hence it is desirable
to obtain an explicit expression for computing thmean path dynamics

Rather than averaging over lots of stochastic realizations as shown in Section 5.5, in
this chapter we derive a system of ordinary differential equations that directly serves as
a deterministic approximation of the mean path dynamics.

6.1 Dynamics of Mean Path and Deterministic Path
The mean path has been defined in equation (5.22) as the average over an infinite

number of independent realizations of the stochastic process.

Mean Path Dynamics

Equivalently, we can employ the probability distributiétis,¢) considered in the last
chapter to define the mean of an arbitrary functibts) by (F(s))(t) = [ F(s) -
P(s,t) ds (Gardiner 1985).

In particular we thereby obtain for the mean path

(s)(t) = /5 - P(s,t)ds. (6.1)
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The different states thus are weighted at time according to the probability’(s,?)
of their realization by the stochastic process at that time.

In order to describe the dynamics of the mean path we start with the expression

d d

E(Sﬂt) = /5 . EP(S,t) ds . (6.2)
and utilize the master equation to repla%éj(s,t). One then finds with some algebra

%<5>(t) = // (s' —5) - w(s]s) - P(s,1) ds' ds . (6.3)

By exploiting theé-function property ofw(s'|s), see equation (5.14), and introducing
the jth jJump moment of thé&h species

aji(s) = / (3; — Si)j . wi<3;, 3) dsi» (6.4)
(aj1,-..,a;x), we obtain

S5} = {ar())(1) (6.5

with ajy

Deterministic Path Dynamics

If the first jump moment:;(s) were a linear function of, we could make use of the
relation (a1(s)) = a1((s)) giving a self-contained equation for the mean path

L0 = an({)(0) 6.6)
However, the adaptive dynamics typically are nonlinear so that the relatigr)) =
ai({s)) does not hold. Nevertheless, as long as the deviations of the stochastic
realizations from the mean path are relatively small or, alternatively, the nonlinearity
is weak, the equation above provides a very good approximation to the dynamics of
the mean path.

As an alternative to the classical Kramers-Moyal expansion, the result (6.6) can be
derived via a controlled series expansion, called aheega-expansiofvan Kampen

1962, 1981). Without going into details we only mention that for this purpose one can
utilize 5!, the inverses of the standard deviations of the mutation distribufignss

system size parameterSimilar to constructing the thermodynamic limit in statistical
mechanics (see e.g. Huang 1987), one can then show that the dynamics (6.5) of the mean
path of the adaptive process converge to equation (6.6) for large system size parameters.
For details on this method see van Kampen (1962, 1981) and Kubo et al. (1973). In
order to distinguish between the mean path itself and that actually described by equation
(6.6), the latter is called thdeterministic path(Serra et al. 1986).
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6.2 Deterministic Approximation in First Order

In this section we derive an equation for the deterministic approximation of the adaptive
process. We show that when taking the approximation only to first order and invoking
further simplifying assumptions as to the mutation process, we recover the canonical
equation of adaptive dynamics as described in Section 2.3.

However, the mathematical framework developed here is capable (i) of providing higher
order correction terms to the canonical equation and (ii) of allowing for more general
ecological and evolutionary scenarios than the canonical result. In the next section we
start to develop these generalizations, further extensions are provided in Chapter 8.

The Deterministic Path of the Adaptive Process

We can calculate the deterministic path of the coevolutionary dynamics by substituting
equation (5.18) into (6.4) and the result into (6.6). Since in the remainder of this
chapter we concentrate on the deterministic approximation, we will cease denoting it
by angle brackets...). For the purpose of comparison to the canonical equation of
adaptive dynamics as presented in Section 2.3, in this section we are interested in a
description of the adaptive dynamics that is as simple as possible. For this reason we
temporarily assume mutation processes to be symmetric. We again return to general
mutation processes in the next section.

By proceeding as described above we obtain

d _
e =i (8;) - bi(s4,5) - ni(s)-

o B (6.7)
/ (8; - 5i> 'Mi<5i,5; - 5i> - b; 1<527 5) 'fi<5;'7 5) dSi’
Ri(s)

where, as an alternative to employing the function), in the integrand, see equation
(5.18), in equation (6.7) we have restricted thege of integratiorto s; € R;(s) with

Ri(s) = {s; € Si|Ti(shs) > o} . (6.8)

Note that the process of mutation causes the evolutionaryfga;eto be dependent on
the per capita growth and birth rates of all possible mutant taitd his dependence
is manifested both by the integrand of (6.7) and in the range of integration (6.8).
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First Order Result

In order to transform the described global coupling into a local one we apply a Taylor
expansion tof;(s!, s) in equation (6.8) an@_l(s;, s)- fi(sh, s) in equation (6.7) about

s = s;. Higher orders in these expansions are discussed in Section 6.3; in this section
we will use the results only up to first order,

fi(si'v 5) = ailfi(siv S) : <S; - Si) (69)

and

5;1(827 s) - fi(sins) = Zi_l(sz’a s) 0] [ilsins) - (55— si) - (6.10)
We have exploited the conditiofy(s;, s) = 0 above, for the population dynamics of
the resident species are assumed to be at equilibrium.

Since derivatives of the ecological rate functions will be used frequently, we apply the
abbreviated notations

0 — — 0

I_. — —f . - e __.
az fz 882 fz 9 alfz &sifl (611)

and analogously for all functions taking the argumeptss).

From equations (6.8) and (6.9) we can infer that the raige) of integration in this first
order result is eithefs;, +oo) or (—co, s;), depending only on the sign &F f,(s;, s).
As we assumed the mutation distributidfy to be symmetric in its argumenf — s;,
we obtain the same result in both cases by substituting equation (6.10) into (6.7)

d 1 —
g5 = g palsi) o7 (si) - fuils) - O Filsis s) (6.12)

where

02(51') = /ASZZ - Mi(s5, Asy) dAs; (6.13)

7

denotes thesecond moment of the mutation distributidfy. Since the first moment of
M; vanishes due to symmetry, the second moment of this distribution equals its variance.

The set of equations (6.12) provides a first order, deterministic approximation of the
coevolutionary dynamics. These equations define a simple version ofahemorphic
deterministic modela more refined one is provided in form of equations (6.19).
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Interpretation of the First Order Result

From equation (6.12) we see that the rate of evolution in the 4rag determined by
two factors.

1. The first terms in equation (6.12) represent the influence of mutation. This product
is affected by the fractiom;(s;) of mutations per birth and by the varianeg(s;)
of the mutation distributionV/;. For homogeneous mutation processes these terms
are constant. The third factdr,(s) is the equilibrium population size. All these
three terms make up thevolutionary rate coefficienivhich is non-negative and
serves to scale the rate of evolutionary change.

2. The last factor accounts for the impact of selection. The function

1 _ —
o (st A 5)— Fols: 6.14
A15120 A [fl(SZ‘I'ASZvS) fz(SzvS)] ( )
- AE}EO As; ilsiF Asi8)

which we call theselection derivativéMarrow et al. 1992), indicates the sensitivity

of the per capita growth rate of a species to a change in thesirdit is a measure

of the selection pressure generated by the environment through the ecological
interactions. Consequently, this factor determines the direction of adaptive change.
When the selection derivative ¢t is positive (negative), an increase (a decrease)
of the trait values; will be advantageous in the vicinity of the resident trait value.

The sign of the selection derivative evidently carries important information on the
dynamical structure of the mutation-selection process; yet, in Section 7.2 we demonstrate
that this information in general is not sufficient to predict evolutionary attractors.

Recovery of the Canonical Equation of Adaptive Dynamics

By means of equation (6.12) we have recovered the canonical equation (2.3) of adap-
tive dynamics from the stochastic ecological processes underlying the coevolutionary
process.

For the evolutionary rate coefficients we obtain

ki(s) = 5 - pilsi) - o7 (si) - il(s) - (6.15)
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In addition, we have shown the appropriate measure of “fitness” to be given by the per
capita growth rate of a rare mutant

Wi<5;, 3) = TZ»(S;», 3) . (6.16)

In the next section and in Chapter 8 we indicate how the canonical result can be
generalized.

6.3 Deterministic Approximation in Higher Orders

The result (6.12) for the deterministic approximation of the adaptive process needs to
be generalized for two reasons.

1. The process of mutation has induced a global coupling in the adaptive dynamics
(6.7). To substitute it precisely by a local one, an infinite number of orders in the
Taylor expansions of (s, s) andZi_l(s;, s)- fi(sh,s) abouts: = s; is required.

2. Rather than restricting mutation distributiohs to be symmetric, general distribu-
tion functions ought to be allowed (Mackay 1990).

Higher Order Result

The rth order results for the Taylor expansions ffs!, s) and Zi_l(s;,s) - fi(8h )
abouts, = s; are given by

T

Filshs) = (sh—si) - % O Tilsivs) (6.17)

and

(6.18)

, J . L o
=3 30 () Tt 08 )
]:1 ]’:1

Again we have already accounted ff(s;,s) = 0.

Substituting equations (6.18) into (6.7) yields the result for the deterministic approxi-
mation of the coevolutionary dynamics itth order

d .
%31 :ﬂz(sl) ) nl(s)' |

. L J . o o (6.19)
> mipni(s) - g 2. (j’) 207 Filsins) - 0777 b (siv8)
j=1 '

Y/

=1
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with
mji(s) = / (5= si) - Mi(sh— 1) ds. (6.20)
Ri(s)

The range of integration in (6.20) is given by substituting (6.17) into (6.8)
P -1 -
Ri(s) ={s; € S;| Z (3; — Si)J . i . 8;‘7]2(51',3) >0} . (6.21)
j=1

The interpretation of the adaptive dynamics (6.19) is analogous to that given for (6.12)
in the last section. The:;;(s) are called thgth mutation moments of théh species

They actually coincide with th¢gth moments of the mutation distributidvi; only if the

range of integratiom®;(s) is (—oo, +00). However, as (6.21) indicates, this is generally
not the case. Even in the first order result the range of integration was restricted to
either (s;, +o0) or (—oo, s;) and the situation gets more complicated now that higher
orders are considered.

Notice that in the derivation above we did not require any symmetry properties of the
mutation distributions such that the result (6.19) is independent of this assumption.

Comparison to First Order Result

The corrections arising from the higher order result (6.19) in comparison to the first
order result (6.12) can be small for two reasons.

1. The ratios of the per capita growth and birth ratgss’, s) and b;(s., s), can be
almost linear, i.e. they can possess only weak nonlinearitie$ Brounds,. In
this case thgth order derivatives?i’j[Zi_l(si,s) - [i(si,5) | with j > 1 are small
compared to the first order derivative.

2. Moreover, the mutation distribution®; can be narrow, i.e. they may have only
small variances. Then the higher order mutation moments; ;(s) with j > 1 are
negligible compared to the second order mutation moment.
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We conclude that in either limit — that of vanishing nonlinearity or that of vanishing
variance — the first order result (6.12) of the adaptive dynamics becomes an exact
representation of the deterministic path. The virtue of the dynamics (6.12) is its
simplicity combined with good accuracy as long as one of the two conditions above is
met. The virtue of the dynamics (6.19) is its generality, as it covers the coevolutionary
dynamics of mutation-selection systems allowing both for nonlinearities in the ecological
rates and for finite mutational steps.

Note that even forr = 1 equations (6.12) and (6.19) are in general not equivalent.
When the mutation process is asymmetic,o2(s;) will not coincide withmy;(s). In
particular, the value ofs;(s) then depends on the distribution of advantageous mutant
trait valuess, around the resident trait valug.

The importance of the higher order correction terms is discussed in Section 7.4. We there
describe two special consequences. One effectslhiiiéing of evolutionary isoclings

only occurs in the second order result for asymmetric mutation processes, for symmetric
mutation processes the third order corrections are to be considered. The other effect,
the phenomenon oévolutionary slowing downcan be understood by means of the
second order result.

6.4 An Algorithm for the Monomorphic Deterministic Model

An algorithm for the monomorphic deterministic model derived from equations (6.12)
or (6.19) is presented in Figure 6.1. It employs tbarth order Runge-Kutta method
described below.

The Euler Method

The simplest choice for an update method in Step C of the algorithm for the monomor-
phic deterministic model could be based on the Euler method

t—t4+dt, s;— s+ w; (6.22)

with w; = dt - §;(s). Here,$;(s) denotes the right hand side of either equation (6.12)
or (6.19).

However, the error for this method of numerical integration is of okd¢di*). For
results of sufficient accuracy thus small time stépsre required.
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An Algorithm for the
Monomorphic Deterministic Model

A. Initialize the adaptive trait values; with : = 1,..., N at timet = 0
and specify the time stegt as well as the timé.,; when to stop the
dynamics.

B. Construct the vectorsy; = dt - §;(s), wy = dt - $;(s+ - wy), wy; =
dt-éi<3—|—%-w2> andwg; = dt - $;(s +w3) with: =1,..., N.

C. Update time and adaptive trait values accordingt te~ ¢ + d¢t and
i = Si+ g (Wi + 2 way + 2 w3 + wag).

D. Continue from Step B untit > ¢.,4.

Figure 6.1 An algorithm for the monomorphic deterministic model. The protocol employs the fourth
order Runge-Kutta method described in the text.
The Fourth Order Runge-Kutta Method

A better choice is provided by the fourth order Runge-Kutta method
1
t—t+dt, SZ'—>SZ'—|-6'(w1i‘|‘2-w2i‘|‘2-w3i—|—w4i) (6.23)

with wy; to wy; as defined in Step B of Figure 6.1.

Here, the error inevitably associated with any method of numerical integration is only
of orderO(dt*). As time stepsit thus may be larger while producing the same error,
this method is advantageous to the simpler Euler method.

6.5 Sample Simulations and Further Inquiry

The deterministic approximation of the monomorphic stochastic model opens up ample
opportunity for further investigation of the adaptive dynamics in coevolutionary com-
munities. We will utilize this representation in Chapters 7 and 9; here we only outline
some general perspectives.
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Figure 6.2 Orbits of the monomorphic deterministic model. The deterministic trajectories which
correspond to the trait substitution sequences in Figure 5.3, to the mean paths in Figure 5.4 and to
the realizations of the polymorphic stochastic model in Figure 4.4 are depicted by continuous lines with

initial conditions indicated by asterisks. More trajectories have been added to supplement the phase

portrait; the structure of the evolutionary flow in trait space thereby becomes visible. The discontinuous
oval curve is the boundary of the region of coexistence. The dotted curves are the inner evolutionary
isoclines of the two species (straight line: predator, curved line: prey), see Section 7.1. Parameters of

the coevolutionary predator-prey community are the same as in Figure 5.4.

Phase Portraits
The deterministic approximations (6.12) and (6.19) readily allow us to calcplaise

portraits of the adaptive dynamics.
An application to predator-prey coevolution is depicted in Figure 6.2. The evolutionary

trajectories, following the deterministic path, coincide with the mean paths calculated
from the stochastic process itself, see Figure 5.4. We could easily supplement the picture

by considering a large number of trajectories.
A variety of such phase portraits is obtained in the investigation of the coevolutionary

predator-prey community in Chapter 9, see Figures 9.4, 9.5 and 9.6.
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Figure 6.3 The monomorphic models and multiple attractors in trait space. Ten trait substitution
sequences with a common initial condition are obtained as stochastic realizations of the monomorphic
stochastic model and depicted by continuous lines. The set of these trait substitution sequences splits
permanently into two separate bundles since the initial condition is close to a basin boundary, a feature
that cannot be captured by a deterministic description. The basin boundary or separatrix is obtained
from the monomorphic deterministic model and is depicted by the dashed and dotted line. The basin
boundary is the unstable manifold of a saddle, which is located at the middle intersection of the inner
evolutionary isoclines depicted as dotted curves. The outer two fixed points are stable nodes. To construct
the basin boundary the direction of time is to be reversed in the monomorphic deterministic model in
order to stabilize the unstable manifold. The discontinuous oval curve is the boundary of the region
of coexistence. Parameters of the coevolutionary predator-prey community are as given in Figure 9.3
except foroy = g5 = 5 - 1073,

Bifurcation Analysis

In addition to investigating the coevolutionary dynamics by means of phase portraits,
much insight is gained by applying techniques froifurcation analysisto the deter-
ministic approximations (6.12) or (6.19).

The effects of varying different ecological parameters, which have an impact on the
adaptive dynamics, can then be explored systematically, see Sections 7.2 and 9.4 and
in particular Figure 9.7.
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Figure 6.4 The monomorphic models and expanding flow in trait space. Ten trait substitution sequences

with a common initial condition are obtained as stochastic realizations of the monomorphic stochastic

model and depicted by continuous lines. The set of these trait substitution sequences splits temporarily
into two separate bundles since the initial condition is situated in a region of expanding flow, a feature

that cannot be captured by a deterministic description. The flow is defined in terms of the monomorphic

deterministic model and its orbits are depicted by the dotted lines. The discontinuous oval curve is the
boundary of the region of coexistence. Parameters of the coevolutionary predator-prey community are
the same as in Figure 6.2 except for = 1073,

Caveats

Some caveats are however necessary for understanding the validity of any deterministic
approximation of a stochastic process.

First, if the adaptive dynamics turn out to be multistable, it will be possible for trait
substitution sequences to exhibit jumps between the existing basins of attraction. No
deterministic approximation is capable of capturing this feature. This must be kept in
mind while applying the deterministic approximation to initial states very close to the
basin boundary. Figure 6.3 illustrates this point. Moreover, large fluctuations between
the multiple stable states themselves in principle can happen. However, due to the
shape of the mutation distributions the latter will typically be associated with such
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extremely small probabilities per unit time that are negligible on ecological and even
on evolutionary timescales.

Second, if the flow of the dynamical system describing the deterministic path is
expanding, i.e. trajectories are diverging, the deviations of the stochastic realizations
from the mean path can grow too fast for the identification of the deterministic path with
the mean path to be reliable. An example is given in Figure 6.4. Note, however, that
the construction of phase portraits based on the deterministic path is useful in any case,
since these allow qualitative predictions of the stochastic dynamics by considering the
combined process of movement along the trajectories accompanied by jumps between
them. For illustration compare Figures 5.3 and 6.2.

Third, if the adaptive dynamics possess nonequilibrium attractors, the deterministic

approximation in principle cannot predict aspects of the asymptotic mean dynamics

of the stochastic process tangential to the attractor. The reason is that the tangential
fluctuations are not balanced by counteracting forces. In consequence, for example the
asymptotic mean phase of a stochastic limit cycle dynamics is not defined, though the
asymptotic mean period is accurately described. This point is demonstrated in Figure
9.8.






Chapter 7
Analysis of the Monomorphic Models

In this chapter we utilize the descriptions of the monomorphic stochastic model and the
monomorphic deterministic model, derived in the previous two chapters, to examine
in detail some of the rich variety of features that coevolutionary dynamics of this sort
can exhibit.

7.1 Characteristics of Isoclines

Given equation (6.12) which describes the coevolutionary dynamics of the monomorphic
deterministic model to first order, we can now investigate the conditions under which
evolution in single traits or in the whole community comes to a halt.

Definition of Isoclines

The evolutionarys;-isoclinesare defined as those manifolds in trait spgcen which
%si = 0 holds. The intersection of all isoclines coincides with the set of fixed points
of the adaptive dynamics.

In a first step we analyze the location of the evolutionary isoclines considering only
infinitesimal mutational steps, in accordance with assumptions usually made in the
literature (see e.g. Reed and Stenseth 1984; Taylor 1989). The result (6.12) is then
exact, and we infer that the evolutionasyisoclines are given by the union of manifolds

on which either the selection derivatiggf;(s;, s) or the population size,(s) vanishes.
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We refer to the former asner isoclines(these are subsets gt) and call the latter
boundary isoclines(as they are subsets ﬁg’c). Since extinction of one species
terminates the coevolutionary process of thiespecies system, we concentrate on the
inner isoclines.

In a second step, the impact of mutational steps being finite rather than infinitesimal
can by investigated by means of the higher order correction terms provided by equation
(6.19). This case will be considered in Section 7.4.

Classification of Isoclines
Inner evolutionarys;-isoclines can be classified as below.

1. Inner isoclines on which

0% fi(si,5) <0 (7.1)
holds are called-stable ornon-invadable
2. Inner isoclines whose points satisfy

0P Fil(siys) — 07 fi(siss) <0 (7.2)

are calledm-stable orconvergent
3. Inner isoclines characterized by

07 Fi(sirs) + 07 Fil(siys) <0 (7.3)

are said to benot mutually invadable

The notions ofé- andm-stability are due to Taylor (1989) the other names have been
used by Metz et al. (1994).

The notion of non-invadability is that on thg-isoclines mutants! in speciesi with
phenotypes close te; should not be able to invade; this idea is familiar from ESS
theory (Maynard Smith and Price 1973; Maynard Smith 1982; Parker and Maynard
Smith 1990) and the arguments of Roughgarden (1983) and Brown and Vincent (1987a,
1987b).

The term convergence was introduced to refer to the property of successive mutations
to cause evolution towards thg-isocline. Attention was first drawn to the distinction
between this and non-invadability by Eshel and Motro (1981) and Eshel (1983), and
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Class Inequality Set of invasion angles
7y | @2 | @73 Qmin < 0 < Cmas

non-invadability......................

1 yes yes yes 3.7 5-7
2 yes yes no 2.7 3.7
3 no yes no -7 2.7
4 no no no Tr—2-7 -7
5 no no yes 67 T
6 yes no yes 5-7 6-7

Figure 7.1 Definition of the six different classes of evolutionary isoclines.

was discussed in more detail by Taylor (1989) as well as by Takada and Kigami (1991).
Note that the dynamical interpretation suggested by the term convergent is different for
coevolutionary communities witv = 1 and for those withV > 1; this distinction

will be clarified in the next section.

Mutual invadability refers to the property of a pair of phenotygeands!' at opposite

sides of thes;-isocline both to invade and to be invaded by the other phenotype;
Christiansen (1991) noted that neither phenotype can go to fixation in this case. If
an isocline has this property at a fixed point, the system could evolve from the fixed
point to a state in which two phenotypes are present in spé&dies principle of mutual
exclusion guaranteeing that each mutant either replaces the previous resident or goes to
extinction would no longer hold. Identifying such fixed points thus is important, because
they indicate when the assumption of monomorphism (see Section 5.1) might become
inappropriate. For more details on this issue see the discussion in Sections 7.2 and 7.3.

The inequalities (7.1), (7.2) and (7.3) permit six classes of isoclines (Metz et al. 1994),
as summarized in Figure 7.1. There are ofilyather than2® = 8 classes, as

convergence and absence of mutual invadability imply non-invadability; similarly,
divergence and mutual invadability imply invadability. The class of an isocline can
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readily be determined: to do this we suggest a new mathematical toointhsion
angle

a;(s) = arctan (81»'271»(51', s), 81271»(31', 3)) (7.4)
where the functiorarctan (x, y) returns the angular polar coordinate corresponding to
the two Cartesian coordinatesandy. The invasion angley;, evaluated at a point on
a s;-isocline, unambiguously identifies the class of the isocline at that point (see Figure
7.1) and, in consequence, there is only a single degree of freedom in the classification
scheme of isoclines.

Illustration of the Classification

To understand the significance of the invasion angle and of the three inequalities above
we expandf; (s}, s), the per capita growth rate of a mutahtin a community of resident
species with adaptive trait values to second order into a Taylor series dpand s;
around a points situated on as;-isocline

(7.5)

By accounting for the constraint;(s:, s) = 0 which holds for alls: = s;, we obtain
the identities

[i(3,8) =0, (7.6)

0, Fi(5,8) + 0if;(3,8) = 0 (7.7)
and

D Fi(36,8) +2- 80i[i(5,8) + 9 (3, 8) = 0. (7.8)

From the first order result of the monomorphic deterministic model, equation (6.12), we
know that pointss on inner evolutionary;-isoclines are characterized By f; (3, 3) =
0. With the three identities (7.6), (7.7) and (7.8) there thus remain only two degrees of
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freedom in equation (7.5). One can be eliminated by normalization, the other is given
by the invasion angle;;. When choosing normalization to be given by

(s'.—ﬁ'. S‘E%é(—l +1)2 ‘7i<31. 5)‘ =1 (79)

we obtain in lieu of equation (7.5)

Filsivs) =¢ - (si - §i>2—
() (55— 5) - (si— 8+ (7.10)
(5i = 4)°

. . . -1
with ¢ = r - cosa;, ¢ = r-sino; andr = % |cos ai; + sinay| ™.

1
2
c .

The saddle-surfacedescribed by equation (7.10), that correspond to the six classes of
isoclines are illustrated in Figure 7.2. These surfaces intersect the filafes) = 0 at

two straight lines. Whereas one of these lines corresponds; te 5;)/(s; — §i) = 1,

one easily sees that the invasion angledetermines the location of the second line
which is described bys, — §;)/(s; — §;) = tan ;.

7.2 Characteristics of Fixed-Points

Much of the interest in models of coevolution has been to characterize properties of
fixed points in trait space at which the selection pressures generated by interacting
species are balanced, so that there is no further phenotypic evolution of the system.
The motivation for this work has come primarily from evolutionary game theory, and

a dynamic is often not made explicit in this context.

In this section we show that dynamical considerations are indispensable in a coevolu-
tionary context.

Communities with N=1

The three inequalities (7.1), (7.2) and (7.3) have been employed in the literature to
analyze fixed points of the evolutionary dynamics in communities comprising only a
single speciesN = 1 (Eshel and Motro 1981; Eshel 1983; Taylor 1989; Takada and
Kigami 1991; Metz et al. 1994). In this case theisocline coincides with the fixed
points of the evolutionary dynamics. Please note that the properties of such fixed points
— given below as encountered in the literature — only hold in the simple special case
N = 1.
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Figure 7.2 lllustration of the different classes of isoclines. In the vicinity of an isocline the surface
f:(s%, s) to second order is saddle-like in the argumeiits s; ands; — 5;. Figures (a) to (f) correspond
to classes 1 to 6 of isoclines as given in Figure 7.1.
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Figure 7.3 The vicinity of the different classes of fixed-points fof = 1. The sign off, (s}, s1) is

shown by letters (P: positive; N: negative). The two straight lines corresporfig(ty, s;) = 0. The

small arc at the center measures the invasion angléThe three large arcs indicate the range of invasion
angles that fulfill the inequalities (7.1), (7.2) and (7.3) (inner: non-invadability; middle: convergence;
outer: no mutual invadability). It is helpful to compare this figure to Figure 7.2. After choosing a specific
resident adaptive trait valug, the above figures can be utilized to determine those mutant adaptive trait
valuess) that could invade the resident population. In this vein the meaning of the three inequalities
(7.1), (7.2) and (7.3) can be understood (non-invadability/invadability: consider the range of mutants
being able to invade the resident at the fixed point; convergence/divergence: consider a sequence of trait
substitutions in the vicinity of the fixed point; no mutual invadability/mutual invadability: consider the
range of mutants being able to invade the resident in the vicinity of the fixed point and vice versa).
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Fixed points of classes 1 and 2 cause convergence, see Figure 7.3. In contrast to
class 1, a system tending to a class 2 fixed point can go through a transient period
of polymorphism before reaching the fixed point; Metz et al. (1994) refer to this as
a contracting polymorphism Class 3 also gives convergence to the fixed point but,
at the fixed point itself, mutants at opposite sides can invade and coexist. This then
corresponds to Prout’'s (1968) notion ofpsotected polymorphispreferred to as a
polymorphic evolutionarily attainable tralty Christiansen (1991), and as expanding
polymorphismby Metz et al. (1994). Fixed points of classes 4 and 5 are invadable and
divergent; that class 4 in contrast to class 5 allows for mutual invadability might only
be important when starting the evolutionary process in the vicinity of the fixed point
which in the former case can give rise to a short initial period during which a transient
polymorphism can occur. A class 6 fixed point is non-invadable but divergent, i.e. it
would be uninvadable if the system started on at the fixed point, but starting from other
points in the neighborhood the system evolves away from it; such a configuration has
aptly been called &arden of Eden configurationy Hofbauer and Sigmund (1990).

The six different classes of fixed points for = 1 are illustrated in Figure 7.3. Notice
that the information presented in this figure can by inferred from Figure 7.2. Thus both
figures apply to communities with > 1; however, interpreting the diagrams of Figure
7.3 in the sense described in the figure legend is only possible in the\tase.

The relationship between the properties of fixed points given above and dynamical
stability is trivial for systems in which only one species evolves. It is readily shown
that the condition for dynamical stability of a fixed point under dynamics given by the
first order of the monomorphic deterministic model coincides with the condition for
convergence, inequality (7.2). To see this, consider the Jacobian of dynamics (6.12)

J = ki(s1) - [0 F1(s1, 1) + 01D Fi(s1,1)] (7.11)

evaluated at the fixed poird; for the definition of the evolutionary rate coefficients
ki(s) see equation (6.15). By employing equation (7.8) we obtain for the Jacobian at
the fixed point

J = kl(‘%l) ) % ) [8{271(‘%17 él) - 8%71(31, él)] . (712)

Since the local stability of fixed points in one-dimensional systems depends only on the
sign of the Jacobian evaluated at these points, with inequality (7.2) we can conclude that
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dynamically stable fixed points/(< 0) are convergent and that unstable onés>(0)

are divergent. Moreover, since the condition for non-invadability is independent of
the condition for convergence, dynamical stability of the fixed point does not require
non-invadability.

Communities with N>1

We now turn to the coupled evolution of two species to see how the properties of
isoclines relate to dynamical stability of two-dimensional systems. Here the inner
fixed points are given by the intersection of the inner isoclidgg, (s}, s) = 0 and

95 f5(sh,s) = 0. The six classes of isoclines above allow 36 types of fixed points, of
which 21 are distinct under permutation of the two species. With dynamics (6.12) the
Jacobian at the fixed poirit = (31, 52) is

1= (o 22) 19
with

Jin = ki(s)- [0 F1(31.8) + (o0 f1(%1,8)]

Ji2 = ki(s) - 9[9211(51, ), (7.14)

Jo1 = ka(s) - 0301 (52, 5)

Jaz = ka(s) - [05° Fo(82,8) + 0502 F4(32,3)] -

As in the one-dimensional case, the bracketed tgrmson the diagonal are the same
(apart from a positive factor of 2) as the expressions given in inequality (7.2), and are
therefore related to the isoclinic conditions for convergence of each species. But there is
a much more indirect relationship between these convergence conditions and dynamical
stability; we collect together the relevant results in the next paragraph.

A necessary and sufficient condition for local stability of fixed points in two-dimensional
systems is thatr / < 0 anddet ./ > 0. From this the following results can be obtained;
see also Abrams et al. (1993). (i) Convergence of each species (i.e. bracketeld .térms

in J negative) is neither necessary nor sufficient for local asymptotic stability of the fixed
point. Convergence is not sufficient because, although convergence implies 0,

the sign ofdet J depends on the off-diagonal mixed partial derivatives. Convergence
is not necessary because it is possible to have< 0 anddet J > 0 when only one
species is convergent and the other divergent. (ii) If each species is divergent, i.e. both
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bracketed terms i are positive, we have .J > 0 and hence the fixed point is unstable.
Thus six of the 21 types of fixed points are definitely evolutionary repellors, but the
remaining 15 could be either repellors or attractors. However, by allowing for the signs
of the off-diagonal elements of, three further results about these remaining fixed
points can be given. (iii) If each species is convergent and the off-diagonal elements
are of opposite sign, the fixed point is an evolutionary attractor. (iv) If one species
is convergent, the other divergent and the off-diagonal elements have the same sign,
the fixed point is an evolutionary repellor. (v) In all cases not covered by (ii), (iii)

or (iv) local stability of the fixed point can be tuned just by varying the ratio of the
evolutionary rate coefficients; (s)/k2(5).

We conclude from these results that the simple identity of the condition for convergence
with that for local dynamical stability, which holds for single-species evolution, has no
counterpart in multispecies coevolution. The attractors of the coevolutionary process can
depend critically on detailed dynamical features of the coevolving system. In particular,
as the mutation process influences the evolutionary rate congtaatsin general no
inferences as to the dynamical stability of evolutionary fixed pointsdar 1 can be

made when considering the process of selection alone. For a contrasting view on this
issue see Rand et al. (1993).

Figure 7.4 illustrates the considerations above. Depicted are adaptive dynamics in a
coevolutionary community comprising two species. Spetidss as;-isocline that
changes along its length between classes 2, 3, and 4, see Figure 7.4a. At the point
of intersection with thess-isocline, the isocline of species has the properties of
invadability, divergence and mutual invadability, whereas the isocline of spécies

is of class 1 having the properties of non-invadability, convergence and no mutual
invadability. This example is interesting for several reasons.

First, the fixed point is an instance of case (v) above, i.e. its dynamical stability depends
on the evolutionary rate constants. If the mutation ratios of specesl2 are chosen

in the ratio 1:10, allowing faster evolution in specigsthe fixed point is stable and
serves as an attractor for the adaptive dynamics, see Figure 7.4b. On the other hand,
if the mutation ratios are chosen in the ratio 1:1, the fixed point is unstable and the
attractor is given by a limit cycle, see Figure 7.4c.
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Figure 7.4 Tuning of evolutionary stability by means of the mutation process. The discontinuous oval
curve is the boundary of the region of coexistence. The dotted curves are the inner evolutionary isoclines
of the two species (straight line: predator, curved line prey). (a) The sections of the isoclines are labeled
according to their class, see Figure 7.1. The fixed point at the intersection of the two isoclines is an
instance of case (v) described in the text. Here, evolutionary stability can be tuned just by varying the
ratio of the evolutionary rate coefficients. (b) The fixed point is stable for mutation ratios of the two
species obeying, /u2 = 0.1. Orbits of the monomorphic deterministic model are depicted by continuous
lines. (c) The fixed point is unstable and is surrounded by a stable limit cycle for mutation ratios of
the two species obeying; /u2 = 1. These distinct mutation ratios are the only difference between the
systems displayed in figures (b) and (c). Parameters of the coevolutionary predator-prey community are
as given in Figure 9.3 witth = 0.11 except in figure (b) wher@g; = 10~%,



98 Part B The Dynamical Theory of Coevolution

Second, the example illustrates how dynamical stability is independent of non-
invadability of the fixed point. It can be seen thattan be an attractor, see again
Figure 7.4b, notwithstanding the fact that coevolution, according to the class 4 of
the sq-isocline, leads to a local minimum for the per capita growth rate of spécies
Also Takada and Kigami (1991) and Abrams et al. (1993) have noted that a system
of coevolving species may be driven to a fixed point where one species is at a local
“fitness” minimum.

Third, in the system illustrated in Figure 7.4, the three basic kinds of selection are all
present: selection is directional for both species away from the isoclines, stabilizing
for species2 around its isocline and disruptive for speciesat its isocline in the
neighborhood of the fixed point.

From the discussion above we draw two conclusions.

1. For coevolutionary communities with > 1, comprising several species, the notion
of convergence, which proved useful in the classification of fixed-points for the
special case&V = 1, has to be replaced by the more general definition of dynamical
stability as demonstrated above.

2. In contrast, the concepts of invadability and mutual invadability generalize without
problems to communities wittv > 1. As in the caseV = 1, the presence of
mutual invadability at a fixed-point indicates the possibility of polymorphism. If
mutual invadability is accompanied by invadability, there can even be potential for
the emergence of a protected polymorphism, i.e. for the occurrence of evolutionary
branching.

Whereas the first conclusion is essential for appreciating the impossibility of strip-
ping away the mutation process from the consideration of evolutionary outcomes; the
second conclusion is a first step in analyzing the prerequisites for the assumption of
monomorphism, introduced in Section 5.1. In the next section we take this investigation
further by proving the principle of mutual exclusion for a certain type of coevolutionary
communities.
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7.3 The Principle of Mutual Exclusion

We have assumed in Section 5.1 that without mutations two or more values of the
adaptive traits; within a species cannot coexist in the limit— oo, only the single
most advantageous trait value surviving. This principle of mutual exclusion can be
proved for the case of Lotka-Volterra population dynamics.

The Principle of Mutual Exclusion for Lotka-Volterra Communities

The theorem is as follows. Consider in specjes 1,..., N two populations with
sizesn; andn; of a resident adaptive trait valug and a sufficiently close mutant trait
values;, respectively, in an environment determined by trajtsvith population sizes

ni, ¢ =1,..., N. The dynamics of the population sizes in the community are assumed
to be of Lotka-Volterra type.

When the mutant is absent, we call the remaining population dynassaient system
when the resident is absemiutant systefrand when both are presetimbined system
Provided that

1. the selection derivativ@ﬁj(s]»,s) does not vanish,
2. the Lotka-Volterra interaction matrix of the combined system (i) is not singular, and
(if) its elements for species vary smoothly withs;,

we show that there cannot exist a fixed point of the combined systef'in'. From
this it can then be inferred that the mutant will either go to fixation or to extinction.

Notation of Proof

As in Section 5.1 we formally assign the population of the mutant adaptive trait value the
index: = 0: sg = %, ng = njj, by = b; anddy = d;. In the course of a trait substitution

55 — 3; the phenotypic distributions in the coevolutionary community are given by

p= (nl “Ogy sy Os, F 10 Osgy e N 55N> . (7.15)
From the stochastic description of the invasion process
N
d

P (nt) = ;{Jg@i,s,n—l— 1) - (i + 1) P(n+ 1% 1)+

](si,s,n—li) ,(ni_l).P<n—1i,t)— (7.16)
dzJ(Sia s,n) "Ny P(n,t)—
b (s0v5,m) i P, ]
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see equation 5.4, we can formally construct a deterministic system describing resident
and mutant population dynamics when treating population sizes as continuous variables
and neglecting fluctuations

d .
g = i I/ (si,s,n) (7.17)
with f;j(si, s,m) = Zg(sl, 5,M) —czj(si, s,n) andn = (ng,ny,...,ny). The assumption

of continuous population sizes and negligible fluctuations is only justified for large
populations,ng, ny,...,ny > 1. As we have frequently pointed out, this is not the
case when considering a mutant population which initially is of dize Thus the
equations (7.17) are not capable of describing the dynamics of the invasion process, for
this purpose we have to rely on the stochastic representation (7.16). We only may use
the dynamical system (7.17) in circumstances when all considered populations (i.e. those
with positive sizes) are large. This constraint will be respected below.

The assumption that population dynamics are of Lotka-\Volterra type is expressed by

N
I (siy8,m) = ri(si) + Z a;j(si,sj)-n; forall ¢=0,...,N. (7.18)
7=0

The fixed-points of the population dynamics of the combined system, denotéd=by

(fig, A1, ..., 7y ), are defined by (s, s, a(s)) = 0 for all i = 0,..., N. Similarly, we
define the fixed-points©® = (0,2, 4", .. 2y anda® = AV, 0,4, ... aW)

of the resident and of the mutant system, respectivelyfty;, s, 2(!)(s)) = 0 for all
i =1,2,...,N and by [/(s;,s,2(")(s)) = 0 for all i = 0,2,..., N. The superscript
thus refers to the index of the absent population.

To shorten notation, below we do not continue to repeat the dependence of the quantities
firr,a, i, 7 anda() on the vectors = (so, s1,. .., sy) and the index which are
constant throughout a particular trait substitution.

We denote minors of a matrid by m%(A); here theith row and thejth column
have been eliminated. We further define the matrigégA) derived from a matrix

A by replacing the elements of théh row and thejth column by0, except for the
elementA;; itself which is replaced by; successive mappings of this sort are denoted
by z*(A) = 2 (*(A)). Similarly, the vector:'(a) is obtained from a vectos

by settinga; to 0.
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Outline of Proof
The proof of the above theorem is divided into four steps.
1. First, we prove the equation
fig - 7y =[det ™% ]
[det m"(a) - det m!!(a)]- (7.19)
HERNACRIE
2. Then, we show
detmoo(oz) =Z0 < detmll(oz) = 0. (7.20)
3. Next, we demonstrate
™ z0 o  [GW) so0. (7.21)
In consequence of these results of parts 1 tdp3andn; have to be of opposite sign,
thus there is no fixed-point of the combined systenR@ﬁ“.

4. Finally, we exploit the fact that if there is no fixed-point of the combined system
in RY+! there can be no attractor at all #&Y+! .

Hence, under the two conditions mentioned above, the two adaptive trait valaes!

3;» cannot coexist. As then the mutant will either go to fixation or to extinction, the

principle of mutual exclusion is proved.
Proof, Part 1
In this part of the proof we will use Kramer’s rule

zj=det™ A Zai : (—1)i+j - det m¥( A) (7.22)
to solve systems! - © = « of linear equations, and Steiner’s rule

det A=Y Ay (1) - detm'(A) (7.23)

J

to evaluate the determinant of a matrixby expanding it with respect to itgh row.
Note also that for any matrixi the identity

det m(A) = det 2" (A) (7.24)

holds.
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In afirst stepwe evaluate the fixed-points of the combined, the resident and the mutant
system. The former are defined by the equations

N
i+ > i =0 (7.25)
i=1
holding for all; =0, ..., N. By solving this system of linear equations we obtainsior
fj=det™ a Y (=ri) - (=1)"* - det m¥(a) . (7.26)
i=0

Similarly we get fori(®) and 2V

<—ZO(TZ')> : (—1)i+j - det m¥ (Zoo(oz)> (7.27)

-

ﬁgo) — det™! Zoo(oz) .

1=0

and

<—Zl(7“i)> : (—1)i+j - det m¥ (le(oz)> : (7.28)

V-

ﬁgl) — det™! le(oz) .

1=0

In asecond stepve compute the produgh(~(?)) - f1(2()) according to equation (7.18)
Jo(@®) - ()

N
= {ro-l-;ozoj-ﬁgo)}-

(7.29)

N

{Tl +Za1j'ﬁgl)} .
j=0
By utilizing equations (7.27) and (7.28) we get
o) Ji(aD)
N
= {ro + det™ 2%(q) - Z ag; - (—2(ry)) - (=1)" - det 29 (2"(a)) }

i,j=0 (7.30)

{rl + det™! le(oz) . Z agj <—Zl(7“i)> . (—1)Z+] - det z¥ (le(oz)> } )

1,7=0
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Then we decompose the two sums into several separate terms

Fo(@) - fi ()
= det™ 1 00( ) det™ 1 11( )
{r -det 2°%(a) — 71 - agy - det 2119%(a) 4
Zoq)] - det 217 00 a) 4
N . .
Qo1 - Zri (=1)" - det Z’l’og(oz)—
1=2
> agiri (=17 - det 27%(a) |- (7.31)
{j=2
{rl det 2" (a) — 7 - agg - det "0 (o) +
N
ro Zozlj-(— ) detZOJ’H( )+
j:2

o0 Zrl — detzlou( )—

Z apjT (—1)i+j - det Zij’ll(oz)} )

5,]=2

In the last transformation we have used:{i)r;) = 0 for i = 0, 2°(r;) = »; for i # 0,
(i) z'(r;) = 0 fori =1, 2'(r;) = r; fori # 1 and (iii) det 2% (a) = 0 for i = k
andj # [or: # k andj = [.

In a third stepwe compute the product, - 7 utilizing equation (7.26)

(7.32)
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By expandingdet »'°(a) with respect to it€)th row anddet »''(a) with respect to its
Ist row we obtain

= det? o
N ' N o , .

(3 (1 i) (1) det 2 (e | 7.3
3 N o

[ (1D ) (<) det 2 ()

= det™2 o

{ro - det Zoo(oz) — 71 - ag - det le’oo(oz)—l—

N

ry - Zaoj . (—1)‘7 - det le’oo(oz)—l—
=2

N

Qo1 - Zri . (—1)i - det 2“’00(@)—

1=2

N
Z Qj T (—1)Z+] - det 2”’00(@) . (7.34)
i =2

{rl - det le(oz) — 7o - aqg - det Zoo’ll(oz)—l—

N
ro - Zoqj (—=1) - det Zoj’ll(oz)—l—
=2
N .
o0 Zri (=1)" - det Zio’ll(oz)—
1=2

N

Z apjT (—1)Z+] - det Zij’ll(oz)

i,j=2
To obtain the last equation we have used{)’(a) = 2 (a), (i) 27 F (a) = —zF1¥(a)
and (iii) zz(a) =0fore=Fkandy #lor:# kandj =1, zz(a) =1 for: =k and
J =1, Zz(oz) = oy for: # k andjy # .

In a fourth stepwe compare the results (7.31) and (7.34). This completes the proof
of equation (7.19).
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Proof, Part 2

In this part of the proof we investigate the relative signg@f’’(«) anddet m!!(a).

For this purpose we expantit ! («a) to first order in the mutant adaptive trait value

s around the resident trait valug

0 det m!'!(a) : (7.35)

detm'!(a) = detm™(a) + (s = 5) - 57 s
j i

J

Provided that (i) all interaction coefficients; and«;; vary smoothly with the trait
value s/, (ii) the resident system is not singulals;t m’(a) # 0, and (iii) the mutant
trait value is sufficiently close to the resident trait value,

‘59 - S]“ < det moo(oz)/% det mll(oz) v (7.36)
] i

we thus can conclude thdet m°’(a) anddet m!!(a) are of the same sign. Conse-
quently, their product is positive.

Proof, Part 3

This part of the proof is concerned with the relative signg@h(?)) and f;(2(1)).
With equations (5.10,11,12) we haye(i(”)) = F;(s",s) and fi(n)) = F;(s;, ')
wheres' has components; = s; foralli = 1,..., N # j ands; = s for i = j.

Expansion of these functions to first order in the mutant adaptive trait \sglaeound
the resident trait valug; yields

ﬁ)(ﬁ(o)) = fj(Sj,S) + (3; — 3j> -affj(Sj,s),

D , " (7.37)
AR = Fisg,9) + (5 = 5) - 0;F (s, 9).

We exploit equations (7.6) and (7.7) and obtain
) = 6 )47,
HRW) = —(sh = s;) - 9] T;(s5.5) .

From this we conclude thaf(7(”)) and f;(7(1)) will be of opposite sign unless the
selection derivative?}fj(Sj, s) vanishes. Hence their product is negative.

Proof, Part 4

This part of the proof is standard, it can be found e.g. in Hofbauer and Sigmund (1988,
see Theorem 1 in their Section 9).
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The Monomorphic Regime apart from Isoclines

In Section 5.1 we have based the assumption of monomorphism on two separate
conditions, the smallness of mutation ratios and the principle of mutual exclusion.
The latter has now been clarified for coevolutionary Lotka-Volterra communities. For
generic communities of this type (having an interaction matrix that depends smoothly
on trait values and that is not singular) and for sufficiently small mutational steps, the
principle of mutual exclusion in specigsis valid apart from thes;-isoclines of the
adaptive dynamics (where the selection derivaﬁyﬁj(Sj, s) does vanish).

In a last step we hence investigate under what conditions the assumption of monomor-
phism holds in the vicinity of these isoclines.

The Monomorphic Regime in the Vicinity of Isoclines

The investigation of the two conditions for the assumption of monomorphism, the
smallness of mutation ratios and the principle of mutual exclusion, requires particular
care in the vicinity of evolutionary isoclines. A violation of the first condition can
occur for species in the vicinity of an inner evolutionary;-isocline, since here the per
capita growth rates of a resident trait and a close mutant trait will differ only slightly.
For this reason it may take a long time until the mutant replaces the former resident.
We have seen above that for Lotka-Volterra communities the second condition may not
hold, either, in the vicinity of an inner evolutionasy-isocline. From Sections 7.1 and

7.2 we know that this might be the case for isoclines which are mutually invadable.

Nevertheless, the breach of the assumption of monomorphism, in the cases mentioned
here, can be of minor relevance. There are several reasons for this supposition and we
discuss the possible cases in turn.

1. Close to an evolutionary isocline that is not mutually invadable, the only problem
is the lack of the timescale separation between the population dynamics, forcing
deleterious mutants to go extinct, and the process of mutation, enabling new mutants
to enter the population. Here, a polymorphic distribution around the isocline can
build up, for relatively long time is required to drive out the deleterious mutants.
However, after a sufficient time the most advantageous mutant will eventually have
succeeded in banishing the other trait values such that the polymorphic distribution
is only present for an intermediate time interval. In addition, when the mutation
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ratio 1; is not too high or the mutation varianeg too large, this distribution is
sharply peaked on the isocline.

2. In the vicinity of an evolutionary isocline that is mutually invadable the principle
of mutual exclusion may fail to hold. If the isocline is non-invadable, mutants on
opposite sides of the isocline may temporarily coexist. But, due to non-invadability,
only one trait value remains when the isocline is reached. Again, when the mutation
variances? is small, this temporal deviation from monomorphism may be neglected.
We thus conclude that in both cases 1 and 2 the monomorphic framework can be
retained as an approximation.

3. Ifan evolutionary isocline is both mutually invadable and also invadable, mutants on
opposite sides of the isocline can coexist permanently. This process may give rise
to evolutionary branchingMetz et al. 1994). However, as remarked in Section 4.5,
evolutionary branching has not been observed by the author in the monomorphic
regime of the generalized replicator equation. It appears that the incidence of
evolutionary branching is not robust under coevolutionary dynamics when treated
stochastically. We thus conjecture that even in this case 3 the monomorphic
description can be retained. Nevertheless, further investigation of this issue is
suggested.

There is yet another incentive for relying on the monomorphic framework in the vicinity
of isoclines. Though we havgsi = 0 for a points situated on an evolutionary isocline

of species, in a coevolutionary context the adaptive trait values of the other species
usually are still bound to changels; # 0 for j = 1,...,N # i. This will hold
unlesss is a fixed-point of the coevolutionary dynamics or the adaptive change in
happens on a faster timescale than that ot allln consequence, the dynamics in the
other species will drive the adaptive trait valuesway from thes;-isocline and the
phenomena described under 1 to 3 above cannot occur.

Conclusions
We summarize the analysis of this section in terms of the following statements.
1. For generic Lotka-Volterra communities with small mutation ratios in all species

and small mutational steps, a monomorphic description will hold apart from the
isoclines of the adaptive dynamics.
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2. In cases not covered by 1, a monomorphic description will hold if the isocline of a
species is only traversed owing to adaptive change in the other species.

3. In cases not covered by 1 or 2, a monomorphic description will hold approximately
if the considered isocline is not mutually invadable or mutually invadable but non-
invadable.

4. In cases not covered by 1, 2 or 3, a monomorphic description will hold when
considering stochastic coevolutionary dynamics.

Please note that, although the principle of mutual exclusion has been taken for granted
in the exploration of coevolutionary communities which are not of Lotka-Volterra type
(e.g. Rand et al. 1993; Rand and Wilson 1994), our proof is restricted to the class of
Lotka-Volterra communities. To our knowledge, there exists no proof of this principle
for population dynamics of arbitrary type.

7.4 Consequences of Higher Order Corrections

The higher order correction terms to the monomorphic deterministic model can have
important consequences in specific circumstances. Here, we describe two special effects.

1. Finite mutation variances give rise to inner evolutionary isoclines that are displaced
relative to those obtained for infinitesimal mutation variances. This shifting of
isoclines already occurs in the second order result for asymmetric mutation processes
whereas for symmetric mutation processes the third order corrections are to be
considered.

2. The other effect, the phenomenon of evolutionary slowing down, can be demon-
strated by means of the second order result. Its investigation leads to the conclusion
that fixed points lying on non-invadable inner evolutionary isoclines for some traits
are attained at a rate which is algebraically slow rather than exponentially fast in
those traits.
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Figure 7.5 Shifting of evolutionary isoclines. The continuous curves are the inner evolutionary isoclines
of the two species (straight line: predator, curved line: prey) for infinitesimal mutation variances

andos — 0. The dotted curves are the inner evolutionary isoclines of the two species for finite mutation
variancesg; = o, = 5-1072. The discontinuous oval curve is the boundary of the region of coexistence.
Except for the mutation variances parameters of the coevolutionary predator-prey community are the
same as in Figure 6.2.

Shifting of Evolutionary Isoclines

We now analyze inner evolutionary-isoclines in the context of the higher order result
(6.19). In other words, we investigate the impact of allowing mutational steps to be
finite in size rather than infinitesimal. The class of an isocline in this case is determined
by that of the corresponding isocline in the first order result. As to the location of the
isoclines the results are as follows.

First, we consider the second order result. According to equation (6.21) the range of
integration here is given byti(s) = {s\ € ;| (si —s;) - 9/ i(siys) + (s — ;)" -

30 fi(si,s) > 0}. Ford/fi(si,s) = 0 this range either vanishes or extends to
(—o0,+0c0), depending on the sign & f,(s;, s). If thus an inners;-isocline is non-
invadable, the mutation moments;(s), see equation (6.20), and in consequence the
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second order correction in equation (6.19) drops out owing to the vanishing integration
range. If the innesg;-isocline is invadable, the same conclusion holds true for symmetric
mutation distributions since:s;(s) now coincides with the vanishing third moment

of those distributions. For asymmetric mutation distribution we already in second
order get a shifting of invadable inner evolutionary isoclines. For symmetric mutation
distributions, however, the evolutionary isoclines of the second order result match
those already established by the first order result. In both cases the inner isoclines
are determined by the vanishing of the selection derivatyg;(s;, s) = 0.

This simple picture changes when we consider the adaptive dynamics in terms of the
third and higher order results. We first examine the case of invadable evolutionary
s;-isoclines. Since in general the integration range is now no longer symmetric, the
odd mutation moments do not vanish, and neither do the even mutation moments.
Further, the second and higher order derivatﬂ{égi(si, s) and the first and higher order
derivatives@i’j_j/@_l(si, ) in equation (6.19) usually contribute. The third and higher
order corrections therefore cause a displacement of the invadable inner evolutionary
isoclines. These displacements are quantitative deviations from the first order result. But
the higher order corrections can give rise even to qualitative discrepancies. Consider a
manifold in trait space on which f;(s;, s) = 9/ f;(s;,s) = 0 butd/> f,(si, s) # 0 hold.

In terms of the first order result (6.12) this manifold would be called an evolutionary
s;-isocline. In terms of the more general higher order result (6.19) we notice that this
manifold is not an isocline at all, for the evolutionary r#gei, though probably being
small, does not vanish here. The deviations are not so dramatic for non-invadable
s;-isoclines. Here the range of integration cannot contain the residents{raithe
displacement of the isocline thus will only be significant, if the mutation distribution
M;(s;, s — s;) extends considerably beyond that zefoof f,(s!,s) which is closest

to the zero at; itself. In general however, inner evolutionary isoclines are no longer
determined by the vanishing of the selection derivative.

We summarize that the shift of inner evolutionary isoclines owing to the finiteness of
mutational steps is a second or third order effect, depending on the symmetry of the
mutation distribution. This shift is illustrated for the case of predator-prey coevolution,
see Chapter 9, by the dotted curves in Figure 7.5. Note that not only the isoclines can
be displaced, but in consequence also the fixed points themselves. Thus the shifting
discussed here may affect the asymptotic stationary states of the coevolutionary system.
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Figure 7.6 Evolutionary slowing down. (a) The continuous curve shows the mean path dynamics of
the predator’s trait close to the evolutionary equilibriimin Figure 5.4 (constructed from 20 trait
substitution sequences). The fixed pointies on a non-invadable predator isocline. In the figure
the actual algebraically slow approach &ds compared to the exponentially fast one, depicted by the
discontinuous curve, that is obtained from the first order result, which cannot account for evolutionary
slowing down. (b) A double logarithmic plot of the considered time series confirms the derived power
law s5(t) — 45 o t~1/3, the jaggedness of the continuous curve stems from the extreme amplification
of the impact of single trait substitutions due to the logarithmic scale. The straight line resulting from a
linear least square fit to the time series turns out to have a slop®.8154, close to the predicted value

of —1/3, thus confirming the prediction of fourth order slowing down. Parameters of the coevolutionary
predator-prey community are the same as in Figures 5.3, 5.4 and 6.2.

Conditions for Evolutionary Slowing Down

For the purpose of illustration let us start by considering the two dynamical systems
L2y = —21 and Lxy = —a3. Both examples possess a locally stable fixed point at
the origin. The time evolution of these systems is described1lfy) = 21(0) - ¢!
andx,(t) = +[x5%(0) + 21] ~'2 Note that fort — oo the first system approaches the
fixed pointexponentially z1(#) o« ¢~!, while in the second case the approach is only
algebraig (1) o t~1/2, and therefore much slower. The latter effect is called slowing
down. It can occur at fixed points that are not only characterized by the vanishing
of the rate of the dynamical systerﬁéx = 0, but also by a vanishing of the rate’s

slope, L 4o = 0.

In general, a dynamical systeggx = F(x) is said to exhibit-th order slowing down

at a fixed pointz if F'(z) = 772 a;4 - (¢ — 1)’ aroundz = & with (i) » > 1 and
with (i) +a,4+ < 0 for » even anda,+ < 0 for » odd. The distinctiont refers to
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the two casest(x — &) > 0 and is necessary to account for slowing down of even
order. Condition (ii) only ensures the local stability of the fixed paint &, whereas
condition (i) implies the vanishing of the rate’s sloperat . The algebraically slow
approach towards the fixed point is describedzg) — & oc (a4 - )/ 177,

The phenomenon of slowing down does arise in the context of coevolutionary dynamics.
Before turning to the general case, for intuition we first utilize the second order result.
We consider a locally stable fixed point of the adaptive dynamics which is situated
on a non-invadable inner evolutionagy-isocline such that)!?f,(s;,s) < 0 holds

in the vicinity of this isocline. Thus the range of integration is given according to
equation (6.21) byR;(s) = (31',31' —2-8{%(&,5)/61»'271»(31',5)) for 9! fi(si,s) > 0

and by R;(s) = (si — 29/ fi(si,3)/9]* fi(si, 5),si) for the other side of the isocline.
Evidently, the range of integration in second order vanishes on the isocline itself. The
ecological interpretation of this statement is intuitive: fewer and fewer mutérdse
advantageous while approaching the fixed point, until finally all possible mutants are
deleterious.

In order to prove formally that this process gives rise to slowing down, we examine
the coefficients:;+ defined above in the case of the adaptive dynamics described by
equation (6.7). For adaptation in a single species the results obtaineghatea;+ =

as+ = az+ = 0 whereasas. = —ayq— < 0. Thus we are confronted with fourth
order slowing down. We conclude that evolutionarily stable fixed points of the adaptive
dynamics are attained at a rate that is algebraically slow in thosedyatsose isoclines

are non-invadable at the fixed point. In principle, the evolutionary slowing down thus
can drastically increase the length of evolutionary transients. In the theory of phase
transitions a related phenomenon is knowncasical slowing down(Huang 1987).

Here, the algebraically slow relaxation towards an equilibrium point occurs at a critical
value of a control parameter, e.g. temperature, that is external to the considered system.
In such systems, fluctuations around the equilibrium point are much larger at the critical
value than apart from it. In contrast, the phenomenon of evolutionary slowing down
causes fluctuations to vanish at the equilibrium point and, moreover, it is an effect
which is internally driven (one could interpret the range of integratigis) as a control
parameter that is tuned towards its critical value while the adaptive dynamic approaches
the non-invadable isocline).
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Let us now briefly consider invadable isoclines. Here, the evolutionarygga;ein the
vicinity of the isoclines actually is increased by a factgrsince here the integration
range is doubling rather than vanishing. Compared to the first order result, this amounts
only to a quantitative but not to a qualitative change.

The phenomenon of evolutionary slowing down can be exemplified in the coevolutionary
predator-prey system. Figure 7.6a shows the algebraically slow dynamics taking place
in lieu of an exponentially fast approach towards a stable fixed point of the adaptive
dynamics. A double logarithmic plot in Figure 7.6b confirms the predicted power law
s9(t) — &2 o« £¢~1/% and thus the fourth order of the evolutionary slowing down.

7.5 Construction of Adaptive Landscapes

The dynamic of evolutionary processes is frequently associated with the concept of
optimization, optimization in turn being interpreted in the sense of maximization
(Lewontin 1987; Emlen 1987). The influential metaphor of the adaptive landscape,
introduced by Wright (1931), see Section 2.3, has helped to support this tendency. In
this section we advance arguments why we think that the notion of hill-climbing on an
adaptive landscape is tempting but obsolete in a coevolutionary context.

Problems with the Hill-climbing Metaphor in a Coevolutionary Context

First, we have seen in Section 7.2 that the determination of coevolutionary endpoints
may not be decomposed into analyzing the impacts of mutation and selection separately.
The quantitative details of the mutation process can be essential for predicting the
direction of coevolutionary change. In contrast, the metaphor of the adaptive landscape
suggests that directionality is imposed on the evolutionary dynamics by a “fitness"
function which is only dependent on the process of selection.

Second, the adaptive landscape for coevolutionary processes ought to be a variable
one. For a particular species, its shape has to undergo transformations according to the
altering biotic environment generated by the other species which in turn are subject to
adaptive change. We show that once the variability of the landscape is tolerated, it is
possible to cast an arbitrary dynamical system in a mathematical form that corresponds
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to a hill-climbing process on a variable adaptive landscape. To see this we consider
the set of equations

d
= F(z) (7.39)

with = = (zy,...,2y) and F' = (Fy,...,Fy). It can easily be checked (using
Leibnitz’ rule for differentiation with respect to integration limits) that equation (7.39)
is mathematically equivalent to

d 5, .

i = 8—1;’1W’<x;’ :1;) i for ¢=1,...,N (7.40)
with

Wi(a}, @) :/ iF(:z;) . (7.41)
Alternatively, we can write

d ,

5= VWW(:L' ,:1;) - (7.42)
and

N
W' x) =Y Wi} o) (7.43)

with V., = (9/9a},...,9/dx'y). Equation (7.40) describes the dynamics of the
arbitrary system (7.39) as an interplay of several hill-climbing processeéé separate
adaptive landscaped’;(«}, =) for species: = 1,...,N. In contrast, equation (7.42)
corresponds to a hill-climbing process on a single lands¢&p€, =). Note that these
landscapes are extended in the space of'alhereas their shape is parametrized by
the value ofz, the current state of the dynamical system.
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Envisaging Coevolutionary Dynamics on Variable Adaptive Landscapes

The canonical equation (2.3) of adaptive dynamics, which we have underpinned by a
formal derivation in Section 6.2, is also inspired by the idea of envisaging adaptation
as a hill-climbing process. However, when the evolutionary rate coefficigfi$ are
allowed to depend on the adaptive stat@Abrams et al. 1993), the adaptive dynamics
can deviate from the path given by the direction of steepest ascent on the landscape
described byf, (s, s).

To cast our coevolutionary dynamics in terms of a process of hill-climbing on a variable
adaptive landscape we set in equation (7.8% s and, in accordance with equation
(6.12), F(s) = £ - pi(s;) - 02(s;) - () - 9/ fi(si, ). From equations (7.41) and (7.43)

we obtain the adaptive landscape for the coevolutionary dynamics of the monomorphic
deterministic model

N B
W(SI, 3) = % ‘ 2_; /Sz ['ui(si) . O'ZZ(SZ') -ni(s) - @'fi(si, 5)] / dsi»' . (7.44)

—al
8;=8,

Here, setting the arbitrary lower integration limit £ amounts to normalizing the
absolute height of the adaptive landscape to zero for the current combination of trait
values,W (s, s) = 0. To recover the dynamics we use the transcription of equation (7.42)

is = VS/W<5', 3)

o (7.45)

We see that if we wish to describe the adaptive dynamics by a process of gradient
ascent (following the direction of steepest slope on an adaptive landscape) we ought to
incorporate features of the mutation process into the definition of the landscape. This
is why (i) the canonical equation (2.3) of adaptive dynamics can give rise to dynamics
leading to minima of the adaptive landscape functifjis’, s) and why (ii) evolutionary
stability can be tuned without altering these landscape functions, see Section 7.2.

In Figures 7.7 and 7.8 we give two examples of employing equation (7.44) together
with (7.45) to generate variable adaptive landscapes for coevolutionary dynamics. Both
examples are based on the coevolutionary predator-prey community which is analyzed
in Chapter 9.

Visualizing the adaptive dynamics by means of a variable adaptive landscape might
help our imagination. First, we might take the transformation of the landscape’s
shape in the course of the coevolutionary process as picturing the alteration of the
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Figure 7.7 Coevolution towards an evolutionarily stable fixed point envisaged on a variable adaptive
landscape. The trajectory of the adaptive dynamics is given on the bottom plane; according to equation
(7.44) it can be understood as being determined by a hill-climbing process on the variable adaptive
landscape. The sphere upon the landscape shows the current state of the adaptive trait values. The
coordinates for the trajectory and the current state of the adaptive dynamits; as¢), those for the

variable adaptive landscage, s,). Times shown are (&) = 0, (b) ¢ = 5 10%, (c) ¢ = 3-10°, (d)

t =5-10°, (e)t = 8-10°, and (f)t = 8-10°. Parameters of the coevolutionary predator-prey community

are the same as in Figure 4.4.
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Figure 7.8 Coevolution towards an evolutionarily stable limit cycle envisaged on a variable adaptive
landscape. The trajectory of the adaptive dynamics is given on the bottom plane; according to equation
(7.44) it can be understood as being determined by a hill-climbing process on the variable adaptive
landscape. The sphere upon the landscape shows the current state of the adaptive trait values. The

coordinates for the trajectory and the current state of the adaptive dynami¢s, ase), those for the

variable adaptive landscage], s5). Times shown are (&) = 0, (b) ¢ = 1.2-10°, (c) ¢t = 2.7 -
1y °2

108,

(d)yt =3.4-10° (e)t = 4.9 -10°% and (f)t = 5.5-10°. The phenomenon of evolutionary cycling

is discussed in detail in Chapter 9. Parameters of the coevolutionary predator-prey community are as

given in Figure 9.3 withh, = 0.11.
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species’ environment caused by and also causing their adaptive change. Second, one
could be tempted to interpret the constant height of the current adaptive state of the
coevolutionary community on the landscape as illustrating a point made by Fisher (1958)
that the changes brought about by natural selection must be offset against the resulting
deterioration of the environment (Frank and Slatkin 1992). But still, as demonstrated
above there is no explanatory potential in describing evolution as hill-climbing in a
coevolutionary context. The adaptive dynamics, equation (6.12), precedes the adaptive
landscape, equation (7.44), and not vice versa.



Chapter 8
Extension of the
Polymorphic and Monomorphic Models

In this chapter we discuss generalizations of the dynamical theory of coevolution as
developed in Chapters 4 to 6. We point out how to extend the theoretical framework
presented there, in order to cover more complicated ecological and evolutionary sce-
narios.

8.1 Multi-trait Coevolution and Functional Constraints

So far we have restricted attention to the case that each spgmessesses only a single
adaptive traits;. To understand the significance of coevolutionary phenomena on the
adaptive dynamics this was sufficient.

Multiple Traits

However, in real ecosystems adaptive change not only simultaneously happens with
respect to multiple species but also with respect to multiple traits within species. For

instance, life-history traits like rates of reproduction and growth at given ages typically

undergo concurrent evolution (Stearns 1992). We allow multiple traits within species

by turning s; into a vector

si = (si1) (8.1)



120 Part B The Dynamical Theory of Coevolution

with a species index=1,..., N and a trait index = 1,...,y;.

Moreover, allowing for multiple adaptive traits per species can be a prerequisite for
the reliability of the Markov assumption, introduced in Section 5.2; knowledge of all
the trait values at present ought to be sufficient to determine the potential of further
adaptive change in the immediate future.

Constraints

A third reason for considering multiple traits in phenotypic coevolution is that the path
of evolution can be constrained. In addition to natural bounds on certain trait values
— e.g. fecundities or weights necessarily must be non-negative — which already ought
to be accounted for when considering only one trait per species, the set of accessible
traits is further restricted by constraints on the combinations of different traits. These
constraints may depend on simple matters of physics — e.g. surface to volume ratios
cannot decrease beyond a certain threshold. Alternatively, the constraints may be an
outcome of developmental pathways of the organism — e.g. an organism that matures at
a small size has only a small amount of resources to give to reproduction. Constraints
may also follow from the mapping from genotype to phenotype — e.g. if the same gene
influences two traits, the trait values that result are not independent; this effect is called
pleiotropy (Falconer 1989). For a more detailed discussion of constraints see Maynard
Smith et al. (1985), Loeschcke (1987) or Stearns (1992). We allow for such constraints
as follows.

1. Constraints restrict the set of trait values accessible within each species to a subspace
of S; which we denote byS; ». The Cartesian product of all these sets is called
S, = x¥ 8. The adaptive dynamics of th&-species community are then
confined to the subspacg&: of S with

o~ o~

Se=5.n8, (8.2)

n

where S, denotes the region of coexistence as defined in equation (5.8).

2. Due to pleiotropy the effects of mutations on different traits can be correlated. For
this reason we write the probability distribution for a change from a given trait
values; due to mutation as a single multivariate distributi( s;, As;) rather than
as a product of;; separate distributions?;;(s;, As;).
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Below we generalize the results obtained in the previous sections to match the extended
framework of multiple-trait coevolution.

Extension of the Polymorphic Stochastic Model

No notational changes are required to extend the results of Chapter 4 to multiple-trait
coevolution. Note only that the phenotypic distributionsas well as the mutation

and offspring distributionsV; and B; now are multivariate, that the delta functions

in equation (4.1) and (4.9) take vectors as parameters such that the usual definitions
bs; = [1/2; 85, @ndé(sh — s;) = [1;21 6(sl; — i) apply, and that the integrations,

andds; in equation (4.15) now stand fals; = [[;~, ds}, andds; =[]}, dsi.

Extension of the Monomorphic Stochastic Model

Similarly, the results for the stochastic representation in Chapter 5, in particular equa-
tions (5.13), (5.14) and (5.18), carry over without alteration. The delta functions in equa-
tion (5.14) now take vectors as arguments, such that agsiin- s;) = [[;~, & (s}, — si)

applies, the mutation distribution in equation (5.18) is multivariate and the integration

ds' in equation (5.13) now is given bys' = T[]\, ds, = [T/, [T, dsh.

Extension of the Monomorphic Deterministic Model

The results of Chapter 6 for the deterministic approximation to the monomorphic co-
evolutionary dynamics generalize as below. No modifications are required in equations
(6.7) and (6.8). However, the integral in equation (6.7) now is multi-dimensional with
ds; = [[j., dsq, and consequently the rand®(s) of integration in (6.8) now becomes

a subspace of dimension instead of a mere interval.

In generalizing equation (6.12) we obtain

d 1 . -

—si = = - pilsi) - 0 (si) - 1ils) - Vi fi(si, ) (8.3)
as the first order result for the deterministic approximation of the multiple-trait co-
evolutionary dynamics ifc. HereV!f;(s;,s) with V! = (d/,,....d., ) denotes the

selection gradienfor species;, a vector being composed of simple selection deriva-
tives 9/, f;(si, s) with 9, = 9/ds!, for the traits/ = 1,...,v; of species. In the case
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of multiple-trait coevolutions? is the variance-covariance matrixf the multivariate
mutation distribution}/;. The elements of this square mateix = (o7,,) are given by

o2 (s;) = | Asyg- Asip - Mi(s;, As;) dAs; (8.4)
1,1l
with [,/ = 1,...,1.

Notice that finite off-diagonal elements ¥ (non-vanishing covariances) cause the
adaptive dynamics to take an altered path, i.e. the direction of adaptive change is not
parallel to the selection gradient. Notice also that up to first order the inner evolutionary
isoclines of the adaptive system (8.3) for speciese now given by those manifolds

in 5S¢ where the selection gradieRt! f,(s;, s) either vanishes or lies in the null space

of the variance-covariance matri(s;). The location and type of boundary isoclines

on 95 is less easy to settle and phase portraits of the system (8.3) will prove useful
in this circumstance.

8.2 Nonequilibrium Population Dynamics and
Varying Environments

In this section we analyze the issues of coevolution under nonequilibrium population
dynamics and under varying external influences on the environment.

In relaxing the assumption of a fixed point attractot) in population size space made

in Section 5.1, we now allow for arbitrary attractofgs) that give rise toperiodic,
guasi-periodic or chaotic population dynamicsSimilarly, external influences can
impose an extra time dependence on the coevolutionary community thus rendering the
system nonautonomous. Although both effects give rise to changes in the environment
experienced by an individual within the coevolutionary community, the tesnying
environmentusually is used as an abbreviation for the latter, since only in this case
the coevolutionary community, considered as a single system, is exposed to variation
from beyond its boundary.

After discussing relations between different timescales in the coevolutionary commu-
nity, we provide generalizations of the two monomorphic models of coevolutionary
processes to nonequilibrium population dynamics and varying environments. In the
literature different invasion criteria have been suggested in this context. We outline the
mathematical concepts and finally investigate in how far these criteria can be approved
in the light of the formalism developed in this work.
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Timescales in the Coevolutionary Community

Already in the case of a fixed point attractor in population size space we had to
distinguish between the timescalg of adaptive change and the timescajeon which

a mutant either goes extinct or reaches fixation while the population dynamics of the
combined system attain its attractor. Bethandr; are larger than the typical time
between birth or death events of individuals in the coevolutionary community.

When population dynamics settles to a nonequilibrium attragtor) in population
size space, an additional timescajgfor the motion on this attractor is introduced.
Moreover, variation of the environment due to external influences on a timescale
imposes an extra time dependence on the coevolutionary community.

No premises as to the relations between the five timescales above enter the derivation of
the polymorphic stochastic model. For the monomorphic models, resident populations
are considered sufficiently large in order not to be subject to accidental extinction,
consequentlyr,, 7y, 7, > 7; obtains. Moreover, the assumption of small mutation
ratios impliesr, > 74. The assumptions of equilibrium population dynamics and the
absence of an external time dependence in the coevolutionary community are formally
expressed by,, 7. — oo. In summary, the considerations in Chapters 5, 6 and 7 have
been underlined by the relations

Ta > Tp > 7 N Ty, T, — 00. (8.5)

In this section we investigate the consequences of relaxing the last two assumptions

7, — oo andr, — oo.

Consideration of the Polymorphic Stochastic Model

External variation of the environment of the coevolutionary community is explicitly
allowed in the polymorphic stochastic model, see equations (4.7) and (4.15). However,
the particular algorithm presented for the polymorphic stochastic model in Chapter 4 is
based on the minimal process method, and thus is exact fer co. As explained in
Section 4.4 this algorithm can be used as an approximation even for environments which
are subject to external variation provided that> 7;. Forr. % 7; other algorithms
should be devised, whereas the polymorphic stochastic model itself stays valid.

No assumptions as to the attractors of the population dynamics of the different species
in the coevolutionary community have been made when deriving the polymorphic
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stochastic model. In fact, population dynamics and adaptive dynamics are not formally
treated separately in this model. In consequence, the polymorphic stochastic model is
fully capable of describing coevolutionary communities with nonequilibrium population
dynamics.

Extension of the Monomorphic Stochastic Model

In the caser; > 7, A 7. — oo invasion and fixation of a successful mutant happen
slowly compared to the dynamics on the attract®s). This will typically be the case
for mutants whose adaptive trait valu¢sare sufficiently close to the resident trait value
s;. To determine the fate of a rare mutant we then can take its per capita ratgs)on
to be effectively given by, (sl, s), d;(s., s), defined in analogy to

T o~
ﬁ(si,s) = lim l/0 ff(si»,s,n(t)) dt (8.6)

T—o0

where the bar here denotes the time average along a trajeetoryon A(s). The
dynamics ofn(t) is described by equation (5.5). Due to ergodicity the choice(6f

is not affecting these averages and the time average can effectively be replaced by a
phase average on the attractéfs)

fi<5i75> = /A(S) fi (51'757”) dv(n), (8.7)

see the remark on the natural measuwén) of A(s) further below. In generalizing
equations (5.18) we obtain for the probabilities per unit time in the stochastic repre-
sentation

wi( sy, 8) =pi - bi(si,s) Wil s) - My(si, 5§ — s;)-
Ei_1<527 5) ' (71 <S;7 5>)+ .

Similar conclusions can be drawn for the cage> 7. A 7, — oo where the invasion of

(8.8)

a successful mutant happens slowly compared to the dynamics of the external influences
on the environment. Equation (8.8) carries over gngk., s) now indicates a time
average over the change of the external influences on the environment. When the
varying external influences possess a stationary frequency distribution, the time average
again can be obtained instead as an average over these external influences weighted by
their probability to occur.
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Evidently, for coevolutionary communities with both nonequilibrium population dy-
namics and varying environment the above arguments can be combined provided that
Tf > 7, 7. In this casef;(s}, s) is given by a twofold average.

Another extreme is described by the condition > 74 A 7, — oo. Here, the
environment of a mutant is practically constant during its successful or unsuccessful
invasion. Instead of equation (8.9) we therefore have
wi<827 37t> =M - bi(3i7 Svt) ) ﬁl(svt) ) Mi<5i7 S; - 5i>'
——1 —
bi <52757t> ' (fi<52757t>)+ .

Notice that in this case the capability of mutants to invade a community of resident

(8.9)

species not only depends on the resident trait valubsit also on the states of the
external influences on the environment at the particular time of invasion.

The cases with, > 74 are more involved and will not be covered here.

When the environment of a mutant changes due to nonequilibrium population dynamics
or due to external influences on a timescale that is comparabte, tthe fate of the
mutant cannot be decided upon its initial per capita growth rate. The assumption of
invasion implying fixation, see Section 5.1, which in turn rests on the principle of mutual
exclusion, is likely not to hold in this case. In such cases retreat to the polymorphic
stochastic model is recommended.

However, for small mutational steps, the timescaldor fixation of successful mutants
will not be too small, such that the feasible cases, see equation (8.8), can be taken as
the relevant ones.

Extension of the Monomorphic Deterministic Model

The discussion provided above for the monomorphic stochastic model directly applies
to the monomorphic deterministic model. In generalizing equation (6.12) and by using
equation (8.8) in the casg >> 7,, 7. we obtain for the deterministic approximation of
the adaptive dynamics in first order

d _
i =t mails) i) - 0] filsiy s (8.10)

For the case. > 7 A 7, — oo we employ equation (8.9) to get

%Si = M- mZi(S) ) ﬁi(svt) ) ailfi(siv Svt) . (811)
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In equations (8.10) and (8.11) we have used the second mutation memgnather
than } - o7 in order to allow for asymmetric mutation distributions.

7

The construction of the higher order deterministic approximations for the adaptive
dynamics follows the same scheme as in Section 6.3 and is not repeated here.

Invasion Criteria from the Literature

As a special application of the monomorphic stochastic model, we can use our math-
ematical framework to deduce a criterion for resolving whether or not a given mutant
can successfully invade a coevolutionary community comprising given resident pop-
ulations. We already have obtained such a criterion in Section 5.3, equation (5.19),
assuming equilibrium population dynamics. It is of particular interest to investigate

how this result generalizes to encompass nonequilibrium population dynamics. Be-
fore we establish our own criterion, we briefly review some mathematical concepts
suggested for this purpose in the literature.

To decide upon the initial increase of a rare mutgnin an environment given by the
residentss the following constructs have been suggested

T o~ .
By (32,5) = Tlim L / ff(si»,s,n(t)) dt | (8.12)
—00 0
.1 An(T
Ey(s),s) = Th—{go 7 In % ) (8.13)
I (5;, 3) = / ﬁ’(si, 5,n> dv(n). (8.14)
A(s)

In the literature, the invasion criterion for the initial increase of the rare mutant is taken
to be £}, > 0 with £ = 2 or 3 (Metz et al. 1992, Rand et al. 1993). For the notions of
resident and combined systems, used below, see Section 7.3.

The first quantityr; equalsf,(s’, s), thetime average of the per capita growth rané
the rare mutant along a trajectory?) that starts on the attractof(s) of the resident
system, see equation (8.6). We have introduEe@s it serves as a convenient common
denominator for the other two quantitiés and F5, see below.

The second quantityy, (Metz et al. 1992) is th&yapunov exponenif the combined
system along the direction of the mutant’s population size for a point on the attractor
A of the resident system. Lyapunov exponents in general are given by the average
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logarithmic growth rate of the distance between two specific trajectories. Here, the first
trajectoryn(t) starts fromn(0) on the attractor itself, the second trajectony (¢) has

initial conditionsr'(0) = n(0) + An(0) whereAn(0) denotes an initial displacement in

the direction of the mutant’s population size. The distance between these two trajectories
is given by|An(¢)| with An(t) = n'(t)—n(¢), where the particular choice of the distance
function |. ..| does not affect the result (Oseledec 1968). Note that the mathematical
definition of a Lyapunov exponent requires the time developmen't of to be evaluated
according to the linearization of the dynamics of the combined system along the
attractor A (Eckmann and Ruelle 1985). As a convenient alternative for numerical
estimations of Lyapunov exponents one might utilize the combined system directly but
then choose a smal\n(0) and extend the average only over a finite time interval
(0,7); in order to nonetheless cover the attractbrsufficiently, several repetitions

of this procedure usually are necessary where each single repetition is followed by a
re-scalinga - An(7) — An(0) with o < 1 (Baker and Gollub 1990).

The third quantity~; (Rand et al. 1993) is calleihvasion exponerdnd in our case is
simply the phase average of the per capita growth rate of the mutant on the attragtor

the resident system weighted by the natural meagufe) of this attractor. Taking the
natural measure rather than an arbitrary invariant measure is important when the attractor
A is chaotic (Ott 1993). For practical applications this caveat however is spurious due
to the noise inevitably associated with any numerical estimation (Schuster 1989).

Equivalence of Invasion Criteria

The equivalence of the three criteria can readily be established.

First, the time averagé&; coincides with the phase averafje (Ott 1993) — there can
be exceptional initial conditions(0) that do not satisfy this identity, but since the set
of these has Lebesque measure zero they are irrelevant for realistic systems.

Second, the time averag8, equals the Lyapunov exponeht. To show this, we
linearize the dynamics of the combined system about the trajeetagyand obtain
%An(t) = J(n(1))- An(t) where.J(n) denotes the Jacobian matrix of the dynamics of
the combined system evaluatedrat From the population dynamics of the combined
system we getAn;(0) = 0 = An,(t) = 0 (the left hand side holds since the initial
displacement between(0) andr'(0) is only affecting the mutant’s population siz¢)

as well asn;(0) = 0 = nl(t) = 0 (the left hand side holds for the trajectony?)
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since it starts on the attractor of the resident system where the mutant is absent). From
the first implication we obtaimAn(t)| = |An!(¢)| and applying the second implication
equations we conclud\n(7)|/|An(0)| = exp fOT };"(s;,s,n(t)) dt. Comparing this

result to equations (8.12) and (8.13) completes the proaf,0& Fs.

to the linearized dynamics yieldgAn! (1) = Fi(shy s 1) |n=n(ty - Ang(t). From these

Recovery of Invasion Criteria

We now investigate whether or not we recover the conditign> 0 for the initial
increase of a rare mutant in the light of our stochastic approach.

A rare mutants; can successfully invade a community given by the resident traits
s provided that there is a positive transition probability per unit time for the trait
substitutions; — s, i.e.w;(s.,s) > 0. We easily draw the conclusion that, if we
consider only the casg > 7, A 7. — oo, our stochastic approach yields the criterion
FE1 > 0 which is equivalent to those proposed previously. To see this, consider equation
(8.8) together with the definitions ¢f..), and that off,(s}, s) in equation (8.6).

In addition to recovering this result suggested in the literature, we analogously can
establish corresponding criteria for the other cases analyzed in this section. Furthermore,
our analysis has not only furnished us with these criteria for the initial increase of a rare
mutant but provides a full dynamical description of the stochastic adaptive process.



Part C
Application of the
Dynamical Theory of Coevolution

The population dynamics of predator-prey systems are a classical model of theoretical
ecology. The question as to the consequences of superimposing an adaptive process
onto the population dynamics of predator and prey has fostered a variety of theoretical
models of phenotypic coevolution in such communities.

In this part we utilize the three models of coevolution derived in the last chapters to
investigate the variety of possible evolutionary dynamics in a prototypical predator-prey
community. In particular we focus on the potential for evolutionary cycling — a type of
evolutionary change belonging to the class of Red Queen dynamics — and demonstrate
that this mode of coevolution is a feasible outcome in predator-prey communities. This
finding corroborates speculations put forward in the literature and once again underlines
the necessity for a dynamical theory of coevolution.






Chapter 9
Predator-Prey Coevolution

9.1 Background

Predator-prey interactions are ubiquitous in nature (Crawley 1992). The ecological
interactions between predator and prey species can sometimes be strong enough for the
predator to have a major effect on the environment in which the prey is evolving and
vice versa. Such interactions have therefore motivated a variety of theoretical models
of phenotypic coevolution in predator-prey communities (e.g. Rosenzweig 1973; Parker
1985; Abrams 1986; Brown and Vincent 1992).

Arms Races

A number of biological issues are raised by the coevolution of predators and prey. Most
important is an instability inherent in their coevolution, since natural selection by the
prey on the predator favors predator phenotypes best able to consume the prey, whereas
selection by the predator on the prey favors prey phenotypes least likely to be killed.

This may lead to an escalation in traits affecting attack and defence, referred to as an
evolutionaryrat race by Rosenzweig (1973) and amms raceby Dawkins and Krebs
(1979). Abrams (1986) argued that an arms race does not exhaust the possibilities;
for example, continuing evolution in one species may occur even if the other remains
constant.
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Figure 9.1 "Well, in our country,” said Alice, still panting a little, “you’d generally get to somewhere

else — if you ran very fast for a long time as we've been doing.” “A slow sort of country!” said the Queen.
“Now, herg you see, it takes all the runningu can do, to keep in the same place.” (after Carroll 1871)
Since Van Valen (1973) the Red Queen serves as a metaphor for the deterioration of a species’ environment
owing to continual coevolution with other species. This process can give rise to Red Queen dynamics,
i.e. continuous evolutionary change in a community in the absence of external forcing.

Although evidence is hard to find, Bakker (1983) documented changes in mammalian
herbivores and carnivores during the Paleocene to Mid Eocene that could be of the kind
suggested by Dawkins and Krebs (1979). Those taxa characteristic of open habitats,
where pursuit and flight are critical features of predation, show similar speed-enhancing
changes in limb morphology; during this time the prey appear to have evolved faster
than predators, for more details see Section 1.2. Dawkins and Krebs (1979) argued that
an asymmetry in the selection pressures would be expected, on the grounds that the
prey is running for its life whereas the predator “is only running for his dinner”.

The Red Queen

Of some interest has thus been the general question as to whether the phenotypes of the
predator and prey evolve to an equilibrium asymptotic state such as an evolutionarily
stable strategy (Maynard Smith and Price 1973; Maynard Smith 1982).

Following Van Valen’s (1973) Red Queen’s hypothesis, the alternative — the interaction
between species prevents attainment of an equilibrium point such that there is continuous
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evolutionary change in their phenotypes — has become knovRedsQueen dynamics
(Stenseth and Maynard Smith 1984; Rosenzweig et al. 1987; Marrow et al. 1992).
Such dynamics are interpreted to indicate the continuous deterioration of a species’
environment owing to the continual evolution of other species (Futuyma 1986; Ebeling
and Feistel 1982). The name was inspired by the book “Through the Looking-Glass,
and What Alice Found There” by Lewis Carroll (1871) where the Red Queen explains:
"Now, here, you see, it takes all the running you can do, to keep in the same place.”
We refer to a Red Queen dynamic as any phenotypic dynamic that, in the absence of
external forcing, does not tend to an equilibrium state.

In the literature, it has been argued that a Red Queen dynamic would require the set of
feasible phenotypes to be unbounded, so that the phenotypes could evolve to ever more
extreme states. Rosenzweig et al. (1987) concluded that “the Red Queen depends on the
existence of special phenotypic features, i.e. those which are independent, boundless,
and about which it may be said, the larger (or smaller, or denser, or furrier, or ...),
the better.” This requirement is unlikely to be met in reality, and calls into question
whether Red Queen dynamics could occur at all.

Outline of Analysis

To investigate whether Red Queen dynamics are possible, prototypical coevolutionary
predator-prey communities have been devised (Marrow et al. 1992; Marrow and Can-
nings 1993). Analysis of these communities has been interpreted to suggested that, over
the course of evolution, the phenotypes could either tend to equilibrium or to nonequi-
librium asymptotic states. However, the models considered in these analyses were not
dynamical and the time-dependence owing to the processes of mutation and selection
was not incorporated. We have seen in Section 7.2 that under these circumstances pre-
diction of evolutionary outcomes generally is impossible; to determine the asymptotic
states of coevolving systems it is necessary to employ a dynamical framework. Conse-
guently, we here analyze the coevolutionary predator-prey community in terms of our
three dynamical models of coevolution.

Section 9.2 introduces the ecological interactions which define the predator-prey com-
munity. In Section 9.3 we illustrate different coevolutionary outcomes in this community
and demonstrate that these can be grouped into three classes: (i) the predator goes ex-
tinct, (ii) coevolution leads to constant phenotypes in predator and prey, and (iii) the
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phenotypes in both species undergo coupled and sustained oscillations on a limit cycle
corresponding to Red Queen dynamics. Section 9.4 analyzes in detail the requirements
for this evolutionary cycling. The dependence of cycling on the interaction and muta-
tion structure of the predator and prey is revealed, and we show that the phenomenon
is robust under changes in the modelling approach. We conclude that the conceptual
framework of evolutionary theory, with its current focus on fixed points (like evolution-
arily stable strategies) as the endpoints of evolution, needs to be expanded to encompass
more complex evolutionary attractors such as the limit cycles presented here.

9.2 Specification of the Coevolutionary Community

According to the framework established in Section 4.1 we base our dynamical models of
predator-prey coevolution on the ecological processes in the predator-prey community.
In doing so we ensure that the process of natural selection directing evolution is driven
explicitly by the ecology of predator-prey interactions, rather than by an external ad

hoc notion of relative “fitness” of different phenotypes.

Birth and Death Events

For simplicity, we focus on a single adaptive trait in each species; in view of the
importance of body size in determining interactions between predator and prey (Cohen
et al. 1993), one might think of these traits as body sizesnds, of prey and predator
respectively.

Figure 9.2 provides a characterization of the coevolutionary predator-prey community
by specifying the fundamental birth and death processes. In particular, Figure 9.2a
describes the birth and death events that are dependent on phenotype, these being the
events that arise from encounters with other individuals, as opposed to the constant
birth and death events given in Figure 9.2b.
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a Birth and death processes affected by phenotype

Target Encountered | Birth/death event Probability of event per

individual individual encounter per unit time

prey sq prey s death of preys; alsy)

prey s predators, death of prey, B(s1,82)

predators; prey si birth predators; v(s1, $2)

b Birth and death processes independent of phenotype

Target individual Birth/death event Probability of event per
capita per unit time

prey s; birth of preys; r1

predators; death of predatos; o

c Mutation processes

Birth event Mutation event Probability distribution
of event

birth of preys; prey sy — s} (1—p1)-8(s) —s1) +
p1 - Mi(s) — s1

birth of predators; predatorsy — s, (1 — p2)-6(sy, —s2) +
p2 - Ma(sy — s2)

Figure 9.2 Specification of birth, death and mutation processes for a prey individual with phenatype
and predator with phenotyps in the coevolutionary predator-prey community.

Mutation

Evolutionary processes in the community require a mechanism for generating phenotypic
variation on which natural selection caused by the interaction between predator and prey
can operate. We assume that variation is created by a simple mutation process; in order
to keep the analysis tractable we envisage that the genetic systems of the species are
clonal.

Figure 9.2c shows that each birth event gives rise with probabilitieand i, to a
mutant offspring in the phenotypic traitg and s, of prey and predator respectively.

The new phenotypes are chosen according to the mutation distributiprasd A, of

prey and predator respectively. These distributions are assumed to be Gaussian with
mean( and variances; and o3 respectively.
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Figure 9.3 Specification of the interactions in the coevolutionary predator-prey community
as introduced in Figure 9.2. The functions used to describe the effect of phenotypes
on the birth and death probabilities arising from encounters between individuals are: (@)
prey self-limitation «(s;) = u - {c1 —c¢o-81 +es- s%}, (b) effect of predator on prey
B(s1,82) = u -exp {—6% +2-cq-61 69— (5%}, where§; = (s1 —¢3)/es and éa = (s2 — ¢7)/cs.

u = 1073 is a constant that scales population sizes. Parameters take the values}.0, ¢, = 10.0,

ez = 10.0, ¢4 = 0.6, ¢5 = 0.5, ¢cg = 0.22, ¢z = 0.5, ¢cg = 0.25. The functiony(sy, s2) is not shown

since it is related tg3(s, s2) by the constant of proportionality. The constant birth and death terms
are: 1 = 0.5, r, = 0.05. Mutation parameters used arg; = 1073, s = 1073; 04 = 2- 1073,

oy = 2-1073. The given parameter values are used throughout except where otherwise stated.

Selection

Natural selection arises from the dependence of the birth and death probabilities per unit
time «, 4, and~ on the phenotypes of the interacting individuals. Various functions
could be used for this purpose; we use functions as described in Figure 9.3.

The function «, which characterizes the ecological processes responsible for self-
limitation in the prey’s population size, is taken to be parabolic such that intermediate
phenotypes are favored in the absence of the predator (Figure 9.3a). The function

describing the effect of a predator on the probability of death of the prey is taken to
be bivariate Gaussian (Figure 9.3b), on the grounds that the predator is likely to show
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some degree of specialization in the size of prey it chooses relative to its own size
(Cohen et al. 1993). On the basis that what is bad for the prey is good for the predator,
the function~ is related tog by a constant of proportionalityy = /- 3. We call 2

the harvesting efficiency

Simple though this example is, it illustrates some features of a coevolving predator-
prey system. In particular, it shows the tension typical of predator-prey coevolution:

the predator gains its greatest benefit from the prey at the combination of adaptive trait
valuess; = 0.5, s = 0.5 where in contrast the prey suffers its greatest loss.

Resume

The ecological community presented here extends the model of Marrow et al. (1992) by
() providing a full dynamical description of the birth, death and mutation processes. It

further generalizes the former account in the sense that (ii) it allows stochastic population
dynamics arising from individual-based encounters, and (iii) it permits the populations

to have polymorphic phenotypic distributions since multiple adaptive trait values may

be present simultaneously in each species.

As a special case of our description, we recover the well-known Lotka-Volterra equations

Enl =ny - (+r1 — a(s1) - n1 — B(s1,82) - na2), 9.1

—ng =ng - (—r2 + (81, 52) - n1)

for the population sizes; andn, of prey and predator, respectively, by assuming
no mutations, random encounters, deterministic population dynamics (the population
sizes of the species are large), and monomorphic phenotypic distributions (only one
phenotype is present within each species).

9.3 Investigation of Evolutionary Outcomes

Here we describe the variety of possible evolutionary outcomes in a predator-prey
community, using the monomorphic deterministic model as a starting point of our
investigation. Deterministic dynamics of this kind have been used elsewhere in the
literature (e.g. Hofbauer and Sigmund 1990; Vincent 1991; Abrams et al. 1993), but
have not previously been underpinned by a formal derivation.
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The Region of Coexistence

In the case of the monomorphic dynamics we can immediately infer from equations
(9.1) that there is a regiofi. in the monomorphic trait space where both species can
coexist with positive population densities.

The boundary of this region is depicted by the oval discontinuous curves in Figures
9.4, 9.5 and 9.6. Only within this region can the predator population harvest the
prey sufficiently to survive; given a pair of phenotypes, s2) outside this region,

the predator population is driven to extinction by the population dynamics (9.1).
Accordingly, coevolution of the predator and prey can only be observed within this
region of coexistence. It is possible for a sequence of trait substitutions in the prey to
lead to extinction of the predator, as illustrated e.g. in Figure 9.5.

On the other hand, there is in this example no evolutionary path in which the predator

can gain such an advantage over the prey that it destroys the prey and brings about
its own extinction, as there is no region of trait space in which neither species has a

positive equilibrium population density.

Classification of Evolutionary Outcomes in Predator-Prey Coevolution

By tuning the shape of the interaction functions depicted in Figure 9.3, the variety of
possible coevolutionary outcomes in this predator-prey community can be explored. A
survey is given in Marrow et al. (1992).

This diversity of different coevolutionary outcomes can be grouped into a small number
of classes. For a coevolving predator-prey community starting with phenotypes in the
region of coexistence, there are eventually only three classes of possible outcomes. We
illustrate these classes in Figures 9.4 to 9.6 by means of typical instances.

1. Evolution to a fixed point.In Figure 9.4a, the adaptive trait values tend to an
equilibrium point; once this is reached, no further evolution occurs. There are in
fact three fixed points at the intersection of the isoclines in this example, as can be
seen from the accompanying phase portrait (Figure 9.4b); two of these are attractors
and they are separated by the unstable manifold of the third which is a saddle point.
Notice that the coevolutionary process here is multistable with two attractors having
disjunct domains of attraction; thus there may be no more reason for a particular
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Figure 9.4 Patterns of evolution of prey{) and predators) phenotypes obtained from the monomor-
phic deterministic model. (a) Solution that tends to an equilibrium point over the course of time obtained
using the parameter values from Figure 9.3 with= 1.0. (b) Phase portrait of the trait space from
which (a) is drawn with orbits shown as continuous lines. The starting point of the orbit shown in (a) is
indicated by an asterisk. The boundary of the regigrof coexistence of the predator and prey is given

as the discontinuous oval line. Isoclines are shown as dotted lines (straight line: predator; curved line:
prey); fixed points occur at the intersection of the isoclines.

observed asymptotic state than the more or less arbitrary initial conditions of the
adaptive process.

2. Evolution to extinction. In Figure 9.5a the coevolutionary process drives the
phenotypic values towards the boundary of the region of coexistence (see Figure
9.5b). There the predator population goes extinct and the predator phenotype is
no longer defined. The trait space of the community collapses frans:) to
the one-dimensional spase, where the prey phenotype continues to evolve to its
own equilibrium point. Note here that the extinction of the predator is driven by
the adaptive dynamics ifisi, s2) and not merely by the population dynamics in
(n1,n2).

3. Evolutionary cycling. In Figure 9.6a, the coevolutionary process in the predator-
prey community continues indefinitely; mutants replace residents in a cyclic manner
such that the phenotypes eventually return to their original values and do not reach
an equilibrium point. As can be seen from Figure 9.6b, the attractor is a limit
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Figure 9.5 Patterns of evolution of prey{) and predators) phenotypes obtained from the monomor-
phic deterministic model. (a) Solution for a community that evolves to predator extinction at time
t = 1.3-10°. After this time, the prey continues to evolve in the absence of the predator. Parameter
values as in Figure 9.3, except = 1.0, ¢5 = 1.0, ¢3 = 15.0, and withh = 1.0. (b) Phase portrait of

the trait space from which solution (a) is drawn. The starting point of the orbit shown in (a) is indicated
by an asterisk. Isoclines are shown as dotted lines (straight line: predator; vertical line: prey). The prey
isocline lies outside the regiasi. of coexistence and orbits touch the boundary of this region, given as
the discontinuous oval line, at which point the predator goes extinct.

cycle, confirming the conjecture made by Marrow et al. (1992) that Red Queen
coevolution can occur in this predator-prey community.

These three outcomes of coevolution correspond to the endpoints of evolutionary arms
races discussed qualitatively by Dawkins and Krebs (1979), namely: (i) equilibrium
endpoints, (ii) one side wins, and (iii) cyclic endings.

9.4 Analysis of Evolutionary Cycling

This section investigates the robustness of the phenomenon of evolutionary cycling.
We do this in two ways. First, a bifurcation analysis of the monomorphic deterministic

model is given; this allows one to establish the range of parameters in the model that
permit the incidence of evolutionary cycling. Second, we examine the monomorphic
stochastic model and finally the polymorphic stochastic model to see how robust
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Figure 9.6 Patterns of evolution of prey{) and predators) phenotypes obtained from the monomor-

phic deterministic model. (a) Solution exhibiting evolutionary cycling of predator and prey phenotypes.
Parameter values for this case are as in Figure 9.3 Avith0.14. The starting point of the orbit shown

in (a) is indicated by an asterisk. (b) Phase portrait corresponding to (a) illustrating the basin of attraction
for cyclic solutions shown as continuous lines. The boundary of the regjioof coexistence of the
predator and prey is given as the discontinuous oval line. Isoclines are shown as dotted lines (straight
line: predator; curved line: prey); an unstable fixed point is located at the intersection of the isoclines.

the phenomenon of evolutionary cycling is when the simplifying assumptions of the
monomorphic deterministic model are removed.

Bifurcation Analysis of the Monomorphic Deterministic Model

We focus attention on the effect of two quantities of particular interest from an ecological
viewpoint. These are firstly the predator’s efficiency in harvesting the prey as given
by the ratio

_7
=g (9.2)

and secondly the ratio of the evolutionary rate constants

2

p= 00 (9.3)
w2 - 05
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The existence, number and location of fixed points of the monomorphic deterministic
model that lie within the region of coexisten@g can be obtained in first order from
the simultaneous solutions of

9] fi(5:.8) =0 (9.4)

for i = 1,2. According to section 9.2 the per capita growth rafess’, s) of rare
mutantss; in a community of resident trait are given by

71 (53,3) = 4r; — a(sﬁ) -y (s) — ﬂ(s'l,52> -na(s),

- (9.5)
f2<5127 5) =-—-r2+ 7(517 512) ) ﬁl(s) ’

where the equilibrium population sizéss) in S, from equations (9.1) are obtained as
T2
7(517 52) 7
a(s) = 11 (51, 82) —ra-alsy)
B(s1,52) - v(s1, 52)

n1(s) =
9.6)

The stability of the fixed pointg can be checked by evaluating at these points the
Jacobian of the first order approximation of the monomorphic deterministic model.
This Jacobian/ has been computed in Section 7.2, see equations (7.13,14). From the
conditionsdet J > 0 andtr J < 0 we infer that the fixed point is stable if, and only if,

[0 F1(31,8) + 0[O f1 (51, 8)]-
(02T (32, 8) + D302 (52, )] (9.7)
0102 f1(31,8) - 9,01 F5(32,3) > 0

and

~—

1(8

(S)A

3>

[0 F1(51,3) + 0101 F1(51,8)] — (©-8)

(052 F2(52,3) + 0302 f5(52,8)] < 0.

From the first condition, inequality (9.7), we obtain those intervals of valuedere

the fixed points could be stable; within these intervals we then employ the second

condition, inequality (9.8), to determine those combinatioing:) for which the fixed
point actually is stable.

Since the adaptive dynamics in the predator-prey community are two-dimensional, the
only possible attractors are fixed points and limit cycles. From the Par®andixon
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Figure 9.7 Results of the bifurcation analysis, showing the effect of the harvesting efficieneynd

the ratio of the evolutionary rate constanten the dynamics of the monomorphic deterministic model.
Regions are: (1) predator absent, (2) one fixed point, which is an attractor, (3) three fixed points, two
of which are attractors, (4) limit-cycle attractor.

theorem, a sufficient condition for the existence of a stable limit cycle is the existence
of a region in trait space that (i) a trajectory of the adaptive dynamics cannot leave and
that (ii) contains no stable fixed point. Using the signs of the two selection derivatives
01 f1(s1,s) andd, f,(s2, s) between the isoclines, a region that cannot be left is easily
established; the stability of the fixed point(s) in this region is then checked as described
above.

Requirements for Evolutionary Cycling

The results of the bifurcation analysis are presented in Figure 9.7. Four distinct regions
within the parameter space can be seen:

Forh < 5% the two species cannot coexist, and therefore no coevolution can occur.

2. Forb% < h < 9.8% there exists only one fixed point for the monomorphic
deterministic model. This fixed point is an attractor; the system evolves to this
point and there is no further coevolution once it is reached.
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3. Forh > 14.8% there exist three fixed points of the dynamics. The two outer points
are stable, and which of these is reached depends on the phenotypes initially present.
4. For9.8% < h < 14.8% and sufficiently high values of (as indicated in Figure
9.7), the attractor turns into a limit cycle, giving rise to Red Queen dynamics. On
the other hand, for low values of the limit cycle breaks down and we recover the
dynamical behavior of cases 2 and 3 with the switch occurring-at12.6%.

In summary, we have revealed two types of local bifurcations in this system, both
being of codimension. The transition at = 12.6%, where the number of fixed points
changes from one to three is calledochfork bifurcation The transition across the
boundary of region 4, where a fixed point looses stability and gives rise to a stable limit
cycle, amounts to alopf bifurcation

In completion of the local bifurcation analysis outlined so far, the potential for the
incidence ofglobal bifurcationsought to be checked. From this it follows that the
boundary of region 4 is in fact slightly more complicated than the description above
suggests because two further kinds of dynamics can occur here: (i) a limit-cycle attractor
around each of the two outer fixed points, and (ii) a limit-cycle attractor around all
three fixed points with each of the outer fixed points also being an attractor. But the
parameter space permitting these dynamics is very small compared to the others and
they are therefore of less biological interest.

We conclude that evolutionary cycling requires an intermediate harvesting efficiency
plus prey evolution to occur sufficiently fast compared to predator evolution.

Evolutionary Cycling in the Monomorphic Stochastic Model

A realization of the monomorphic stochastic dynamics is given in Figures 9.8c and 9.8d.
The parameter values used are the same as those in Figures 9.8a and 9.8b where the
dynamics of the monomorphic deterministic model are depicted, and we see that the
cyclic behavior is still maintained. In addition, two major new effects should be noted.

First, it can be seen that the oscillations in phenotypic values do not all have the same
period. This phenomenon, which is well known in the theory of stochastic processes as
phase diffusionTomita et al. 1974) odephasing(Schnakenberg 1993), comes about
because stochastic perturbations along the limit cycle are not balanced by a counteracting
force, whereas those orthogonal to the limit cycle are.
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Figure 9.8 Evolutionary cycling as exhibited by the three models of coevolutionary dynamics. The
monomorphic deterministic model is used in (a) and (b), the monomorphic stochastic model in (c) and
(d), and the polymorphic stochastic model in (e) and (f). Graphs (a), (c) and (e) show the resident
values of the preys() and predators;) phenotypes as functions of tinie The corresponding orbits

are shown as continuous lines in the phase portraits given in graphs (b), (d) and (f). In the case of the
polymorphic stochastic model the displayed time series is made up of roughly 10 000 000 000 single
birth and death events. The boundary of the regipf coexistence of predator and prey is given as the
discontinuous oval line. Isoclines are shown as dotted lines (straight line: predator; curved line: prey).
Parameter values for these simulations are identical and are set as given in Figure %:3=with 4,
exceptu; = ps = 1072,
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Second, limit cycles whose extension in trait space is small relative to the typical
mutational step sizes (given by and o) will be obscured by the stochastic noise.
The boundaries of region 4, see Figure 9.7, will then be less sharp than those in the
monomorphic deterministic model. Thus, if the evolutionary cycling is to be visible,
the mutational steps must not be too large.

Evolutionary Cycling in the Polymorphic Stochastic Model

A realization of the polymorphic stochastic model is shown in Figures 9.8e and 9.8f,
using as before the parameter values of Figures 9.8a and 9.8b. The phenomenon
of evolutionary cycling still persists despite the phenotypic distributions now being
polymorphic.

In addition, this model allows investigating the effects of demographic stochasticity not
only of the mutant but also of the resident phenotypes. Although this superimposes
more random variation to the solution, cycling is maintained. Provided that phenotypic
variance is not too large and population sizes are not too small, we thus can conclude
that evolutionary cycling is robust to relaxation of the simplifying assumptions of the
monomorphic models.

9.5 Discussion

The main result of this analysis is that evolutionary limit cycles, in which the predator
and prey phenotypes continue to change indefinitely, are a natural outcome in a
coevolutionary community. The cyclic behavior is not an artefact of determinism
or monomorphism, because the phenomenon can be observed both in the stochastic
monomorphic simulations and in the stochastic polymorphic ones. Clearly there is no
general rule in nature to say that phenotypic evolution would lead to an equilibrium
point in the absence of external changes in the environment.

Interpretation of the Requirements for Evolutionary Cycling

The results from the bifurcation analysis are intuitive in that evolutionary cycling
requires: (i) the effect of selection by the predator on the prey to be great enough
to drive the prey from the phenotypic equilibrium it would attain in the absence of
the predator /{ not too low), (ii) sufficient pressure for the predator to track the prey’s
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phenotypic changei(not too high), and (iii) in the resulting evolutionary race the prey
must be fast enough not to be “caught up” by the predatarot too low).

In view of the respiratory costs that the predators have to meet from consumption of prey
simply to stay alive, one would expeftto be substantially less thanand evolutionary
cycling to occur in a range «of likely to be observed in reality.

Related Work

That cyclic phenotype dynamics can occur in coevolution is well known from theoretical
studies of genetic polymorphisms under frequency-dependent selection (e.g. Akin 1981;
Seger 1992), and research into the dynamics of strategy frequencies (Nowak and
Sigmund 1989).

The system considered here is different in two respects. First, the trait values are con-
tinuous, whereas cyclic dynamics have typically been observed in polymorphic systems
with large qualitative differences between a small number of coexisting phenotypes.
Second, and more important, the underlying process here would be a sequence of gene
substitutions in which mutants keep replacing the resident types rather than one in
which the genes always coexist and undergo oscillations in frequency. Thus we are
here looking at a process operating on an altogether larger evolutionary scale, such that
the populations can undergo drastic changes in their phenotypic state, and still return
to some earlier value.

Revival of the Red Queen

A simple classification of the outcomes of phenotypic evolution can be constructed from
two dichotomies. The first depends on whether an attractor exists, and the second on
whether the attractor is a fixed point.

This gives three classes of dynamics: (i) evolution to a fixed-point attractor with
stationary phenotypes, (ii) evolution to an attractor that is not a fixed point on which
the phenotypes continue to change indefinitely, and (iii) evolution without an attractor,
such that the phenotypes take more and more extreme values.

According to the definition in Section 9.1, Red Queen dynamics would encompass both
class (i) and class (iii). Class (iii) is unrealistic for most kinds of phenotypes and, if
the Red Queen were to depend on the existence of such dynamics in nature, one could
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reasonably conclude that Red Queen dynamics would be very unusual (Rosenzweig et
al. 1987). But this would be to miss class (ii), and dynamics of this kind we have shown
here to be feasible. In fact, the limit cycle is but one of a number of nonequilibrium
attractors; for instance in systems with more than two coevolving species, chaotic
attractors could be found.

Conclusion

It seems therefore that there is a large variety of coevolutionary communities with
the potential for nonequilibrium evolutionary attractors. This needs to be emphasized
because the assumption that asymptotic states of evolution are fixed points underlies
much contemporary evolutionary thought. This assumption and the techniques that
go with it (in particular evolutionarily stable strategies) are clearly not appropriate for
dealing with nonequilibrium asymptotic states.

The prevailing view among evolutionary biologists, centered on equilibrium points,
needs to be extended to a dynamical framework to assimilate the Red Queen.
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In this thesis we have presented first steps towards a dynamical theory of coevolution.
In contrast to evolutionary game theory, our approach is based on a dynamical frame-
work, thus incorporating the description of evolutionary transients and nonequilibrium
evolutionary attractors. Unlike standard replicator dynamics, it accounts for the con-
tinuous introduction of new adaptive trait values to the evolutionary community and
allows for arbitrary ecological interactions within the community, these interactions can
be specified at the level of individuals. Different to the canonical equation of adaptive
dynamics, our results provide a stochastic treatment of the adaptive process and higher
order correction terms to the canonical equation are derived.

Figure 1 summarizes the hierarchy of deductions given in this thesis. Taking the general
replicator concept as a starting point, these deductions connect the three dynamical
models of coevolution presented in Chapters 4, 5 and 6. The necessary assumptions
are displayed to indicate the domain of validity of these models. We have recovered
the canonical equation of adaptive dynamics as a special case from our framework — in
fact, from the results of Sections 5.3, 4.3 and 6.2 it is clear that the standard models
of evolutionary game theory, replicator dynamics and adaptive dynamics form a subset
of our hierarchy. In particular, when we read the diagram in Figure 1 from below,
we see that the limitations of the canonical equation of adaptive dynamics have been
relaxed to a substantial degree.
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Assumptions and Deductions

The replicator concept

l spatial homogeneity,
(one trait per species)

The polymorphic stochastic model

small mutation ratios,

principle of mutual exclusion holds,

resident populations large,

(equilibrium resident population dynamics),

vy (no external time dependence of environment)

The monomorphic stochastic model

l small mutation variances

The monomorphic deterministic model

only first order result,
symmetric mutation distributions

The canonical equation of adaptive dynamics

Figure 1 Assumptions and deductions in this thesis. The derivations connecting the three dynamical
models of coevolution given in Chapters 4, 5 and 6 are depicted by arrows. The assumptions that enter
these derivations are mentioned, those in parentheses are relaxed in Chapter 8. With every additional
assumption analytic tractability of the models is increased while at the same time interesting evolutionary
phenomena might be sacrificed.
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To conclude, we briefly summarize these extensions.

1.

To obtain the canonical equation of adaptive dynamics from a mutation-selection
process, symmetry properties of the mutation distributions are needed, see Section
6.2. Both our monomorphic deterministic model in Section 6.3 and the two
stochastic models remove this assumption.

We have recovered the canonical equation as an exact description of the coevo-
lutionary deterministic path, provided that the mutational steps are considered to
be infinitesimal. Although the canonical equation gives a good approximation for
small finite mutation variance, the approximation becomes inaccurate as the vari-
ance increases. In these circumstances consideration of higher order corrections, as
provided in Section 6.3, is recommended.

Due to such higher order corrections, there can arise new evolutionary phenomena
not described by the canonical equation, like shifting of evolutionary isoclines
and evolutionary slowing down. Conditions for such effects can be established
analytically, see Section 7.4.

Being a deterministic description of the adaptive dynamics, the canonical equation
can only describe the mean evolutionary path, as derived in Sections 5.5 and 6.1,
and thus does not cover the full richness of dynamical effects that can occur in sto-
chastic mutation-selection systems. In contrast, the monomorphic and polymorphic
stochastic models account for such features as splitting probabilities at evolution-
ary basin boundaries, multiple evolutionary pathways (see Section 6.5) and phase
diffusion (see Section 9.4).

The scope of the canonical equation is confined to coevolutionary systems with
equilibrium population dynamics and a constant external environment. We have
demonstrated in Section 8.2 that this limitation can be partially overcome such that
more general ecological scenarios may be tackled.

The canonical equation is restricted to describing the adaptive dynamics of the
community. Only when both adaptive dynamics and population dynamics are
derived from the joint coevolutionary dynamics of the community, phenomena like
evolutionary extinction, see Section 9.3, can be analyzed.

Coevolutionary stability cannot be determined by considering non-invadability. In
Section 7.2 we have established and illustrated this result; in order to gain a full
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picture of coevolutionary stability, it is necessary to supplement the notion of non-
invadability (from evolutionary game theory) by that of dynamical stability (from
adaptive dynamics) and vice versa.

8. The canonical equation of adaptive dynamics does not permit interdependencies
between several traits within one species. In Section 8.1 we have shown how the
stochastic approach naturally leads to the introduction of the variance-covariance
matrix for the mutation distributions. Off-diagonal terms of the latter can give rise
to altered pathways towards evolutionary attractors.

9. Even if one of the key assumptions for monomorphism, see Section 5.1, cannot be
taken for granted, still the polymorphic stochastic model can be utilized to obtain
a full description of the coevolutionary dynamics. Examples are the mutation
catastrophe discussed in Section 4.5 and the increased variation of the adaptive
process, see Section 9.4, when resident population sizes are not large.

Such relaxation of the restrictions of the canonical equation are variations on a single
theme: In modelling complex systems, like those exhibiting coevolutionary dynamics,
one can always trade descriptive capacity for mathematical simplicity. The canonical
equation might indeed be sufficient for specific goals, but this depends on what
assumptions can reasonably be made. We have shown in this thesis that new and distinct
evolutionary phenomena emerge by removing any of these assumptions. Conversely, if
the generalizations summarized above are not to be made, it is important to be aware
of the evolutionary phenomena that are then sacrificed.
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Developed Software

The software for the present work has been developed in ANSIT@ere are four
packages,

1. coevolve defc

2. coevolve aux.c ,

3. coevolve det.c , and
4. coevolve_sto.c

All four packages are integrated in the prograoevolve.c

The first package,coevolve_def.c , contains the constants and functions that
serve to specify a particular coevolutionary community. The second package,
evolve_aux.c , defines several functions commonly used in the other three pack-
ages. The third packagepevolve_det.c  , contains functions for the investigation

of the monomorphic coevolutionary dynamics and in particular the implementation of
the monomorphic deterministic model. The fourth packageyolve sto.c , com-
prises the implementation of the monomorphic and the polymorphic stochastic models.

The listings of the four packages and the integrating program are provided at the end of
this chapter, see Listings 1 to 4 and 5. No part of these packages may be used without
permission of the author. Below a command reference of the developed functions is

given.

For compilation the AT&T C++ Translator, version 2.1.03, datemark 08/31/90 has been used.
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Developed Software

Function birth_mono() Package coevolve_def.c

B Description

User-defined function. Implementation of the per capita birth bate!, s).

B Input

community_size
species
S

s_res

NumberN of species making up the coevolutionary community.
Species index.
Adaptive trait values? .

Vectors = (s1,...,sn) of the resident trait values.

Additional functions and parameters may be supplied by the user within the pactegelve_def.c to facilitate the set-up

of the functionbirth_mono()

B Output
Internal. Returng; (s!, s).

Function death_mono() Package coevolve_def.c

B Description

User-defined function. Implementation of the per capita deathdgte, s).

B Input
See functionbirth_mono()

H Output
Internal. Returnsi; (st, s).

Function birth_polysto() Package coevolve_def.c

B Description

User-defined function. Implementation of the per capita birth bate!, p).

B Input
community_size

species
S
firstgroupP

NumberN of species making up the coevolutionary community.
Species index.
Adaptive trait values; .

Vector of N pointers. Each is directed to a group of individualspinwhich all have the same

trait values’. These pointers determine one end of bidirectionally connected lists giving access to
all such groups irp;; elements of these lists are of tygeouptype as defined in the package
coevolve_aux.c

Additional functions and parameters may be supplied by the user within the pactegelve_def.c to facilitate the set-up
of the functionbirth_polysto()

H Output
Internal. Returng; (s, p).
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Function death_polysto() Package coevolve_def.c

B Description
User-defined function. Implementation of the per capita deathdgte!, p).

B Input
See functionbirth_polysto()

B Output
Internal. Returnsi; (s}, p).

Function n_hat() Package coevolve_def.c

B Description
User-defined function. Implementation of the equilibrium population siZes).

B Input

community_size NumberN of species making up the coevolutionary community.
species Species index.

S Vectors = (s1,...,sy) of the resident trait values.

Additional functions and parameters may be supplied by the user within the pactegelve_def.c to facilitate the set-up
of the functionn_hat()

H Output
Internal. Returnsy;(s).

Function m() Package coevolve_def.c

B Description
User-defined function. Implementation of the mutation distributldp(s: — s;).

B Input
species Species index.
delta_s Differences, — s; between the resident trait value and the mutant trait value.

Additional functions and parameters may be supplied by the user within the pactegelve_def.c to facilitate the set-up
of the functionm() . In particular, providing the vectar = (71,...,05) of mutation standard deviations can be useful.

H Output
Internal. ReturnsM; (s: — s;).

Function monodet() Package coevolve_det.c

B Description
Implementation of the monomorphic deterministic model.

B Input

comr:unity_size NumberN of species making up the coevolutionary community.
birth_mono() Function providing the per capita birth rates in the community, see above.
death_mono() Function providing the per capita death rates in the community, see above.
sigma Vectoro = (o1, ...,0x5) of mutation standard deviations.

mu Vectoru = (u1, ..., pn) Of mutation ratios.
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s_init Vectors = (s1,...,sy) of adaptive trait values that are resident initially.
t_end Time ¢ at which simulation is to be aborted.

t_monodet_step
t_monodet_out

monodet_method

monodet_order

monodet_logplot

s_fixedpoint
monodet_direction

extinction_
continuation

extinction_init

monitor_level

run_monodet

B Output
To file monodet.dat

Time step for numerical integration.
Time step for output to be written to the filronodet.dat

Flag. When set t®@, the Euler method is used for numerical integration; when s&t the fourth
order Runge-Kutta method is employed.

Order in series expansion of the monomorphic deterministic model (can ber 3; when set to
0, no series expansion is made).

Flag. When set td, valueslog;q |s;(t) — 3;| instead ofs;(¢) are written to the filemono-

det.dat
Vector of trait values at a fixed poirdt only used whemonodet_logplot is set tol.

Flag. When set te+-1, direction of time is forward, when set tel, backward.

Flag. When set ta, simulation of the monomorphic deterministic model continues after a species

has gone extinct, otherwise simulation is aborted.

Vector of flags. When the element corresponding to specissset to0, this species is present
initially, otherwise it is extinct.

Flag controlling the extent of information written &tdout (can bel, 2, 3 or 0; corresponding
to basic, normal, detailed or no output).

Flag. When set ta, the functionmonodet() is executed.

First column: timet; following columns: resident adaptive trait values(t) to sy (¢). In addition,

some information can be written tstdout

Function portrait()

Package coevolve_det.c

B Description

Construction of a phase portrait for the monomorphic deterministic model. Application is restricted to coevolutionary communities
with N = 2 or N = 3.

B Input
community_size

birth_mono()
death_mono()
sigma

mu

t_end
t_monodet_step
t_monodet_out

monodet_method
monodet_order
monodet_direction
extinction_
continuation
extinction_init

portrait_type

portrait_grid

NumberN of species making up the coevolutionary community.

Function providing the per capita birth rates in the community, see above.
Function providing the per capita death rates in the community, see above.
Vectoro = (o1, ...,0) of mutation standard deviations.

Vectoru = (u1, ..., pn) Of mutation ratios.

Time ¢ at which simulation is to be aborted.

Time step for numerical integration.

Time step for output to be written to the filronodet.dat

Flag. When set t®@, the Euler method is used for numerical integration; when s&f the fourth
order Runge-Kutta method is employed.

Order in series expansion of the monomorphic deterministic model (can ber 3; when set to
0, no series expansion is made).

Flag. When set te-1, direction of time is forward, when set tel, backward.

Flag. When set ta, simulation of the monomorphic deterministic model continues after a species

has gone extinct, otherwise simulation is aborted.

Vector of flags. When the element corresponding to specissset to0, this species is present
initially, otherwise it is extinct.

Flag. When set ta starting points are distributed randomly, otherwise they are choosen to lay on

a two-dimensional rectangular grid.

Vector of incremental steps determining the density of starting points in the two directions.
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s_mindisplay
s_maxdisplay
random_seed

monitor_level

run_portrait

H Output

To file monodet.dat

Vector of lower bounds fos to be displayed.
Vector of upper bounds for to be displayed.
Seed for the random number generator.

Flag controlling the extent of information written &tdout (can bel, 2, 3 or 0; corresponding
to basic, normal, detailed or no output).

Flag. When set ta, the functionportrait() is executed.

. First column: timet; following columns: resident adaptive trait valuegt) to sy (¢). Trajectories from

different starting points are separated by blank lines. In addition, some information can be writeloub .

Function sketch()

Package coevolve_det.c

B Description

Coarse survey of the sign structure®ff, (s;, s) and#,(s). Application is restricted to coevolutionary communities wih= 2.

B Input
community_size

birth_mono()
death_mono()
sketch_grid
s_mindisplay
s_maxdisplay

monitor_level

run_sketch

B Output
To file sketch.dat
11

22
33
44
55
66
77
88
99

NumberN of species making up the coevolutionary community.

Function providing the per capita birth rates in the community, see above.
Function providing the per capita death rates in the community, see above.
Vector of incremental steps determining the density of cells in the two directions.
Vector of lower bounds fos to be displayed.

Vector of upper bounds for to be displayed.

Flag controlling the extent of information written &tdout (can bel, 2, 3 or 0; corresponding
to basic, normal, detailed or no output).

Flag. When set ta, the functionsketch()  is executed.

. Each cell comprises two digits (in order to roughly conserve aspect ratio). Key:

81'?1(51,5) >0 85?2(52,s)>0 n1(s) >0 7n2(s) >0

3/ F1(s51,8) >0 3Jf5(s2,5) <0 fi1(s) >0  7a(s) >0
3/ F1(s1,8) <0 3Jf5(s2,5) <0 fi1(s) >0  7a(s) >0
3/ F1(s1,8) <0 3Jf5(s2,5) >0 f1(s) >0  7z2(s) >0
8{F,(s1,5) >0 f1(s) >0 fAz2(s) =0
/T (s1,5) <0 n1(s) >0 1na2(s)=0
84T 5(s2,5) >0 n1(s) =0 fp(s) >0

8)F5(s2,5) <0 f1(s) =0  f2(s) >0

am(s) =0 fg(s)=0

In addition, some information can be written $tdout

Function contour()

Package coevolve_det.c

B Description

Fine survey of the sign structure @‘t—si(s) andn; (s). Application is restricted to coevolutionary communities with= 2.

B Input
community_size

birth_mono()
death_mono()

NumberN of species making up the coevolutionary community.
Function providing the per capita birth rates in the community, see above.
Function providing the per capita death rates in the community, see above.
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contour_plot:: Flag contolling the function whose sign structure is to be depicted. Cant& or 4 corresponding
func to %51(5), %52(5),7%1(5) ornz(s).
contour_plot:: . The contour lines, where the surfacéss; (s) andn;(s) have the heightontour_height , are
contour_height written to the output files. Depiction of sign structure corresponds to setting this value to
contour_plot:: Upper bound for the deviation of the height of the contour lines written to the output files from
dev_tol contour_height
contour_plot:: Starting values; for search of contour lines.
s1_init
contour_plot:: Starting values, for search of contour lines.
s2_init
contour_plot:: Direction in which to start search of contour lines.
dir_init
contour_plot:: Incemental step between two successive points written to the output files.
s_step
contour_plot:: Incremental step for two succesive directions in which to search of countour lines.
dir_step
contour_plot:: Upper bound for the number of points written to the output files.
max_points
s_mindisplay Vector of lower bounds fos to be displayed.
s_maxdisplay Vector of upper bounds fot to be displayed.
monitor_level Flag controlling the extent of information written &idout (can bel, 2, 3 or 0; corresponding
to basic, normal, detailed or no output).
run_contour Flag. When set ta, the functioncontour()  is executed.
Please note that due to the multitude of parameter choices which can be made for each individual contour line to be plotted, the
parameters above that start withntour_plot:: have to be specified in the source code of the packageolve_det.c
In order to depict two or more contour lines for a particular functimontour_plot() has to be called twice or more times.
H Output
To files contour_isol.dat , contour_iso2.dat and contour_coex.dat . First columns: trait values;, second

columns: trait valuesz. In addition, some information can be written stdout

Function isotest() Package coevolve_det.c

B Description
Classification of isocline%si(s) = 0 andn;(s) according to the categories non-invadable or invadable, convergent or divergent,
not mutually invadable or mutually invadable. Application is restricted to coevolutionary communitiegvwith2.

B Input

contour_plot: Amount of displacement of lines written to the output files relative to contour lines in the normal
isotest_displace direction of the contour line.

run_isotest Flag. When set td, the functionisotest() is executed.

For further inputs see functiooontour()

H Output

To files:

isotestl.dat Non-invadable isoclines.
isotest2.dat Invadable isoclines.

isotest3.dat Convergent isoclines.
isotest4.dat Divergent isoclines.

isotest5.dat Not mutually invadable isoclines.
isotest6.dat Mutually invadable isoclines.

First columns: trait value1, second columns: trait value . In addition, some information can be written strout
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Function landscape()

Package coevolve_det.c

B Description

Depiction of the variable adaptive landscapes corresponding to the monomorphic deterministic model. Application is restricted to
coevolutionary communities witlv. = 2.

B Input
community_size

birth_mono()
death_mono()
sigma

mu

S_init

t_end
t_monodet_step
t_monodet_out

monodet_method

monodet_order

monodet_direction

extinction_
continuation

extinction_init

landscape_grid

s_mindisplay
s_maxdisplay

monitor_level

run_landscape

B Output

To file landscape.dat

NumberN of species making up the coevolutionary community.
Function providing the per capita birth rates in the community, see above.
Function providing the per capita death rates in the community, see above.

Vectoro = (o1,...,0n) of mutation standard deviations.
Vector u = (1, ..., 1) Oof mutation ratios.
Vectors = (s1,...,sy) of adaptive trait values that are resident initially.

Time ¢ at which simulation is to be aborted and the adaptive landscape is to be constructed.
Time step for numerical integration.
Time step for output to be written to the filronodet.dat

Flag. When set t®, the Euler method is used for numerical integration; when sét the fourth
order Runge-Kutta method is employed.

Order in series expansion of the monomorphic deterministic model (can ber 3; when set to
0, no series expansion is made).

Flag. When set tet-1, direction of time is forward, when set tel1, backward.

Flag. When set ta, simulation of the monomorphic deterministic model continues after a species
has gone extinct, otherwise simulation is aborted.

Vector of flags. When the element corresponding to specissset to0, this species is present
initially, otherwise it is extinct.

Vector of incremental steps determining the density of lines to be used in the two directions to
depict the surface of the adaptive landscape.

Vector of lower bounds fos to be displayed.
Vector of upper bounds for to be displayed.

Flag controlling the extent of information written s&idout (can bel, 2, 3 or 0; corresponding
to basic, normal, detailed or no output).

Flag. When set td, the functionlandscape() is executed.

First column: trait values;, second column: trait values,, third column: heights. In addition,

some information can be written tstdout

Function monosto()

Package coevolve_sto.c

B Description

Implementation of the monomorphic stochastic model.

B Input
community_size

birth_mono()
death_mono()
m()

mu

S_init

t_end

NumberN of species making up the coevolutionary community.

Function providing the per capita birth rates in the community, see above.
Function providing the per capita death rates in the community, see above.
Function providing the mutation distributions in the community, see above.
Vectorp = (u1, ..., pn) Oof mutation ratios.

Vectors = (s1,...,sy) of adaptive trait values that are resident initially.
Time ¢ at which simulation is to be aborted.
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monosto_samples

monosto_logplot

s_fixedpoint
monosto_grid

s_min

S_max
s_mindisplay
s_maxdisplay
random_seed

monitor_level

run_monosto

B Output

To files monosto.dat

Number of stochastic realization to be simulated. From these, a mean path is automatically
constructed.

Flag. When set tol, valueslog;|s:(t) — 5;| instead of s;(¢) are written to the file
monosto.dat

Vector of trait values at a fixed poidt only used whemonosto_logplot is set tol.

Vector of incemental steps for the trait valugsto s according to which the master equation is
discretized for the purpose of simulation.

Vector of lower bounds fos to be used for discretizing the master equation.
Vector of upper bounds for to be used for discretizing the master equation.
Vector of lower bounds fos to be displayed.

Vector of upper bounds for to be displayed.

Seed for the random number generator.

Flag controlling the extent of information written &tdout (can bel, 2, 3 or 0; corresponding
to basic, normal, detailed or no output).

Flag. When set ta, the functionmonosto() is executed.

and monosto_mean.dat . First column: timet; following columns: resident adaptive trait values

s1(t) to sy (t). Subsequent simulations are separated by blank linesoinosto.dat . In addition, some information can be

written to stdout

Function polysto()

Package coevolve_sto.c

B Description

Implementation of the polymorphic stochastic model.

B Input
community_size

birth_polysto()
death_polysto()
m()

mu

S_init

t_end
polysto_samples

polysto_update
polysto_saveppm
ppm_color
ppm_bins

ppm_stretch
ppm_margin
ppm_maxval
s_mindisplay
s_maxdisplay
random_seed

monitor_level

run_polysto

NumberN of species making up the coevolutionary community.

Function providing the per capita birth rates in the community, see above.
Function providing the per capita death rates in the community, see above.
Function providing the mutation distributions in the community, see above.
Vectoru = (u1, ..., pn) Of mutation ratios.

Vectors = (s1,...,sy) of adaptive trait values that are resident initially.
Time ¢ at which simulation is to be aborted.

Number of stochastic realization to be simulated. From these, a mean path is automatically
constructed.

Number of birth or death events after which the birth and death rates of all individuals are updated.
Flag. When set ta, .ppm files are produced.
Flag. When set ta, color.ppm files are produced, otherwise gray scaling is used.

Number of discrete bins to be used to display in thpm files the distributions of individuals
having continuous trait values.

Number of pixels in theppm files to be associated with each bin.

Number of pixels in theppm files to be used as a margin for the picture.

Number contolling the color or gray scale resolution for thpm files. Normally set t@55.
Vector of lower bounds fos to be displayed.

Vector of upper bounds for to be displayed.

Seed for the random number generator.

Flag controlling the extent of information written &tdout (can bel, 2, 3 or 0; corresponding
to basic, normal, detailed or no output).

Flag. When set ta, the functionpolysto() is executed.
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H Output

To file polysto_mean.dat . First column: timef; following columns: populations sizes, mean values and standard deviations
of the phenotypic distributions distributions; to py at time t. Optionally, output is generated tpolystol.ppm to
polysto N.ppm. These graphic files serve to display the time evolution of the phenotypic distributjotsp ;. In addition,
some information can be written tstdout
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