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Abstract

In this thesis we establish a theory of evolutionary dynamics that accounts for the

following requirements.

1. The evolutionary process is considered in a coevolutionary context.

2. The theory describes the full dynamics of the coevolutionary process.

3. The coevolutionary dynamics are derived from the underlying population dynamics.

4. The theory accounts for the stochastic aspects of the evolutionary process.

To our knowledge the mathematical framework advanced here is the first to simultane-

ously combine these four key features of evolution.

We present a hierarchy of three dynamical models for the investigation of coevolution-

ary systems; each of these models stands for a different balance between descriptive

capacity and corresponding analytic tractability. Deductions are given to clarify the

interconnections between the models; from the assumptions necessary for these deriva-

tions we infer their domains of validity. Equations central to the fields of evolutionary

game theory, replicator dynamics and adaptive dynamics are recovered as specialized

cases from our mathematical framework. In particular, the canonical equation of adap-

tive dynamics, which so far has been used on the grounds of plausibility arguments, is

underpinned by a formal derivation.
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Introduction

Fluctuations are caused by the discrete nature

of matter.

N.G. van Kampen (1981)

The self-organisation of systems of living organisms is elucidated most successfully by

the concept of Darwinian evolution. The processes of reproduction, variation, inheri-

tance and interaction are sufficient to enable organisms to adapt to their environments

by means of natural selection. Yet, the development of a general and coherent math-

ematical theory of Darwinian evolution built from the underlying ecological processes

is far from complete.

Progress on these ecological aspects of evolution will critically depend on properly

addressing at least the following four requirements.

1. The evolutionary process needs to be considered in a coevolutionary context.This

amounts to allowing feedbacks to occur between the evolutionary dynamics of

a species and the dynamics of its environment (Lewontin 1983). In particular,

the biotic environment of a species can be affected by adaptive change in other

species (Futuyma and Slatkin 1983). Evolution in constant or externally driven

environments thus are special cases within the broader coevolutionary perspective.

Maximization concepts, already debatable in the former context, are insufficient in

the context of coevolution (Emlen 1987; Lewontin 1979, 1987).
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2. A proper mathematical theory of evolution should be dynamical.Although some

insights can be gained by identifying the evolutionarily stable states or strategies

(Maynard Smith 1982), there is an important distinction between non-invadability

and dynamical attainability of evolutionary states (Eshel and Motro 1981; Eshel

1983; Taylor 1989). It can be shown that in a coevolutionary community compris-

ing more than a single species even the evolutionary attractors generally cannot be

predicted without explicit knowledge of the dynamics (Marrow et al. 1994). Con-

sequently, if the mutation structure affects the evolutionary dynamics, it must not

be ignored when investigating evolutionary outcomes. Furthermore, a dynamical

perspective is required in order to deal with evolutionary transients and nonequi-

librium evolutionary attractors.

3. The coevolutionary dynamics ought to be underpinned by a microscopic theory.

Rather than postulating measures of “fitness” and assuming plausible adaptive dy-

namics, these should be rigorously derived. Only by accounting for the ecological

foundations of the evolutionary process in terms of the underlying population dy-

namics, is it possible to incorporate properly both density and frequency dependent

selection into the mathematical framework (Brown and Vincent 1987a; Abrams et

al. 1989, 1993; Saloniemi 1993). Yet, there remain further problems to overcome.

First, analyses of evolutionary change usually can not cope with nonequilibrium

population dynamics (but see Metz et al. 1992; Rand et al. 1993). Second, most

investigations are aimed at the level of population dynamics rather than at the level

of individuals within the populations at which natural selection takes place; in con-

sequence, the ecological details between the two levels are bypassed.

4. The evolutionary process has important stochastic elements.The process of muta-

tion, which introduces new phenotypic trait values at random into the population,

acts as a first stochastic cause. Second, individuals are discrete entities and con-

sequently mutants that arise initially as a single individual are liable to accidental

extinction (Fisher 1958). A third factor can be demographic stochasticity of resident

populations, this can only be ignored provided that population sizes are sufficiently

large (Wissel and St¨ocker 1989). The importance of these stochastic impacts on the

evolutionary process has been stressed by Kimura (1983) and Ebeling and Feistel

(1982).
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In this thesis we establish a theory of evolutionary dynamics that accounts for the above

requirements. To our knowledge the mathematical framework advanced here is the first

to simultaneously combine these four key features of evolution. We present a hierarchy

of three dynamical models for the investigation of coevolutionary systems; each of these

models stands for a different balance between descriptive capacity and corresponding

analytic tractability. Deductions are given to clarify the interconnections between the

models; from the assumptions necessary for these derivations we infer their domains of

validity. Equations central to the fields of evolutionary game theory, replicator dynamics

and adaptive dynamics can be recovered as specialized cases from our mathematical

framework. In particular, the canonical equation of adaptive dynamics, which so far

has been used on the grounds of plausibility arguments, is underpinned by a formal

derivation.

The thesis is devided into three parts. InPart A we outline definitions, empirical

evidence and mathematical descriptions of coevolutionary dynamics. In the mainPart

B the hierarchy of our three models of coevolutionary dynamics is established and

analyzed. InPart C we give an application of the derived framework to a specific type

of coevolutionary community.

After a brief introduction to the biological background of evolutionary and coevolution-

ary processes inChapter 1, Chapter 2sketches the models that have been employed

in the mathematical literature to describe such processes. InChapter 3we summa-

rize some limitations of these approaches and conclude a profile of desiderata that has

served to shape the present work.

Based on the minimal conditions for the incidence of evolution by means of natural

selection, Chapter 4 presents a general framework for describing the simultaneous

evolution of an arbitrary number of species in terms of individual birth, death and

mutation processes. The resulting generalized replicator equation defines our first model

of coevolutionary dynamics, the polymorphic stochastic model. After introducing the

monomorphic regime inChapter 5we employ the generalized replicator equation to

derive as a limiting case the reduced description of adaptive dynamics which we call

the monomorphic stochastic model. This second model of coevolutionary dynamics still

retains the important stochastic features of the adaptive process and explicitly accounts

for random mutational steps and the risk of extinction of rare mutants. From this,

our third model of coevolutionary dynamics, the monomorphic deterministic model,
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is obtained as a deterministic approximation inChapter 6. The canonical equation

of adaptive dynamics is recovered and we demonstrate its validity up to first order.

We refine this result by means of higher order correction terms allowing for increased

accuracy. Algorithms for implementing our three models of coevolution are provided

throughout Chapters 4 to 6 and the richness of resulting coevolutionary phenomena

is illustrated by means of examples. InChapter 7the two monomorphic models are

analyzed in more detail. Stability conditions for the adaptive dynamics are established,

and the higher orders of the monomorphic deterministic model are shown to give

rise to new, unexpected evolutionary effects. Moreover, the complicated principle of

mutual exclusion is proved for a special case, and a method for constructing variable

adaptive landscapes for the dynamics of adaptation is presented. InChapter 8we further

extend our mathematical framework such as to encompass more complex evolutionary

scenarios.

Chapter 9 is concerned with predator-prey coevolution. We employ the hierarchy of

coevolutionary models derived so far to investigate a prototypic community of such

species. Possible evolutionary outcomes are classified and the conditions for their

occurrence analyzed. In particular, we focus on the phenomenon of evolutionary cycling

and show that so called Red Queen dynamics are a likely outcome of coevolutionary

processes.

Parts of the work described here have been reported in the following papers

1. Dieckmann, U., Law, R.: The dynamical theory of coevolution: A derivation

from stochastic ecological processes.Accepted for publication by the Journal of

Mathematical Biology.

2. Marrow, P., Dieckmann, U., Law, R.:Evolutionary dynamics of predator-prey

systems: an ecological perspective.Accepted for publication by the Journal of

Mathematical Biology.

3. Dieckmann, U., Marrow, P., Law, R.:Evolutionary cycling in predator-prey inter-

actions. Submitted for publication.

and were presented in talks at the University of Warwick, the University of Utrecht,

the Humboldt-Universit¨at Berlin and as an invited lecture at the “Symposium Adaptive

Dynamics” of the European Science Foundation.
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Basic Notation

i Species index.

k Individual index.

l Trait index.

N Number of species making up the coevolutionary community.

ni Number of individuals in speciesi. n = (n1; . . . ; nN ).

�i Number of adaptive traits in speciesi.

si Adaptive trait value(s) or phenotype in speciesi. s = (s1; . . . ; sN ).

pi(si) Distribution of adaptive trait values in speciesi. p = (p1; . . . ; pN ).

ni(si; pi) Number of individuals with adaptive trait valuesi in speciesi as given

by the distributionpi.
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Time and Timescales

t Process time.

T Average waiting time between two subsequent events in the stochastic

models.

� Typical timescale of a particular dynamic (specified by an index).

Ecological Rates

fi(s
0

i; p) Per capita growth rate of an individual of speciesi with adaptive trait

values0

i in an environment determined by the phenotypic distributions

p. When a dependence of the environment on external influences is

considered, this is indicated by an extra argumentt.

ef j
i (s

0

i; s; n) Per capita growth rate of individuals in speciesi with adaptive trait

valuess0

i in an environment determined by the phenotypic distributions

p =
�
n1 � �s1 ; . . . ; nj � �sj + n0 � �s0; . . . ; nN � �sN

�
. Resident popula-

tions are assumed to be monomorphic and a single mutant population,

formally taking the indexi = 0, is considered in speciesj. When a

dependence of the environment on external influences is considered,

this is indicated by an extra argumentt.

f i(s
0

i; s) Time-averaged per capita growth rate of rare mutant individuals in

speciesi with adaptive trait valuess0

i in an environment determined

by the monomorphic resident populations with adaptive trait valuess.

The time average is trivial for resident population dynamics attaining

equilibria but is essential for coevolution under nonequilibrium popu-

lation dynamics. When a dependence of the environment on external

influences is considered, this is indicated by an extra argumentt.

bi, eb ji , bi Per capita birth rates of individuals. Definitions are equivalent to those

of fi(si; p), ef j
i (s

0

i; s; n) and f i(s
0

i; s) above.

di, ed j
i , di Per capita death rates of individuals. Definitions are equivalent to those

of fi(si; p), ef j
i (s

0

i; s; n) and f i(s
0

i; s) above.
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Mutation Properties

Mi(si; s
0

i � si) Mutation distribution in speciesi for mutations in individuals with

adaptive trait valuessi giving rise to others with adaptive trait values

s0

i. When only homogeneous mutation distributions are considered, this

is indicated by dropping the then superfluous first argumentsi.

mji(si) jth mutation moment of the mutation distributionMi at the adaptive

trait value si. When only homogeneous mutation distributions are

considered, this is indicated by dropping the then superfluous argument

si.

�2i (si) Variance of the mutation distributionMi at the adaptive trait valuesi.

When only homogeneous mutation distributions are considered, this is

indicated by dropping the then superfluous argumentsi.

�i(si) Mutation ratio in speciesi at the adaptive trait valuesi. When

only homogeneous mutation ratios are considered, this is indicated by

dropping the then superfluous argumentsi.

Bi(si; s
0

i � si) Probability distribution in speciesi of offspring adaptive trait values

s0

i arising from adaptive trait valuessi. When only homogeneous

mutation processes are considered, this is indicated by dropping the

then superfluous first argumentsi. Bi(si; s
0

i � si) = (1 � �i(si)) �

�(s0

i � si) + �i(si) � Mi(si; s
0

i � si).

Probabilities

P Probability density distribution. Examples:P (p; t), P (n; t) andP (s; t).

w(p0
jp) Transition probability per unit time from the phenotypic distributionsp

to p0. When a dependence of the environment on external influences is

considered, this is indicated by an extra argumentt.

wi(p
0

i; p) Transition probability per unit time for a change of the phenotypic

distribution in speciesi from pi to p0

i in an environment determined

by p. When a dependence of the environment on external influences is

considered, this is indicated by an extra argumentt.
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w
�

i
(s0

i
; p) Transition probability per unit time for the removal of an individual

with adaptive trait values0

i
from the phenotypic distribution in species

i in an environment determined byp. When a dependence of the

environment on external influences is considered, this is indicated by

an extra argumentt.

w
+

i
(s0

i
; p) Transition probability per unit time for the insertion of an individual

with adaptive trait values0

i
into the phenotypic distribution in species

i in an environment determined byp. When a dependence of the

environment on external influences is considered, this is indicated by

an extra argumentt.

w(s0js) Transition probability per unit time from the adaptive trait valuess to

s
0. When a dependence of the environment on external influences is

considered, this is indicated by an extra argumentt.

wi(s
0

i
; s) Transition probability per unit time for a trait substitution in species

i from the adaptive trait valuesi to s
0

i
in an environment determined

by the monomorphic resident populations with adaptive trait values

s. When a dependence of the environment on external influences is

considered, this is indicated by an extra argumentt.

Mi(s
0

i
; s) Probability density per unit time for a mutation within the popula-

tion of speciesi from si to s
0

i
in an environment determined by the

monomorphic resident populations with adaptive trait valuess. When

a dependence of the environment on external influences is considered,

this is indicated by an extra argumentt.

Si(s
0

i
; s) Probability of a mutants0

i
within the population of speciesi to success-

fully escape extinction in an environment determined by the monomor-

phic resident populations with adaptive trait valuess. When a depen-

dence of the environment on external influences is considered, this is

indicated by an extra argumentt.
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Spaces and Subspaces

bPi Polymorphic trait space of speciesi. bP = �N
i=1

bPi.

bNi Population size space of speciesi. bN = �N
i=1

bNi.

bSi Monomorphic trait space of speciesi. bS = �N
i=1

bSi.
bSc Region of coexistence. Subspace ofbS allowing for positive population

sizes in allN species.
bSc =

�
s 2 bS j n̂i(s) > 0 for all i = 1; . . . ; N

	
.

bSi;c0 Subspace of the monomorphic trait spacebSi not excluded by constraints

on trait values or on combinations therof.bSc0 = �N
i=1
bSi;c0.

bSC Subspace of the monomorphic trait spacebS accessible to the adaptive

dynamics of theN -species coevolutionary community.bSC = bSc \ bSc0.

Mappings

j. . .j Absolute value function.jxj =
qP

i x
2

i .

h. . .i Expectation value function.hf(x)i =
R
f(x) � P (x) dx.

(. . .)
+

Product of Heaviside function and identical function.(x)
+
= x ��(x).

@ 0

i , @i Abbreviations for derivatives.@ 0

i f = @
@s0

i

f and@if = @
@si

f .

Convention: When evaluating a function which is obtained as a deriva-

tive and takes particular arguments, the derivation precedes the substi-

tution of the arguments.

�ij Kronecker symbol.�ij = 1 for i = j, �ij = 0 for i 6= j.

�, �y Dirac’s �-function.
R
f(x) � �(x) dx = f(0) and

R
f(x) � �y(x) dx =R

f(x) � �(x� y) dx = f(y).

� �-functional in function space. Used only in combination with a

functional integration indicated byD.
R
F (f) ��(f � g)Df = F (g).

D Differentiation symbol employed instead ofd to denote a functional

integration. Used only in combination with the functional�.
R
F (f) �

�(f � g) Df = F (g).
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Miscellaneous Constructs

n̂ Population sizes at fixed points of the population dynamics.

ŝ Adaptive trait values either located on isoclines or at fixed points of

the adaptive dynamics.

�i(ŝ) Invasion angle of̂s. �i(ŝ) = arctan
�
@02

i
f i(ŝi; ŝ); @

2

i
f i(ŝi; ŝ)

�
.

Ri(s) Range of adaptive trait valuess0

i
that have a positive per capita growth

rate when being rare in an environment determined by the monomorphic

resident populations with adaptive trait valuess.

Ri(s) =
�
s0

i
2 bSi j f i(s

0

i
; s) > 0

	
.

ei(p; t) Environment of speciesi at timet given the phenotypic distributionsp.

aji(s) jth jump moment of speciesi for resident adaptive trait valuess.

mij(A) Minor of the matrixA where theith row and thejth column have been

deleted.

zij(A) The matriceszij(A) are derived from the matrixA by replacing the

elements of theith row and thejth column by0, except the element

Aij itself which is replaced by1; successive mappings of this sort

are denoted byzij;kl(A) = zij
�
zkl(A)

�
. Similarly, the vectorzi(a) is

obtained from a vectora by settingai to 0.

1i Vector with components1i
j = �ij.

ki(s) Evolutionary rate coefficient of speciesi for resident adaptive trait

valuess.

W Adaptive landscape or “fitness” function. Examples:Wi(s
0

i; s), variable

adaptive landscape for speciesi (extented ins0

i and parameterized bys),

andW (s0; s), variable adaptive landscape for the entire coevolutionary

community (extented ins0 and parameterized bys).



Part A
Background and Previous Work

The process of evolution by means of natural selection is fundamental to our understand-

ing of nature. It underpins many of the phenomena of self-organization encountered at

all sorts of levels in the complex hierarchy of being.

Evolution taking place in a constant environment is an abstraction. This simplified view

sometimes is justified to facilitate the analysis of single adaptive features observed in

the world of living organisms; yet, in its idealized form it is seldom met in reality.

The real world is coevolving: adaptive systems are situated in environments which in

turn are adaptable.

In this part we give a brief introduction to evolutionary and coevolutionary thought

and indicate some of the major empirical evidence for coevolution in nature (Chapter

1). We then sketch the key concepts that have been advanced in the past to promote

mathematical analyses of coevolutionary dynamics (Chapter 2). From a discussion of

these ideas we conclude a profile for a dynamical theory of coevolution (Chapter 3)

contributions to which are presented in the next part.





Chapter 1
The Concept of Coevolution

1.1 Origin of Coevolutionary Thought

In the following we introduce definitions for evolutionary and coevolutionary processes

and outline the evidence for the occurrence of the latter.

Evolution

The theory ofevolution by natural selectionhas been developed independently by

Darwin and Wallace (Figure 1.1). In constructing his theory, Darwin combined insight

gained both from observing the abundance of offspring in numerous species, which

he had noticed during his voyage on the H.M.S. ”Beagle”, and from studying Malthus’

work on a principle of competition in the “Essay on the Principle of Population” (1798).

Darwin’s seminal book “The Origin of Species by Means of Natural Selection, or The

Preservation of Favoured Races in the Struggle for Life” was published in 1859 and

advanced two major hypotheses: that all organisms have descended with modifications

from common ancestors, and that the chief agent of modification is the process of

natural selection acting on individual variation.

It is generally agreed that there existminimal conditionsfor a process of self-organization

in living organisms to be enacted by natural selection. A general and abstract charac-

terization of such features is thereplicator conceptproposed by Dawkins (1976). He
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a b

Figure 1.1 Fathers of evolutionary thought. (a) Charles Robert Darwin (1809–1882), (b) Alfred Russel
Wallace (1823–1913). Their theory of evolution by means of natural selection was presented at the
Linnaean Society of London in 1858.

argues that units, called replicators, which are capable of (i) reproduction, (ii) inher-

itance of traits allowing for (iii) variability, and (iv) interaction causing reproduction

or survival of replicators to be trait-dependent, inevitably will undergo evolution by

natural selection. Similar conditions have been given by Eigen and Schuster (1979)

and by Ebeling and Feistel (1982) who emphasize in addition that evolutionary units

physically are realized as systems open to fluxes of energy and matter (Schr¨odinger

1944). In Chapter 4 we will translate Dawkins’ replicator concept into mathematical

language by establishing what we call thegeneralized replicator equation.

Coevolution

We will use the termcoevolutionto indicate adaptation to an environment that in turn

is adaptive. In other words, the selective factor that stimulates adaptation in a species is

itself responsive to that adaptation. Byadaptationwe refer to the process of evolution

by natural selection described above.

The idea of coevolution is already implicit in Darwin’s original work. When discussing

pollination of flowers by insects he remarks “Thus I can understand how a flower and
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a bee might slowly become, either simultaneously or one after the other, modified

and adapted in the most perfect manner to each other” (Darwin 1959). The explicit

notion of coevolution was introduced by Ehrlich and Raven (1964) when analyzing

mutual evolutionary influences of plants and herbivorous insects. Janzen (1980) defines

coevolution – more restrictively than we do – to mean that a trait in one species has

evolved in response to a trait in another species, which trait itself has evolved in

response to the trait in the first. Futuyma and Slatkin (1983) point out that this definition

requires not only reciprocal change (both traits must evolve) but also specificity (the

evolution in each trait is due to the evolution of the other). Like Janzen’s definition

suggests, coevolutionary phenomena are most easily conceived in terms of a single pair

of species. However, since most species interact with a variety of other species, we

do not restrict the meaning of coevolution to the adaptation of pairwise relations. The

reciprocal evolutionary change of interactions among classes of species is calleddiffuse

coevolution.

The concept of coevolution overcomes the conceptual limitations of traditional biologi-

cal fields like population genetics. Due to the formidable asperities inherit in a detailed

description of the genetic background of evolutionary change, here each species is con-

sidered in isolation, with the environment and associated species relegated to the back-

ground which is assumed to be unchanged (Futuyma and Slatkin 1983). Coevolutionary

dynamics explicitly encompass the feedback loop between a species and its environ-

ment (Lewontin 1983) when analyzing evolutionary phenomena. In consequence, the

study of coevolutionary processes also spawns a more elaborate view of the time course

of evolution. When considering only one species, this would be expected to evolve

by means of natural selection towards a state where it has met whatever challenges it

faced in terms of its environment. Such endpoints of evolution are clearly unrealistic

on a larger evolutionary timescale. In contrast, if two or more species are adapting in

response to each other, continued evolutionary progress can take place.

Evidence for Coevolution

The existence of coevolutionarily evolved interactions between species is underpinned

by observations from a variety of fields. From observation of genetic change, over

indications from the fossil record, the evidence ranges to taxonomic considerations and

results from morphology and ethology. Details are given in Futuyma and Slatkin (1983).
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The challenge in any potential instance of coevolution is, however, to show explicitly

that traits have evolved in response to particular interactions; the decision between such

a coevolutionary explanation and the assertion of the interaction being established only

after the traits considered had evolved, is sometimes debatable. The examples given in

the next section illustrate these considerations.

1.2 Classical Examples of Coevolutionary Dynamics

In this section we briefly review three classical cases giving empirical evidence for

coevolutionary dynamics. In passing, we introduce ecological scenarios that have

fostered the incidence of coevolution.

Mimetic Coevolution

The observation of mimicry is probably the earliest instance of adaptation suggesting

coevolutionary processes to have occurred in nature. Fisher called mimicry theory “the

greatest post-Darwinian application of natural selection” (Gilbert 1983).

Mimicry, defined generally as “resemblance of birds, animals and insects to their natural

surroundings, giving some protection from enemies” (Hornby 1977), in a coevolutionary

context means the phenotypic convergence in the outer appearance of a model species

and a mimetic species owing to common selective pressure by the biotic environment.

Even more specific, Wickler (1968) defines mimicry as the sending of fake signals

by a mimetic species; the signals are fake or deceptive relative to those sent by a

model species to a third species such as a predator. From this it is clear that mimicry

is expected to evolve only on the basis of well-established communication systems.

In consequence the incidence of mimicry is more likely under circumstances of tight

ecological association between species and has therefore been suggested as a rough

index to the degree of specificity and long-term stability of behavioural interactions in

an ecosystem (Gilbert 1983).

There are two specific kinds of mimicry,Batesian and Müllerian. Bates (1862)

suggested edible species of butterflies to have acquired a resemblance to warningly

colored and noxious or distasteful species. With birds acting as selective agents,

effective communication has evolved between the birds and the unpalatable butterflies

(model species), protecting the latter from predation and the former from wasting time

and energy in pursuit of unsuitable prey. The edible butterflies (mimetic species) take
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Figure 1.2 Coevolutionary outcomes in parallel races of two butterfly species. Odd numbers refer to races
of Heliconius erato, the immediately following even numbers to the corresponding races of Heliconius
melpomene from the same geographical area. Each pair of corresponding races has developed a closely
resembling color pattern. (after Eltringham 1916)

advantage of this established signalling by imitating the model species’ color pattern

and in consequence benefit from the same protection from predation. In contrast, M¨uller

(1879) explained phenotypic convergence of color patterns in two species of butterflies

that both are distasteful. Due to cooperative education of predators, two species in a

common area should benefit by employing the same signalling. Although in this case
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both species mutually act as model and mimic, the less abundant species will essentially

converge to the more frequent one. The Batesian-M¨ullerian distinction, however, is

often considered to characterize the limits of a continuum (Sbordoni et al. 1979).

Figure 1.2 shows one of the best-documented example of M¨ullerian convergence. The

two species of butterflies, Heliconius erato and Heliconius melpomene, have several

parallel races showing some strong phenotypic affinities despite the fact that the two

species represent distinctive radiations within the genus Heliconius. These parallel races

are correlated spatially but not genetically – as far as genes not involved in determining

color pattern are concerned (Turner 1971; Turner et al. 1979). It has been shown

explicitly that Heliconius melpomene has influenced the evolution of Heliconius erato

and vice versa (Gilbert 1983), thus this system is an example of mimetic coevolution.

Predator-Prey Coevolution

As an effect of individual selection on the ecological interactions among predator and

prey species the latter should evolve protective characteristics against predation whereas

the former is expected to become more efficient in harvesting the prey.

Simple though this prediction is, several complications can arise. First, the simultaneous

evolution in the prey and predator species can lead to anarms racein the traits affecting

their interactions (Dawkins and Krebs 1979). The resulting potential for so calledRed

Queen evolution(Van Valen 1973) is discussed in more detail in Chapter 9. Furthermore,

predator-prey coevolution can be diffuse rather than tight. In this case coevolution is

likely to be slower and less refined as each species can be involved in a multiplicity

of predator-prey interactions, and the coevolutionary process of the entire predator-prey

community (then containing numerous species) will often include the extinction of one

group of species and its replacement by another (Futuyma 1986).

Figure 1.3 illustrates these aspects. Considered as phenotypic trait for prey and predator

is a morphological index that has been shown to be positively correlated with running

speed (Bakker 1983). The index measures the depth of the astragular groove relative to

the width of the trochlea; it determines the degree to which the limb is constrained to

move in a single plane. Low values of the index correspond to ankle joints that enable

rotation, a feature that facilitates motions which are useful for climbing or moving over

uneven ground. High values indicate that flexibility has been sacrificed to minimize the

danger of dislocation in high-speed runs. From the fossil record the temporal evolution
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Figure 1.3 Coevolutionary dynamics in North American ungulates and several of their carnivory
predators. Plotted is the temporal evolution of a speed index over the past 60 million years. As speed
index serves the ratio of astragular groove depth and trochlea width, two features of the ankle joint.
Dots connected by solid lines refer to the group of prey species (ungulates, i.e. hoofed mammals), letters
to different groups of predator species (mesonychid, hyaenodontid, amphicyonid, borophagine, neofelid,
canine). Each index value shown was computed by averaging within the particular group of species. The
temporal increase in prey speed index appears to be accompanied by a simultaneous increase in some
of the predator speed indices. (after Bakker 1983)

of this index is evaluated over the past 60 million years for a group of prey species

and several groups of predator species (see figure legend). The data provides evidence

for coevolution by an increase in the prey speed index accompanied by a simultaneous

increase in the speed index of some of the predators. Nevertheless, the adaptation in the

predator phenotypes is less pronounced than in the prey phenotypes; this can either be

interpreted as an effect of diffuse coevolution (Futuyma 1986), attributed to a smaller

diversity of predator species compared to prey species (Bakker 1983), or explained by

the fact that predator species typically have evolved additional morphological features

to increase running speed, like a flexible backbone, that have not been considered in

the above analysis (Maynard Smith 1989).
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Parasite-Host Coevolution

Despite various similarities to predator-prey coevolution the evolutionary relationships

among parasites and their hosts have some singular features.

Though hosts will – like prey species – benefit from more effective defence mechanisms,

the extent to which a parasite weakens or kills its host is – in contrast to the case of

predation – often correlated with the reproductive rate of the parasite (Futuyma 1986).

If this correlation is positive, the evolution in the parasites will tend to maximize their

virulence. If, however, the parasites are mainly exchanged between live hosts, the death

of the host will hinder the parasites from being transmitted. Consequently, the virulence

of the parasite may evolve towards intermediate values.

Notice that within one host strains of the virus possessing a large rate of reproduction and

thus a high virulence will be advantageous in terms of individual selection. Nevertheless,

between hosts those virus populations are favored that have a large effective transmission

rate. This is a seldom case ofgroup selectioncounteracting individual selection; it is

based on the existence of temporarily isolated trait groups of parasites within hosts

(Wilson 1983).

An example of parasite-host coevolution with a negative correlation between virulence

and transmission is provided by the spread of the myxoma virus in the wild rabbit

population of Australia after its release in 1950. The myxoma virus is the causative

agent of myxomatosis, a disease that is mild in South American rabbits, from which it

originated, but usually is fatal in European and Australian rabbits that have not yet been

in contact with the virus (Fenner and Ratcliffe 1965). While the disease successfully was

reducing the Australian rabbit population size, which had grown to become a serious

pest of sheep and cattle grazing land, both virus and host were undergoing evolutionary

changes. The coevolutionary dynamics of this case are summarized in Figure 1.4. The

vector (transmitting species) of this epidemic is a mosquito that feeds on rabbits only

when they are alive; therefore the chance of transmission of the parasite from rabbits

that carry a high load of viruses is reduced as such rabbits are likely to be the first to

die. This explains the shift in the frequency distribution of the virus population towards

more benign strains (Figure 1.4a) and thus the decrease in the virulence of the parasite

(Figure 1.4b). Simultaneously, the rabbit population has built up an increased resistance

against the myxoma virus (Figure 1.4d) such that the symptomatology of the disease
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Figure 1.4 Coevolutionary dynamics in the Australian wild rabbit and the myxoma virus. One trait in
each species is considered: the virulence of the virus (measured as mortality probability of a standard
rabbit strain infected by the virus) and the resistance of the rabbit (measured as survival probability of the
rabbit infected by a standard virus strain). Plots (b) and (d) show the temporal evolution of these traits
after the introduction of the myxoma virus to Australia in 1950. In addition, plots (a) and (c) illustrate
the change in the frequency distributions of virus and rabbit populations; on the horizontal axes standard
classifications of virus virulence and rabbit resistance have been used. Initially the myxoma virus has
been introduced as a highly virulent strain (belonging to class I) while the resistance of the rabbit was
very low (corresponding to severe symptomatology of the infection). In the following decade virus and
rabbit populations have coevolved towards more benign virulence and increased resistance. (data from
Fenner and Ross 1994)

became more and more moderate (Figure 1.4c). It is interesting to observe that during

the past decades the virulence of the myxoma strains has shown signs of slight increase
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(right part of Figure 1.4b); this might be interpreted as a counteraction to the acquired

resistance of the rabbits.

Due to the relatively fast evolutionary changes and the detailed monitoring of the

populations, the Australian myxoma disease is one of the best-documented instances

of coevolutionary dynamics.
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Models of Coevolution

The traditional fields for the mathematical investigation of evolutionary phenomena

are population geneticsand quantitative genetics(Bulmer 1980; Falconer 1989). To

assess coevolutionary dynamics at the level of genes appears to be virtually impossible

(Levin 1983). Numerous simplifying assumptions have to be employed before feasible

equations are obtained (Lande 1979), for two recent approaches see e.g. Iwasa et

al. (1991) and Saloniemi (1993). We only briefly mention that in the resulting models the

evolutionary process is treated deterministically and that usually “fitness” functions are

employed whose relations to the interactions among individuals are not always obvious.

These circumstances have fostered the development of various simpler mathematical

models of coevolutionary dynamics. Below we sketch research fromevolutionary game

theoryas well as from the areas ofreplicator dynamicsandadaptive dynamics.

2.1 Invasion Criteria

Central Idea

Evolutionary game theory envisages individuals to adopt different strategies. With these

strategies, members of populations are pictured to play games against each other. As a

result of such contests, individuals receive payoffs according to their success in these

games. A strategy can invade a population of other strategies if its payoff exceeds that
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of the other strategies. When a strategy is non-invadable by any other strategy it is

said to be evolutionarily stable.

Mathematical Description

The condition for anevolutionarily stable strategy(ESS) is given by (Maynard Smith

and Price 1973; Maynard Smith 1982; Parker and Maynard Smith 1990)

Wss > Ws
0
s : (2.1)

Here, Ws
0
s

denotes the payoff of strategys0 received in a game against strategys.

When inequality (2.1) holds for a population mainly of strategys against all possible

strategiess0 then s is an evolutionarily stable strategy.

In contrast, if inequality (2.1) does not hold for a population mainly of strategys and

a particular strategys0 then s is vulnerable to invasion bys0.

In the caseWss = Ws
0
s inequality (2.1) has to be replaced by the conditionWss

0 >

Ws
0
s
0; Rand et al. (1993) show that this amounts to a second order condition which is

generally not needed when payoffs are nonlinear.

Traditionally, evolutionary game theory is concerned with the frequency of strategies,

not with their total density in the population. When dealing with games between species

this restriction needs to be overcome because, as Pimentel (1968) pointed out, the whole

game achieves more or less significance in the evolution of each species as the abundance

of the other species becomes respectively greater or lower. In evolutionary game theory

different species are only distinguished by the sets of strategies they can adopt.

In Section 5.3 we will recover the condition (2.1) for “evolutionary stability” from

the stochastic framework established in Part B for the description of coevolutionary

processes.

Conditions similar to inequality (2.1) can be derived when instead of payoffs population

dynamics are considered (Reed and Stenseth 1984; Metz et al. 1992; Rand et al. 1993).

We will tackle these more sophisticated invasion criteria in Section 8.2.
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2.2 Replicator Dynamics

Central Idea

The central assumption common to the various instances of replicator dynamics is that

the per capita growth rate of individuals is proportional to the difference between their

own “fitness” and the “average fitness” of the entire community.

Mathematical Description

When denoting the densities of different “species” byxi with i = 1; . . . ; N and their

“fitness” by Wi(x) the assumption above is equivalent to

d

dt
xi = xi �

h
Wi(x)�

1

c
�

NX
j=1

Wj(x) � xj

i
(2.2)

with c =
PN

j=1 xj.

In the replicator equation no distinction is made between populations of different species

and populations of the same species with different trait values.

Mathematical structures analogous to equation (2.2) have been used in population

genetics (Fisher 1958), in the study of hypercycle dynamics (Eigen and Schuster 1979)

and in the extension of evolutionary game theory to a dynamical framework (Taylor

and Jonker 1978). The namereplicator equationhas been suggested by Schuster and

Sigmund (1983) in resemblance of Dawkins’ replicator concept (Dawkins 1976).

2.3 Adaptive Dynamics

Central Idea

The concept underlying the model of adaptive dynamics given below is that the different

species in a coevolutionary community change their adaptive trait values according to

a hill-climbing process on adaptive landscapes defined by “fitness” functions.
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Mathematical Description

We summarize the results of numerous investigations of adaptive dynamics by means

of the following canonical equation

d

dt
si = ki(s) �

@

@s0

i

Wi

�
s0

i; s
� �
�
�
s

0

i
=si

: (2.3)

Here, thesi with i = 1; . . . ; N denote adaptive traits in a community comprisingN

species. TheWi(s
0

i
; s) are measures of “fitness” of individuals with trait values0

i
in the

environment determined by the resident trait valuess, whereas theki(s) are non-negative

coefficients, possibly distinct for each species, that scale the rate of evolutionary change.

Adaptive dynamics of the kind (2.3) have frequently been postulated, based either on

the notion of a hill-climbing process on an adaptive landscape or on some other sort of

plausibility argument (Brown and Vincent 1987a, 1987b, 1992; Rosenzweig et al. 1987;

Hofbauer and Sigmund 1988, 1990; Takada and Kigami 1991; Vincent 1991; Abrams

1992; Marrow and Cannings 1993; Abrams et al. 1993; Marrow et al. 1994). The notion

of the adaptive landscape or topography goes back to Wright (1931). A more restricted

version of equation (2.3), not yet allowing for intraspecific frequency dependence, has

been used by Roughgarden (1983). It has also been shown that one can obtain an

equation similar to the dynamics (2.3) as a limiting case of results from quantitative

genetics (Lande 1979; Iwasa et al. 1991; Taper and Case 1992; Vincent et al. 1993;

Abrams et al. 1993).

In Section 6.2 we will recover the canonical equation (2.3) of adaptive dynamics from

the stochastic framework established in Part B for the description of coevolutionary

processes. The assumptions underlying this equation thus will be revealed and the

functions ki and Wi will be determined.
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Resulting Desiderata

3.1 Discussion of Previous Work

Here we briefly review some restrictions of the established models of evolution. These

limitations will provide us with directions for devising a more general theory of

coevolutionary dynamics.

Invasion Criteria

Investigating coevolutionary processes by means of the invasion condition, inequality

(2.1), can be misleading for several reasons.

1. Recognition has grown that the question of “evolutionary stability” of strategies,

based on the notion of non-invadability, is independent of the attainability of these

strategies. Strategies that are characterized by continuous trait values and that

maximize individual payoff can be unstable in the sense that evolution tends away

from these strategies (Eshel and Motro 1981).

2. When restricting attention to “evolutionarily stable strategies”, evolutionary tran-

sients and nonequilibrium evolutionary attractors are excluded from consideration.

3. In a coevolutionary context, the relative magnitude of evolutionary rates can be

essential for determining evolutionary outcomes, see Section 7.2. As invasion

criteria lack a notion of dynamics, in such cases even the prediction of evolutionary

endpoints is beyond their scope.
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Determining payoffs in evolutionary game theory is usually not underpinned by a

population dynamic (Maynard Smith 1982). We have noted in Section 2.1 attempts

to derive invasion criteria based on population dynamics (Reed and Stenseth 1984;

Metz et al. 1992; Rand et al. 1993); yet, the three limitations outlined above still apply.

Replicator Dynamics

Replicator dynamics, see equation (2.2), have been shown to provide a common frame-

work for various evolutionary models (Schuster and Sigmund 1983). Consequently,

these models share a common set of drawbacks.

1. There is no mechanism provided to generate variation in the considered community.

Only those species or trait values that are present initially undergo concurrent

population dynamics corresponding to a process of selection.

2. The population dynamics in the system are considered to be deterministic and

continuous, thus the replicators are not treated as individual entities. This requires

population sizes to be large.

3. The per capita growth rates in equation (2.2) are assumed to be of a special type,

constrained by the condition of constant organization (Eigen and Schuster 1979).

A stochastic replicator dynamic incorporating a mutation process has been suggested

by Ebeling and Feistel (1982); however, only a discrete set of species or trait values

is allowed here.

Adaptive Dynamics

The canonical equation (2.3) of adaptive dynamics might be unsatisfactory for the

following reasons.

1. The idea of modelling evolution as a hill-climbing process on an adaptive landscape

amounts to an ad-hoc approach. In the context of coevolution this type of dynamics

is not underpinned by a formal derivation. For this reason it is not clear how to

define the functionski andWi in equation (2.3) independent of the dynamics (2.3)

itself.

2. It can be shown that an arbitrary dynamical system can be cast in the form of

equation (2.3) when appropriate choices forki andWi are made, see Section 7.5.

The significance of equation (2.3) thus is debatable unless specific assignments are

made to the functionski andWi.
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3. The canonical equation describes the adaptive process as a deterministic process.

The stochasticity arising from random mutations and from the impact of demo-

graphic stochasticity of small populations thus is ignored.

Resume

We conclude that the reviewed approaches to evolutionary processes lack one or more

features which may be regarded as essential. We summarize these key features in the

next section, thus providing a basis for the construction of the extended perspective on

evolutionary processes offered in Part B.

3.2 Conclusions for Present Work

From the discussion in Sections 2.1, 2.2, 2.3 and 3.1 we extract the following four

desiderata for a mathematical theory of adaptive change. These requirements define a

profile serving to shape our approach to evolutionary processes in Part B.

Coevolution

The evolutionary process needs to be considered in a coevolutionary context.

Evolution taking place in a constant environment is an abstraction. It is necessary to

allow for feedbacks to occur between the evolutionary dynamics of a species and the

dynamics of its environment (Lewontin 1983). We have seen in Chapter 1 that the

biotic environment of a species can be affected by adaptive change in other species

(Futuyma and Slatkin 1983). Evolution in constant or externally driven environments

are special cases within the broader coevolutionary perspective.

Dynamics

A proper mathematical theory of evolution should be dynamical.

Due to the discrepancy between non-invadability and dynamical attainability (Eshel and

Motro 1981; Eshel 1983; Taylor 1989; Christiansen 1991; Takada and Kigami 1991)

invasion criteria are insufficient to determine evolutionary stability in a coevolutionary

context. A dynamical perspective is moreover required to account for evolutionary

transients, nonequilibrium evolutionary attractors, evolution under nonequilibrium pop-

ulation dynamics or in a varying environment.
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Individuals

The coevolutionary dynamics ought to be based at the level of individuals.

Rather than postulating measures of “fitness” and assuming plausible adaptive dynamics,

these should be rigorously derived. For this purpose we need to consider the interac-

tion between individuals in the coevolutionary community. Only by accounting for the

population dynamics underlying the evolutionary process, is it possible to incorporate

properly both density and frequency dependent selection into the mathematical frame-

work. Yet, the process of natural selection takes place at the level of individuals. Hence

it is important not to restrict attention to the level of population dynamics, otherwise

the ecological details between these two levels are bypassed.

Stochasticity

The evolutionary process has important stochastic elements.

The process of mutation, which introduces new phenotypic trait values at random into

the population, acts as a first stochastic cause. Second, individuals are discrete entities

and thus mutants arise initially as a single individual. In consequence they are liable

to accidental extinction (Fisher 1958). Also resident populations are subject to this

demographic stochasticity, although this third effect might be ignored provided that

population sizes are sufficiently large (Wissel and Stöcker 1989).



Part B
The Dynamical Theory of Coevolution

For a proper mathematical theory of evolutionary processes we suggest four criteria.

First, it should allow for coevolutionary interdependencies within the considered system.

Second, the theory needs to encompass the dynamics of evolution rather than predicting

only evolutionary outcomes. Third, it ought to be derived from those processes

underlying the adaptive change and should be based on interactions between individuals.

Fourth, the theory needs to be a stochastic one to account for the randomness of

mutations and the impact of demographic stochasticity.

Several areas of research have traditionally been concerned with the theoretical analysis

of evolutionary processes. As explained in the last section neither the fields of population

genetics and quantitative genetics nor those of evolutionary game theory, replicator

dynamics and adaptive dynamics can simultaneously meet the criteria above. For this

reason we rely on the replicator concept, as incorporating the minimal conditions for

the incidence of evolution by means of natural selection, for building up a dynamical

theory of coevolution.

In this part we present and analyze a hierarchy of three evolutionary models. We

begin by deriving the polymorphic stochastic model which is represented in form of

the generalized replicator equation and which serves as a fundamental description of

coevolutionary dynamics (Chapter 4). From this we deduce the monomorphic stochastic

model (Chapter 5) and the monomorphic deterministic model (Chapter 6) in order to
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obtain reduced descriptions of the coevolutionary process while retaining its essentials.

The latter models are investigated in detail (Chapter 7) and extensions to all three

models are provided (Chapter 8).

To illustrate the theoretical considerations of this part we will occasionally employ the

coevolutionary predator-prey community presented in the next part. A synopsis of all

assumptions needed for the deductions given is provided in Figure 1 of the Chapter

“Summary and Conclusions”.



Chapter 4
The Polymorphic Stochastic Model

In this chapter we present a fundamental representation of the coevolutionary processes

in ecological communities. We call the resulting mathematical description thegen-

eralized replicator equation. When excluding the effects of space, age structure and

genetics from consideration, this representation is as general as possible. It is from here

that the more reduced descriptions of coevolutionary dynamics are derived, which we

analyze in later chapters.

4.1 Characterization of Coevolutionary Communities

In this section notation and key concepts underlying our analysis of coevolutionary

dynamics are introduced.

Replicators

In Section 1.1 we already have mentioned the replicator concept, an attempt due to

Dawkins (1976) to capture the minimal conditions for evolution to occur by natural

selection. In other words, replicators are the smallest units capable of this type of

self-organization. They possess properties as below.

1. Reproduction.The replicator units can multiply by producing replicas.

2. Inheritance. The units have certain distinctive features that are basically inherited

in the process of replication.
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3. Variability. There exists some variation in the features of replicas with respect to

the original unit, not all replicas are true.

4. Interaction. The replicators exhibit some kind of interaction causing a dependence

of their reproduction or survival on the inherited features.

The following mathematical description of individuals in a community closely matches

these characteristics of Dawkins’ replicators. To allow not only for evolutionary but

for coevolutionary dynamics we consider communities comprising several species of

replicators.

Individuals, Populations and Species

The coevolutionary community under analysis is allowed to be made up of an arbitrary

numberN of species, the species are characterized by an indexi = 1; . . . ; N . At time

t there areni individuals in the population of speciesi. These individuals are identified

by an indexk = 1; . . . ; ni.

The individuals within each species can be distinct with respect toadaptive traitssi,

taken from setsbSi and being either continuous or discrete. For convenience we scale the

adaptive trait values such thatbSi � (0; 1). The restriction to one trait per species will be

relaxed in Section 8.1, it only obtains until then to keep the derivation conceivable and

the notation reasonably simple. Individuals have adaptive trait values or phenotypessik

with k = 1; . . . ; ni such that thephenotypic distributionpi(si) in speciesi is given by

pi =

niX

k=1

�sik (4.1)

with �y(x) = �(x� y) where� denotes Dirac’s�-function which in turn is defined by
R
f(x) � �(x� y) dx = f(y) for an arbitrary test-functionf . A population made up of

individuals with many different adaptive trait values is calledpolymorphic.

The development of the coevolutionary community is caused by the process of mutation,

introducing new mutants, and the process of selection, determining survival or extinction

of these mutants. The change of the population sizesni constitutes thepopulation

dynamics, that of the adaptive trait valuessi is called adaptive dynamics. Together

these make up thecoevolutionary dynamicsof the community.
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Selection

We first consider the process of selection. In an ecological community the environment

eik of an individualk in speciesi is affected by influences that can be either internal

or external with respect to the considered community. The former effects are functions

of the phenotypic distributionsp = (p1; . . . ; pN ) in the community, the latter may

moreover be subject to external effects like seasonal forcing which render the system

non-autonomous. We thus write

eik = eik(p; t) : (4.2)

The quantitiesbik anddik are introduced to denote theper capita birth and death rates

of an individualk in speciesi. These rates are interpreted stochastically as probabilities

per unit time and can be combined to yield the per capita growth rate

fik = bik � dik (4.3)

of the individual. They are affected by the trait valuesik of the individual as well as

by its environmenteik, thus with equation (4.2) we have

bik = bi(sik; p; t) and dik = di(sik; p; t) : (4.4)

Notice that the functionsbi and di are in fact functionals as they take the vector of

phenotypic distributionsp as an argument. By assuming in equation (4.4) these functions

not to depend on the particular individualk of speciesi we take the environment

to be spatially homogeneous. Since we are mainly interested in the phenomenon of

coevolution – an effect internal to the community – we will not always consider the

extra time-dependence in equations (4.4) which may be induced by external effects on

the environment.

Mutation

We now consider the process of mutation. In order to describe its properties we introduce

the quantities�ik and Mik.

The former denote thefraction of births that give rise to a mutationin the trait valuesik.

Again, these fractions are interpreted stochastically as probabilities for a birth event to
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produce an offspring with an altered adaptive trait value. These quantities may depend

on the phenotype of the considered individual itself,

�ik = �i(sik) ; (4.5)

although this complication is not frequently considered.

The quantities

Mik = Mi

�
sik; s

0

ik
� sik

�
(4.6)

determine theprobability distribution of mutant trait valuess0

ik
around the original trait

value sik. The functionsMi are not dependent on the indexk of an individual other

than via its adaptive trait valuesik. If the functionsMi and�i are independent of their

first argument, the mutation process is calledhomogeneous; if Mi is invariant under a

sign change of its second argument, the mutation process is calledsymmetric.

In the next two sections we show that the above functionsbi, di, �i andMi suffice to

construct a formal representation of the coevolutionary dynamics.

4.2 Stochastic Description
of Coevolutionary Community Dynamics

In this section the fundamental equation describing the polymorphic stochastic dynamics

of coevolutionary communities is introduced. When combined with the transition

probabilities per unit time derived in the next section we call the resulting representation

the generalized replicator equation.

Markov Property

The dynamics of the coevolutionary community are taking place in thepolymorphic

trait spacebP of phenotypic distributionsp. The events of birth, death and mutation of

individuals constitute a stochastic process onbP .

The coevolutionary dynamics possess no memory, for mutation and selection depend

only on the present state of the community. The corresponding stochastic process in

p thus will be Markovian, provided that the knowledge ofp suffices to determine the

potential for coevolutionary change in the immediate future. To meet this requirement

for real biological systems, a sufficient number of adaptive traits may need to be

considered, see Section 8.1.
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Master Equation

The coevolutionary dynamics of the community thus is described by a functional master

equation

d

dt
P (p; t) =

Z h
w
�
pjp0; t

�
� P

�
p0; t

�
� w

�
p0
jp; t

�
� P (p; t)

i
Dp0 (4.7)

for P (p; t), the probability density inbP of phenotypic distributionsp = (p1; . . . ; pN )

to be realized at timet. The probabilities per unit time for the transitionp ! p0 at

time t are denoted byw(p0
jp; t). The functional integration overbP is indicated by the

symbol D.

The equation (4.7) for the stochastic dynamics inp is an instance of a master equation

(see e.g. van Kampen 1981) and simply reflects the fact that the probabilityP (p; t) is

increased by all transitions top (first term) and decreased by all those fromp (second

term).

4.3 Transition Probabilities per Unit Time

The probabilities per unit timew(p0
jp; t) for the transitionp ! p0 at time t can be

constructed as below.

Preliminary Considerations

We start be introducing three helpful constructs.

1. Thenumber of individuals with adaptive trait valuesi in the population of species

i is obtained by

ni(si; pi) =

Z si+"

si�"

pi
�
s0i
�
ds0i (4.8)

for an arbitrarily small" > 0.

2. Theprobability distributions of offspring adaptive trait valuess0
i

arising from a birth

event in an individual with traitsi is given by

Bi

�
si; s

0

i � si
�
= (1 � �i(si)) � �

�
s0i � si

�
+

�i(si) �Mi

�
si; s

0

i � si
�
;

(4.9)

where the first term on the right hand side corresponds to birth events without

mutation and the second to those events with mutation.
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3. We define afunctional� in the spacesbPi by means of the identity
Z

F
�
p0

i

�
� �
�
p0

i � pi

�
Dp0

i = F (pi) (4.10)

holding for an arbitrary test functionalF .

From General Events to Events in a Single Species

Due to the nature of the master equation (4.7) it is only necessary to consider a single

stochastic event to cause a changedP of the probability distributionP (p; t) during the

infinitesimal time intervaldt (van Kampen 1981). Therefore the probabilities per unit

time w(p0jp; t) for the transitionp ! p0 at time t can be decomposed according to

w
�
p0jp; t

�
=

NX
i=1

wi

�
p0

i; p; t
�
�

NY
j=1
j 6=i

�
�
p0
j � pj

�
: (4.11)

Equation (4.11) can be read as guaranteeing thatw(p0jp; t) does not contribute to the right

hand side of equation (4.7) ifp0
i 6= pi happens to hold for more than onei = 1; . . . ; N .

From Events in a Single Species to Single Birth or Death Events

Let the considered stochastic event happen in speciesi. This event can remove or insert

a single individual to the population of speciesi. When we denote this individual’s trait

value bys0
i, the stochastic event is described by eitherp0

i = pi � �s0

i
or p0

i = pi + �s0

i
.

Since the stochastic event in speciesi can occur at any adaptive trait values0
i we have

wi

�
p0
i; p; t

�
=

Z h
w�

i

�
s0
i; p; t

�
��
�
p0
i �

�
pi � �s0

i

��
+

w+

i

�
s0
i; p; t

�
��
�
p0
i �

�
pi + �s0

i

�� i
ds0

i :

(4.12)

Single Birth or Death Events

The removal of an individual can only be due to a death event, thusw�

i (s
0
i; p; t) is

given by

w�

i

�
s0
i; p; t

�
= di

�
s0
i; p; t

�
� pi
�
s0
i; pi

�
; (4.13)

as multiplying the per capita death probability per unit timedi(s
0
i; p; t) of an individual

with trait s0
i by the densitypi(s0

i; pi) of individuals with that trait value yields the

transition probability density per unit time for a death event at that particular trait value.
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The insertion of an individual is due to a birth event either without a mutation or

accompanied by a mutation. By the same argument as above we obtain forw+

i
(s0

i
; p; t)

w+

i

�
s0

i; p; t
�
= bi

�
s0

i; p; t
�

� pi

�
s0

i; pi

�
+Z

bi(si; p; t) � pi(si; pi) � Mi

�
si; s

0

i � si

�
dsi

=

Z
bi(si; p; t) � pi(si; pi) �Bi

�
si; s

0

i � si

�
dsi :

(4.14)

The term in the first line corresponds to a birth event without mutation, that in the

second line to a birth event giving rise to a mutation fromsi to s0

i
. In the third line the

constructBi has been used to condense the result.

Conclusion

By collecting the results above we arrive at

w
�
p0jp; t

�
=

NX
i=1

Z h
di
�
s0

i; p; t
�
� pi
�
s0

i; pi
�
�

�
�
p0

i � pi + �s0

i

�
�

NY
j=1
j 6=i

�
�
p0
j � pj

�
+

Z
bi(si; p; t) � pi(si; pi) �Bi

�
si; s

0
i � si

�
dsi�

�
�
p0
i � pi � �s0

i

�
�

NY
j=1
j 6=i

�
�
p0
j � pj

� i
ds0

i :

(4.15)

Notice that after introducing the transition probabilities per unit time (4.15) into the

master equation (4.7) each functional�(. . . p0
i . . .) defined in the function spacesbPi

can be collapsed by a functional integration
R
. . . Dp0

i over bPi. This demonstrates

that neither the functional integration in equation (4.7) nor the occurrence of the�-

functionals in equation (4.15) causes problems in delineating the dynamics in terms

of the master equation; evaluated according to equation (4.10) they guarantee a well-

defined description of the function-valued stochastic process. In consequence, problems

of the sort having urged van Kampen to develop hismethod of compounding moments

(van Kampen 1981) do not arise in our mathematical framework.
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The above equation completes the specification of the coevolutionary process of the

community. By combining equations (4.7) and (4.15) we obtain our first and funda-

mental model of coevolutionary dynamics, thepolymorphic stochastic model. We refer

to the resulting formula as thegeneralized replicator equation.

4.4 An Algorithm for the Polymorphic Stochastic Model

An algorithm for the polymorphic stochastic model derived from equations (4.7,15)

is presented in Figure 4.1. In formulating the algorithm we choose first to restrict

attention to autonomous coevolutionary communities, i.e. systems without an extra

time dependence due to external effects on the environment. In this case the protocol

can utilize theminimal process method(Gillespie 1976; Feistel 1977) to simulate the

functional master equation. As to the validity of the presented algorithm for non-

autonomous coevolutionary communities, notice the remark at the end of this section.

Distribution of Waiting Times

According to Step D in Figure 4.1 the waiting times between two events of a sto-

chastic realization follow anexponential distribution– the standard result for processes

described by master equations that are homogeneous in time.

This inference can easily be apprehended as below. Suppose that the stochastic process

at timet is in statep with certainty. Until the next eventp ! p0 occurs at timet+�t

we thus haveP (p0; t) =
Q

N

i=1�(p
0

i
� pi). In the time interval(t; t+�t) the master

equation (4.7) then reduces to

d

dt
P (p; t) = w(pjp; t) � P (p; t)�

Z
w
�
p0
jp; t

�
Dp0

� P (p; t) : (4.16)

With w(pjp; t) = 0, the abbreviationT�1(p; t) =
R
w(p0jp; t) Dp0 and equation (4.15)

we thus obtain for the decay in the probability densityP (p; t) of the statep during the

considered time interval

P (p; t+�t) = exp

(
�

Z t+�t

t

T�1
�
p; t0

�
dt0

)
: (4.17)

Since a decrease in the probability densityP (p; t+�t) can only be due to an event

p ! p0 at time t + �t, the right hand side of equation (4.17) describes (after

normalization) the probability distribution of the waiting time�t until the next event
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An Algorithm for the

Polymorphic Stochastic Model

A. Initialize the phenotypic distributionspi with i = 1; . . . ;N at time t = 0

and specify the timetend when to stop the dynamics.

B. Calculate the birth and death probabilitiesbi(sik; p) and di(sik; p) for

each individuali = 1; . . . ; N , k = 1; . . . ; ni with phenotypesik in the

environment given byp.

C. Construct the sumswik = bi(sik; p) + di(sik; p), wi =
P

ni

k=1
wik and

w =
P

N

i=1
wi with i = 1; . . . ; N andk = 1; . . . ; ni.

D. Choose the waiting time�t for the next event to occur according to

�t = �

1

w
� ln r where 0 < r � 1 is a uniformly distributed random

number.

E. Choose speciesi with probability 1

w
� wi. Choose individualk in species

i with probability 1

wi
� wik. Choose then a birth or death event with

probability 1

wik
� bi(sik; p) and 1

wik
� di(sik; p), respectively.

F. If in Step E a birth event occurs for an individual with phenotypesik,

choose a new phenotypes0

ik
with probability densityBi(sik; s

0

ik
� sik).

G. Update time and phenotypic distributions according tot ! t + �t and

pi ! pi + �
s
0

ik
or pi ! pi � �sik for a birth or death event in speciesi

respectively.

H. Continue from Step B untilt � tend.

Figure 4.1 An algorithm for the polymorphic stochastic model. The protocol employs the minimal
process method described in the text.

happens, given that an event just has occurred at timet. For homogeneous master

equationsT�1 is independent oft and equation (4.17) reduces to

P (p; t+�t) = exp f��t=T (p)g : (4.18)

In this case waiting times simply are distributed exponentially with meanT (p).
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The Minimal Process Method

The distribution of waiting times, calculated above, is the backbone of the minimal

process method (Gillespie 1976; Feistel 1977; see also Fricke and Schnakenberg 1991).

The general algorithm can be decomposed into the repetition of four simple steps which

are outlined below.

1. Initialization of time and state.

(! Step A in Figure 4.1)

2. Calculation of all relevant transition probabilities per unit time.

(! Steps B and C in Figure 4.1)

3. Choice of a waiting time according to an exponential distribution.

(! Step D in Figure 4.1)

4. Choice of a particular event according to its relative transition probability.

(! Steps E and F in Figure 4.1)

5. Update of time and state; unless simulation completed, continuation from Step 2.

(! Steps G and H in Figure 4.1)

A set of random numbersrex, exponentially distributed according toPex(rex) =

exp f�rex=hrexig=hrexi for rex � 0 and Pex(rex) = 0 elsewhere, can be obtained

from another set of random numbersreq, equally distributed according toPeq(req) = 1

for 0 < req � 1 andPeq(req) = 0 elsewhere, by means of the following transformation

(see e.g. Schnakenberg 1991)

rex = �hrexi � ln req : (4.19)

This relation can be used to implement Step 3 above.

The minimal process method turns out advantageous compared to the simulation of a

stochastic process employing a constant time step not only because of efficiency but also

because of precision. The latter method has to simulate numerous time steps without

an event occurring and it can produce arbitrarily large deviations from the exact result

for large simulation times (Feistel 1977).
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Autonomous and Non-Autonomous Systems

Waiting times of homogeneous master equations (corresponding to autonomous systems)

have been shown above to be distributed exponentially.

Since the difference between equations (4.17) and (4.18) becomes negligible for time

steps�t being small compared to the time scale on whichT�1(p; t) changes, exponen-

tially distributed waiting times and thus the minimal process method may be applied

approximately even to non-homogeneous master equations (corresponding to systems

with an external time dependence), provided only that the typical number of events on

the timescale of the external perturbations is large. For reasonably large population sizes

within the non-autonomous coevolutionary community this simplification will usually

hold in good approximation; for more details see Section 8.2.

4.5 Sample Simulations and Further Inquiry

To illustrate the descriptive capacity of the polymorphic stochastic model, we present

some stochastic realizations of the generalized replicator equation. Examples are based

on the coevolutionary predator-prey community that is described in detail in Chapter 9.

Mutation Catastrophe

A high mutation ratio�i for a speciesi amounts to replicas seldom being true in this

population of replicators. Under these circumstances the broadening effect of mutation

on the phenotypic distributionpi is hardly counteracted by the narrowing impact of

selection. The variance of the distributionpi will continually grow, and consequently

the information comprised inpi, when initially narrow, gradually is lost. In resemblance

of the error catastropheintroduced by Eigen and Schuster (1979) we call this process

mutation catastrophe.

An example of such an almost unbiased broadening of a phenotypic distribution caused

by too large a mutation ratio is shown in Figure 4.2.
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t=102
b

Figure 4.2 Realizations of the polymorphic stochastic model. The phenotypic distributions (a)p1(s1)
and (b)p2(s2) at each point in time are depicted by grayscales (black corresponds to the population
number of the prevalent adaptive trait value and white to absent adaptive trait values). The figures show
evolutionary dynamics characteristic for high mutation ratios: the broadening effect of mutation on the
phenotypic distributions is hardly counteracted by the narrowing impact of selection. The realizations
given are made up of roughly 100 000 single birth and death events in each species. Parameters of the
coevolutionary predator-prey community are as given in Figure 4.4 except�1 = 5 � 10�2, �2 = 5 � 10�1

and �1 = �2 = 2 � 10�3.

Evolutionary Branching

The phenomenon of phenotypic distributions that were unimodal initially to gradually

become bimodal in the course of an adaptation process is calleddisruptive selection.
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Figure 4.3 Realizations of the polymorphic stochastic model. The phenotypic distributions (a)p1(s1)
and (b)p2(s2) at each point in time are depicted by grayscales (black corresponds to the population
number of the prevalent adaptive trait value and white to absent adaptive trait values). The figures show
evolutionary dynamics characteristic of the monomorphic regime: evolution occurs via sequences of trait
substitutions. The trait substitution sequences given are made up of roughly 10 000 000 single birth
and death events in each species. The inset in (b) depicts a single trait substitution, the population of
the resident adaptive trait value is decreasing in size while that of the mutant trait value increases until
it has completely replaced the former resident. The dynamics displayed in this figure are a subset of
that presented in Figure 4.4, for comparison see the dotted box there. Parameters of the coevolutionary
predator-prey community are the same as in Figure 4.4.
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Evolutionary processes of this kind are important to notice as after the occurrence

of disruptive selection has caused the phenotypic distribution in a species to become

bimodal, describing the dynamics of this distribution in terms of its average adaptive

trait value obviously is misleading.

When phenotypic or mutation variances are large and moreover the environment, in

which a particular phenotypic distribution has evolved towards a unimodal shape, is

abruptly changed such as to make selection disruptive, bimodality is the expected

outcome. On the other hand, if phenotypic and mutation variances are small, disruptive

selection is more difficult to generate by external manipulations of the environment. For

this reason it is interesting to ask whether the evolutionary or coevolutionary process

itself could generate an environment that gives rise to disruptive selection. Such an

event has been calledevolutionary branchingby Metz et al. (1994) and has been shown

to be feasible when (i) considering only a single species’ adaptation to its constant

environment or (ii) assuming deterministic population dynamics.

The relevance of evolutionary branching for the present work stems from the fact that

its incidence would violate theprinciple of mutual exclusionintroduced in Section 5.1.

The mathematical system for the description of coevolutionary dynamics as presented

in Chapters 5 and 6, resting on this principle, then ought to be extended. Fortunately,

the analytic framework developed up to Chapter 7 allows to narrow down substantially

the circumstances under which evolutionary branching can occur, see Section 7.3. Even

in the remaining cases the potential for evolutionary branching is moot: when allowing

both for coevolution and for stochasticity in the species’ population dynamics – two

requirements met by the generalized replicator equation established above – no instance

of evolutionary branching has been observed by the author.

Trait Substitution Sequences

When mutation ratios�i are low,�i � 1, the change of the phenotypic distributions

pi over time takes an altogether different shape compared to the case of the mutation

catastrophe.

Now the process of selection is not dominated by that of mutation and consequently

the distributions of adaptive trait values remain narrow. In fact, the temporal change

of these distributions can accurately be described by a single adaptive trait value in

each species being replaced from time to time by another one. This is the characteristic
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Figure 4.4 Realizations of the polymorphic stochastic model. Trait substitution sequences starting at the
five initial conditions (indicated by asterisks) are depicted by continuous lines. Each of these five trait
substitution sequences is made up of roughly 500 000 000 single birth and death events. The dotted box
indicates the region corresponding to the trait substitution sequences shown in detail in Figure 4.3. The
discontinuous oval line is the boundary of the region of coexistence, see Section 5.1. The coevolution
of both species drives their adaptive trait values towards a common equilibriumŝ. Parameters of the
coevolutionary predator-prey community are:h = 0:2, c1 = 2:0, c2 = 8:0, �1 = �2 = 5 � 10

�3 and
�1 = 10

�4; the remaining parameters are as given in Figure 9.3.

feature of what we designate themonomorphic regime. We call the adaptive trait value

that is prevalent at a point in time theresidentadaptive trait value and the event of

its replacement by a mutant adaptive trait value atrait substitution. The process of

evolution in each species consequently is described in terms of atrait substitution

sequence. The population processes underlying a single trait substitution are analyzed

in Section 5.1. The results obtained there underpin the derivation of the stochastic

dynamics for trait substitution sequences in Section 5.2 and 5.3.

Instances of such trait substitution sequences, as described by the generalized replicator

equation, are presented in Figure 4.3. The inset shows a single trait substitution: after

a mutant trait value has entered the population, it gradually increases in number such
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that resident and mutant trait values coexist until the mutant one has gone to fixation

by replacing the former resident one. In Figure 4.4 we have used the polymorphic

stochastic model to picture the combined dynamics of trait substitution sequences in

two coevolving species originating from different initial conditions. We will use these

five particular coevolutionary processes as running examples to illustrate the parallel

predictions made by our three dynamical models of coevolution (Figure 4.4, Figure 5.3,

Figure 5.4 and Figure 6.2).



Chapter 5
The Monomorphic Stochastic Model

In this chapter we establish a stochastic description of the monomorphic coevolutionary

dynamics. Under certain conditions it is possible to deduce from the generalized replica-

tor equation, which defines the polymorphic stochastic model, a reduced representation

of the coevolutionary process; this reduction leads us to the monomorphic stochastic

model. The central idea here is to envisage a sequence of trait substitutions as adirected

random walk in trait spacedetermined by the processes of mutation and selection.

5.1 The Monomorphic Regime and Trait Substitutions

In this section we take the first steps to deduce from the generalized replicator equation

the monomorphic stochastic model. In particular we stress the assumptions on which

the latter is based.

Conditions for Monomorphism

In Section 4.5 we have seen that the complexity inherent in the polymorphic stochastic

model can be substantially alleviated if only two requirements are met. First, when no

evolutionary branching occurs in the speciesi = 1; . . . ; N , the phenotypic distributions

pi stay unimodal in the course of the coevolutionary process. There is no disruptive

selection acting on the distributions which might turn them bimodal. Second, if�i is

sufficiently small for alli = 1; . . . ; N , the phenotypic distributionspi in each species
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will be sharply concentrated on a single phenotype, the resident phenotype. In this

case selection is strong enough to counteract the impact of mutation to broaden the

phenotypic distributions.

To proceed with the analysis of coevolutionary dynamics we now raise these observa-

tions to acquire the status of assumptions.

A1. The mutation ratios�i are sufficiently small for alli = 1; . . . ; N .

A2. No two adaptive trait valuessi and s0

i
can coexist in the populations of species

i = 1; . . . ; N for t ! 1 when not renewed by mutations.

These two condition specify what we call themonomorphic regime. The second

condition is sometimes referred to as theprinciple of mutual exclusion. Prerequisites

for this principle are investigated in Section 7.3.

Structure of Trait Substitutions

With these two provisions, we can take the phenotypic distributions as being given by

pi = ni � �si
at almost any point in time, whereni is the population size of species

i = 1; . . . ; N and si its resident phenotype. We call such a distribution of resident

phenotypesmonomorphic.

The simulations presented in Section 4.5 have shown that in this monomorphic regime

adaptive change occurs via a sequence of trait substitutions, where a resident phenotype

sj with j 2 1; . . . ; N is replaced by a mutant phenotypes0

j. The time period

corresponding to a single such trait substitutionsj ! s0

j can be partitioned into four

phases.

1. Stasis.Throughout a time interval�s the phenotypic distributionpj in speciesj is

given bypj = nj � �sj . Mutations occurring during this phase are not successful in

invading the resident populations.

2. Mutation. At the end of that time interval a mutation occurs introducing a mutant

phenotypes0

j into the population of speciesj such thatpj = nj � �sj + �s0

j
. This

mutant is going to be successful.

3. Invasion. The mutant grows in population size to exceed the critical threshold for

accidental extinction (Wissel and St¨ocker 1991). We then havepj = nj ��sj+n0

j ��s0

j
.
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4. Fixation. The principle of mutual exclusion requires that after invasion the mutant

phenotype will replace the once resident phenotype such thatpj = n0

j � �s0

j
, this

happens some time�f after the mutation had occurred.

Note that in the above equations forpj the quantitiesnj andn0

j denote the population

sizes of resident and mutant phenotype at the end of the particular phase considered

rather than the same fixed numbers throughout.

The four steps outlined above can be repeated many times. The resulting process is

a trait substitution sequence. According to condition A1 above we have�f � �s and

hence the phases 2, 3 and 4 take place on a timescale much shorter than that of phase 1.

Reduction of the Generalized Replicator Equation

We now utilize the generalized replicator equation (4.7,15) to analyze in detail the

successive steps of the trait substitution process.

Let us consider a trait substitution in speciesj. We formally assign the population of

the mutant adaptive trait value the indexi = 0: s
0
= s0

j, n0 = n0

j, b0 = bj andd
0
= dj .

In the course of this trait substitution the phenotypic distributions in the coevolutionary

community are given by

ep =
�
n
1
� �s1 ; . . . ; nj � �sj + n

0
� �s0; . . . ; nN � �sN

�
: (5.1)

To simplify notation we writeP (n; t) = P (ep; t), eb ji (si; s; n; t) = bi(si; ep; t) and
ed j
i (si; s; n; t) = di(si; ep; t) for i = 0; . . . ; N .

When introducingp = ep into equations (4.7) and (4.15) and accounting for the fact

that effectively only one mutation ought to be considered during a trait substitution

we arrive atZ
w
�
p0jep; t� � P (ep; t)Dp0

=

NX
i=0

hed j
i (si; s; n; t) � ni +

eb ji (si; s; n; t) � ni
i
� P (n; t)

(5.2)

and Z
w
�ep jp0; t

�
� P
�
p0; t

�
Dp0

=

NX
i=0

h ed j
i

�
si; s; n+ 1i; t

�
� (ni + 1) � P

�
n + 1i; t

�
+

eb ji �si; s; n� 1
i; t
�
� (ni � 1) � P

�
n � 1

i; t
� i

:

(5.3)
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The 1
i are vectors with components1i

j = �ij where�ij denotes the Kronecker symbol.

Note thateb ji �si; s; n� 1i; t
�
= 0 for ni = 0. Combining these two results according

to equation (4.7) we obtain a stochastic description for the population dynamics in the

course of a trait substitution

d

dt
P (n; t) =

NX
i=0

h ed j
i

�
si; s; n+ 1

i; t
�
� (ni + 1) � P

�
n+ 1i; t

�
+

eb ji �si; s; n� 1i; t
�
� (ni � 1) � P

�
n� 1i; t

�
�

ed j
i (si; s; n; t) � ni � P (n; t)�

eb ji (si; s; n; t) � ni � P (n; t)
i
:

(5.4)

To account for the single successful mutation in phase 2 of such a trait substitution,

see above, we use in equation (5.4) initial conditionsP (n; t) / �0;n0 for phase 1 and

P (n; t) / �1;n0 for phase 3.

Resident Population Dynamics

To further simplify this stochastic description of the population dynamics during a trait

substitution we introduce additional assumptions.

A3. The populations of the resident adaptive trait values are sufficiently large during

the stasis phase of a trait substitution in order not to be subject to accidental

extinction.

A4. The population dynamics of the resident adaptive trait values settle (apart from

fluctuations) towards an equilibrium point.

A5. There is no external impact on the environment of the coevolutionary community

that renders the system non-autonomous.

Relaxations of conditions A4 and A5 are provided in Section 8.2.

Owing to condition A3 we may safely describe the population dynamics of the resident

adaptive trait values during phase 1 of the trait substitution by means of a deterministic

approximation

d

dt
ni = ni � ef j

i (si; s; n) (5.5)

following from equation (5.4) for resident population sizesn = (0; n1; . . . ; nN ) treated

as continuous variables and with

ef j
i (si; s; n) =

eb ji (si; s; n)� ed j
i (si; s; n) : (5.6)
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We then exploit condition A4 in combination with equations (5.5) to define theequi-

librium population sizeŝn = (0; n̂1; . . . ; n̂N) of the resident adaptive trait valuess by

ef j
i (si; s; n̂(s)) = 0 (5.7)

for all i = 1; . . . ; N . According to condition A3 these population sizes are also

approximately valid in the course of phases 2 and 3 of the trait substitution during

which the mutant is rare.

For a given sets of resident adaptive trait values, equations (5.7) determine whether

these trait values can coexist. As we are interested in the coevolutionary dynamics of

theN -species community, we need to consider the subspace of themonomorphic trait

spacebS in which the resident populations of all species have positive population sizes,

bSc =
n
s 2 bS j n̂i(s) > 0 for all i = 1; . . . ; N

o
: (5.8)

We call this subspace ofbS the region of coexistence. Since equations (5.5) are only

valid for large resident population sizesni, extinction of a resident population is not

only certain for resident adaptive trait valuess outside the regionbSc but is also probable

for those close to the boundary@ bSc of bSc
Mutant Population Dynamics

By virtue of conditions A3 to A5 together with equation (5.4) we can finally approximate

the stochastic population dynamics of the mutant adaptive trait value during phase 3 of

the trait substitution by means of the following equation

d

dt
P
�
n0

j; t
�
=dj

�
s0

j; s
�
�

�
n0

j + 1
�
� P

�
n0

j + 1; t
�
+

bj
�
s0

j; s
�
�

�
n0

j � 1
�
� P

�
n0

j � 1; t
�
�

dj
�
s0

j; s
�
� n0

j � P
�
n0

j; t
�
�

dj
�
s0

j; s
�
� n0

j � P
�
n0

j; t
�
:

(5.9)

Here we have introduced the abbreviations

bj
�
s0

j; s
�
= eb jj �s0

j; s; n̂(s)
�

(5.10)

and

dj
�
s0

j; s
�
= ed j

j

�
s0

j; s; n̂(s)
�

(5.11)
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for the per capita birth and death rates of a mutant adaptive trait values
0

j in an

environment determined by the monomorphic resident populations with adaptive trait

values s.

Note that although these probabilities per unit time can formally be combined to yield

f j

�
s0

j; s
�
= bj

�
s0

j; s
�
� dj

�
s0

j; s
�
; (5.12)

the per capita growth rate of a mutant adaptive trait values0

j in an environment

determined by the monomorphic resident populations with adaptive trait valuess, it is

essential to recognize that a deterministic approximation of mutant population dynamics,
d
dt
n0

j = n0

j � f j

�
s0

j; s
�
, is not permitted during the invasion phase 3 as the mutant then

is rare. Mutants enter the system at population size1, hence there is no alternative to

a stochastic treatment of their population dynamics.

The equations derived above are the bases of our stochastic description of trait sub-

stitution sequences and will be employed in Section 5.3 to derive the monomorphic

stochastic model of coevolutionary dynamics.

5.2 Stochastic Description
of Trait Substitution Sequences

In this section we present a stochastic description of the monomorphic coevolutionary

dynamics by envisaging trait substitution sequences as directed random walks in the

monomorphic trait space. The stochastic description is completed by the transition

probabilities per unit time derived in the next section.

Markov Property

The adaptive dynamics of theN -species coevolutionary community are taking place in

the subspacebSc of the monomorphic trait space of adaptive trait valuess. The trait

substitution events constitute a stochastic process onbSc. Stochasticity is imposed by (i)

the process of mutation and (ii) the impact of demographic stochasticity on rare mutants.

The adaptive dynamics possess no memory, for mutation and selection depend only on

the present state of the community. The corresponding stochastic process ins thus will

be Markovian, provided that the knowledge ofs suffices to determine the potential for

adaptive change in the immediate future. To meet this requirement for real biological
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systems, a sufficient number of adaptive traits might need to be considered, see Section

8.1.

Master Equation

The stochastic adaptive dynamics of theN -species community inbSc thus is described

by a master equation

d

dt
P (s; t) =

Z h
w
�
sjs0; t

�
� P
�
s0; t

�
� w

�
s0
js; t

�
� P (s; t)

i
ds0: (5.13)

for P (s; t), the probability density of resident adaptive trait valuess = (s1; . . . ; sn) to

be realized at timet. The probabilities per unit time for the transitionss ! s0 at time

t are denoted byw(s0
js; t).

The equation above in principle is capable of describing the stochastic adaptive process

in the coevolutionary community even for environments that are subject to time-

dependent external influences. Yet, in the following sections we will restrict attention to

autonomous systems, where such a time dependence is absent. The reason for this is that

the principle of mutual exclusion, see also Section 7.3, on which in turn the assumption

of monomorphism rests, is not generally valid for arbitrarily varying environments. We

come back again to the general case in Section 8.2.

5.3 Transition Probabilities per Unit Time

We now turn to the derivation of the transition probabilities per unit timew(s0
js).

From General Events to Trait Substitution Events in a Single Species

Since the changedP in the probabilityP (s; t) is only considered during the infinitesimal

evolutionary time intervaldt it is understood that only transitions corresponding to a

trait substitution in a single species have a nonvanishing probability per unit time. This

is denoted by

w
�
s0
js
�
=

nX
i=1

wi

�
s0

i
; s
�
�

nY
j=1

j 6=i

�
�
s0
j
� sj

�
(5.14)

where � is Dirac’s delta function.

For a givens, the ith component of this sum can be envisaged in the space of alls0
� s

as a singular probability distribution that is only nonvanishing on theith axis.
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From Trait Substitution Events in a Single Species
to Mutation and Selection Events

The derivation ofwi(s
0

i
; s), the transition probability per unit time for the trait substi-

tution si ! s0

i
, comes in three parts.

First, as explained in Section 5.1, a trait substitution comprises four phases: stasis,

mutation, invasion and fixation. The latter two correspond to the process of selection. As

the phases of mutation, invasion and fixation are statistically uncorrelated, the probability

per unit timewi for a complete trait substitution event can be decomposed into the

probability per unit timeMi that the mutant enters the population (phase 2: mutation)

times the conditional probabilitySi for invasion given mutation, i.e. the probability of a

single mutant individual to successfully escape accidental extinction (phase 3: invasion)

wi

�
s0

i; s
�
=Mi

�
s0

i; s
�
� S i

�
s0

i; s
�
: (5.15)

An additional factor (phase 4: fixation) would have been required, had we not assumed

the principle of mutual exclusion which guarantees that invasion implies fixation.

Therefore the corresponding conditional probability of fixation given invasion is of

value 1.

Mutation Events

Second, we compute the probability per unit timeMi that the mutant enters the

population.

The processes of mutation in distinct individuals are statistically uncorrelated. Thus the

probability per unit timeMi is given by the product of the following three terms.

1. The per capita mutation rate�i(si) � bi(si; s) for the traitsi. The termbi(si; s) is

the per capita birth rate of resident individuals of theith species in the environment

determined by the monomorphic resident populations with adaptive trait valuess,

and�i(si) denotes the fraction of births that give rise to mutations in the speciesi.

2. The population sizêni(s) of the ith species. The product of this factor with the

first term yields the overall mutation rate in the population of speciesi.

3. The probability distributionMi(si; s
0

i
� si) for the mutation process in the traitsi.
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Figure 5.1 Invasion success of a rare mutant. The probabilitySi(s
0

i
; s) of a mutant population initially

of size1 with adaptive trait values0

i
in a community of monomorphic resident populations with adaptive

trait valuess to grow in size such as to eventually overcome the threshold of accidental extinction is
dependent on the per capita growth and death rates,f

i
(s0

i; s) anddi(s
0

i; s), of individuals in the mutant
population. Deleterious mutants withf

i
(s0

i
; s) < 0 go extinct with probability1 but even advantageous

mutants withf i
(s0

i
; s) > 0 have a survival probability less than1. Large per capita deaths rates hinder

invasion success while large per capita growth rates of the mutant favor it.

Collecting the expressions above we obtain

Mi

�
s0

i; s
�
= �i(si) � bi(si; s) � n̂i(s) �Mi

�
si; s

0

i � si

�
(5.16)

as the probability per unit time that the mutant enters the population.

Selection Events

Third, we consider the process of selection determining the probabilityS i of escaping

extinction.

Since mutants enter initially in a single individual, the impact of demographic stochas-

ticity on their population dynamics must not be neglected (Fisher 1958). The situation is

different, however, for the resident populations; here we have assumed that the equilib-

rium population sizeŝni(s) are large enough for there to be negligible risk of accidental

extinction.
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Two results stem from this.

1. Frequency-dependent effects on the population dynamics of the mutant can be

ignored when the mutant is rare relative to the resident.

2. The actual equilibrium size of the mutant after fixation is not important as long as

it is large enough to exceed a certain threshold. Above this threshold the effect of

demographic stochasticity is negligible (Wissel and St¨ocker 1991).

The probability that the mutant population reaches sizen starting from size1 depends

on its per capita birth and death rates,b andd. Based on equation (5.9) and considering

the result 1 above, this probability can be calculated analytically . The result is given by

[1� (d=b)]=[1� (d=b)
n

] (Bailey 1964; Goel and Richter-Dyn 1974) with the per capita

birth and death rates of the rare mutant,b = b
i
(s0

i
; s) and d = d

i
(s0

i
; s). We exploit

result 2 by taking the limitn ! 1.

The probabilityS i of escaping extinction is thus given by

S
i

�
s0

i
; s
�
=

�
1 � di(s

0

i
; s)=bi(s

0

i
; s) for di(s

0

i
; s)=bi(s

0

i
; s) < 1

0 for d
i
(s0

i
; s)=b

i
(s0

i
; s) � 1

= b
�1

i

�
s0
i
; s
�
�

�
f
i

�
s0
i
; s
��
+

(5.17)

where the function(. . .)
+

: x ! x � �(x) leaves positive arguments unchanged and

maps negative ones to zero.

In consequence of equation (5.17), deleterious mutants (with a per capita growth rate

smaller than that of the resident type) have no chance of survival but even advantageous

mutants (with a greater per capita growth rate) experience some risk of extinction, see

Figure 5.1.

Conclusion

We conclude that the transition probabilities per unit time for the trait substitutions

si ! s0
i

are given by

wi

�
s0
i
; s
�
=�i(si) � bi(si; s) � n̂i(s) �Mi

�
si; s

0

i
� si

�
�

b
�1

i

�
s0
i
; s
�
�

�
f
i

�
s0
i
; s
��
+
:

(5.18)

This result completes the stochastic representation of the mutation-selection process in

terms of the master equation. By combining equations (5.13), (5.14) and (5.18) we have

derived our second model of coevolutionary dynamics, themonomorphic stochastic

model.
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Recovery of Invasion Criterion

From equation (5.18) it is easy to conclude that a sufficient condition for a resident

population with adaptive trait valuesi not to be invadable by a mutant adaptive trait

values
0

i
(in an environment determined by the monomorphic resident populations with

adaptive trait valuess) is given byf i(s
0

i
; s) < 0 or equivalently by

f i(si; s) > f i

�
s0

i; s
�
: (5.19)

This condition closely resembles the inequality (2.1) for evolutionarily stable strategies,

which is thus recovered from our stochastic approach.

We only note in passing that when resident populations are not assumed to be sufficiently

large for not being subject to accidental extinction, invasion always is possible with

some finite probability per unit time.

5.4 An Algorithm for the Monomorphic Stochastic Model

An algorithm for the monomorphic stochastic model derived from equations (5.13,14,18)

is presented in Figure 5.2. As in the case of the polymorphic stochastic model we again

restrict attention to autonomous coevolutionary communities in order to employ for the

algorithm the minimal process method introduced in Section 4.4.

Distribution of Waiting Times

According to Step C in Figure 5.1 the waiting times between two events of a stochastic

realization follow an exponential distribution. By the same line of reasoning as given in

Section 4.4 we obtain for the distribution of waiting times between two subsequent trait

substitution events in the monomorphic stochastic model (apart from normalization)

P (s; t+�t) = exp

(
�

Z t+�t

t

T�1
�
s; t0

�
dt0

)
: (5.20)

with T�1(s; t) =
R
w(s0js; t) ds0. For homogeneous master equations (5.13) equation

(5.20) reduces to

P (s; t+�t) = exp f��t=T (s)g : (5.21)
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An Algorithm for the

Monomorphic Stochastic Model

A. Initialize the adaptive trait valuessi with i = 1; . . . ; N at timet = 0 and

specify the timetend when to stop the dynamics.

B. Construct the integralswi =
R
wi(s

0

i
; s) ds0

i
with i = 1; . . . ; N and the

sum w =
P

N

i=1
wi.

C. Choose the waiting time�t for the next event to occur according to

�t = �

1

w
� ln r where 0 < r � 1 is a uniformly distributed random

number.

D. Choose speciesi with probability 1

w
� wi.

E. Choose for speciesi a new phenotypes0

i
with probability density 1

wi
�

wi(s
0

i
; s).

F. Update time and adaptive trait values according tot! t+�t andsi ! s0

i
.

G. Continue from Step B untilt � tend.

Figure 5.2 An algorithm for the monomorphic stochastic model. The protocol employs the minimal
process method described in Section 4.4.

Autonomous and Non-Autonomous Systems

The remarks in Section 4.4 on the validity of the presented algorithm for non-

autonomous coevolutionary communities apply equally to the monomorphic stochastic

model. For time steps�t being small compared to the time scale on whichT�1(s; t)

changes, exponentially distributed waiting times and thus the minimal process method

may be applied approximately even to non-homogeneous master equations (correspond-

ing to systems with an external time dependence), provided only that the typical number

of events on the timescale of the external perturbations is large.

This prerequisite coincides with the condition that is required for the principle of mutual

exclusion to hold even in the case of varying environments. For more details see

Sections 7.3 and 8.2.



Chapter 5 The Monomorphic Stochastic Model 69

s2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

*
*

*

*
*

s1

Figure 5.3 Realizations of the monomorphic stochastic model. Five directed random walks in trait
space for each of the five initial conditions (indicated by asterisks) are depicted by continuous lines. The
discontinuous oval line is the boundary of the region of coexistence. The coevolution of both species
drives their adaptive trait values towards a common equilibriumŝ. Parameters of the coevolutionary
predator-prey community are the same as in Figure 4.4.

5.5 Sample Simulations and Further Inquiry

The information contained in the stochastic representation of the adaptive process can

be used in several respects.

Bundles of Trait Substitution Sequences

First, we can employ the algorithm presented in the last section to obtain actual

realizations of the stochastic mutation-selection process.

We again illustrate this method by means of an example of predator-prey coevolution. A

portion of the two-dimensional monomorphic trait spacebS of this system is depicted in

Figure 5.3. The dashed line surrounds the region of coexistencebSc. Within this region

several trait substitution sequences(s1(t); s2(t)) are displayed by continuous lines.
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Figure 5.4 Mean paths of the monomorphic stochastic model. Ten trait substitution sequences for each
of the five initial conditions (indicated by asterisks) are combined to obtain the mean paths, depicted by
continuous lines. The jaggedness of these lines is caused by the finite number of ten trait substitution
sequences used for constructing the mean paths. The discontinuous oval line is the boundary of the region
of coexistence. The coevolution of both species drives their adaptive trait values towards a common
equilibrium ŝ. Parameters of the coevolutionary predator-prey community are the same as in Figure 4.4.

Note that trait substitution sequences starting from the same initial state are not identical.

This underlines the unique, historical nature of any evolutionary process. But, though

these paths are driven apart by the process of mutation, they are kept together by the

directional impact of selection.

Definition of Mean Paths

Second, the latter observation underpins the introduction of a further concept from

stochastic process theory.
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By imagining a large numberr of independent trait substitution sequencess
j
(t) =

�
s
j
1
(t); . . . ; s

j
N (t)

�
, with j = 1; . . . ; r, starting from the same initial state, it is straight-

forward to apply an averaging process in order to obtain themean pathhsi(t) by

hsi(t) = lim
r!1

1

r
�

rX

j=1

s
j
(t) : (5.22)

The construction of these mean paths is illustrated in Figure 5.4 for the case of predator-

prey coevolution. By comparison of Figure 5.4 to Figures 5.3 and 4.4 it can be seen

that the mean paths appear to capture the essential features of the adaptive process. This

observation is further exploited in the next chapter.





Chapter 6
The Monomorphic Deterministic Model

The mean paths of the monomorphic stochastic model, introduced in Section 5.5,

obviously summarize the essential features of the adaptive process. Hence it is desirable

to obtain an explicit expression for computing themean path dynamics.

Rather than averaging over lots of stochastic realizations as shown in Section 5.5, in

this chapter we derive a system of ordinary differential equations that directly serves as

a deterministic approximation of the mean path dynamics.

6.1 Dynamics of Mean Path and Deterministic Path

The mean path has been defined in equation (5.22) as the average over an infinite

number of independent realizations of the stochastic process.

Mean Path Dynamics

Equivalently, we can employ the probability distributionP (s; t) considered in the last

chapter to define the mean of an arbitrary functionF (s) by hF (s)i(t) =
R
F (s) �

P (s; t) ds (Gardiner 1985).

In particular we thereby obtain for the mean path

hsi(t) =

Z
s � P (s; t) ds : (6.1)
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The different statess thus are weighted at timet according to the probabilityP (s; t)

of their realization by the stochastic process at that time.

In order to describe the dynamics of the mean path we start with the expression
d

dt
hsi(t) =

Z
s �

d

dt
P (s; t) ds : (6.2)

and utilize the master equation to replaced
dt
P (s; t). One then finds with some algebra

d

dt
hsi(t) =

Z Z �
s0 � s

�
� w

�
s0js

�
� P (s; t) ds0 ds : (6.3)

By exploiting the�-function property ofw(s0js), see equation (5.14), and introducing

the jth jump moment of theith species,

aji(s) =

Z �
s0

i � si
�j

� wi

�
s0

i; s
�
ds0

i (6.4)

with aj =
�
aj1; . . . ; ajN

�
, we obtain

d

dt
hsi(t) = ha1(s)i(t) : (6.5)

Deterministic Path Dynamics

If the first jump momenta1(s) were a linear function ofs, we could make use of the

relation ha1(s)i = a1(hsi) giving a self-contained equation for the mean path
d

dt
hsi(t) = a1(hsi(t)) : (6.6)

However, the adaptive dynamics typically are nonlinear so that the relationha1(s)i =

a1(hsi) does not hold. Nevertheless, as long as the deviations of the stochastic

realizations from the mean path are relatively small or, alternatively, the nonlinearity

is weak, the equation above provides a very good approximation to the dynamics of

the mean path.

As an alternative to the classical Kramers-Moyal expansion, the result (6.6) can be

derived via a controlled series expansion, called theomega-expansion(van Kampen

1962, 1981). Without going into details we only mention that for this purpose one can

utilize ��1

i , the inverses of the standard deviations of the mutation distributionsMi, as

system size parameters. Similar to constructing the thermodynamic limit in statistical

mechanics (see e.g. Huang 1987), one can then show that the dynamics (6.5) of the mean

path of the adaptive process converge to equation (6.6) for large system size parameters.

For details on this method see van Kampen (1962, 1981) and Kubo et al. (1973). In

order to distinguish between the mean path itself and that actually described by equation

(6.6), the latter is called thedeterministic path(Serra et al. 1986).
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6.2 Deterministic Approximation in First Order

In this section we derive an equation for the deterministic approximation of the adaptive

process. We show that when taking the approximation only to first order and invoking

further simplifying assumptions as to the mutation process, we recover the canonical

equation of adaptive dynamics as described in Section 2.3.

However, the mathematical framework developed here is capable (i) of providing higher

order correction terms to the canonical equation and (ii) of allowing for more general

ecological and evolutionary scenarios than the canonical result. In the next section we

start to develop these generalizations, further extensions are provided in Chapter 8.

The Deterministic Path of the Adaptive Process

We can calculate the deterministic path of the coevolutionary dynamics by substituting

equation (5.18) into (6.4) and the result into (6.6). Since in the remainder of this

chapter we concentrate on the deterministic approximation, we will cease denoting it

by angle bracketsh. . .i. For the purpose of comparison to the canonical equation of

adaptive dynamics as presented in Section 2.3, in this section we are interested in a

description of the adaptive dynamics that is as simple as possible. For this reason we

temporarily assume mutation processes to be symmetric. We again return to general

mutation processes in the next section.

By proceeding as described above we obtain

d

dt
si =�i(si) � bi(si; s) � n̂i(s)�Z

Ri(s)

�
s0

i � si
�
�Mi

�
si;s

0

i � si
�
� b

�1
i

�
s0i; s

�
� f i

�
s0i; s

�
ds0i

(6.7)

where, as an alternative to employing the function(. . .)
+

in the integrand, see equation

(5.18), in equation (6.7) we have restricted therange of integrationto s0i 2 Ri(s) with

Ri(s) =
n
s0i 2 bSi j f i

�
s0i; s

�
> 0

o
: (6.8)

Note that the process of mutation causes the evolutionary rated
dt
si to be dependent on

the per capita growth and birth rates of all possible mutant traitss0i. This dependence

is manifested both by the integrand of (6.7) and in the range of integration (6.8).
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First Order Result

In order to transform the described global coupling into a local one we apply a Taylor

expansion tof i(s
0

i
; s) in equation (6.8) andb

�1

i (s0
i
; s) � f i(s

0

i
; s) in equation (6.7) about

s0
i
= si. Higher orders in these expansions are discussed in Section 6.3; in this section

we will use the results only up to first order,

f i

�
s0i; s

�
= @ 0

i f i(si; s) �

�
s0i � si

�
(6.9)

and

b
�1

i

�
s0
i; s

�
� f i

�
s0
i; s

�
= b

�1

i (si; s) � @
0

i f i(si; s) �
�
s0i � si

�
: (6.10)

We have exploited the conditionf i(si; s) = 0 above, for the population dynamics of

the resident species are assumed to be at equilibrium.

Since derivatives of the ecological rate functions will be used frequently, we apply the

abbreviated notations

@ 0

i f i =
@

@s0
i

f i ; @if i =
@

@si

f i (6.11)

and analogously for all functions taking the arguments(s0
i
; s).

From equations (6.8) and (6.9) we can infer that the rangeRi(s) of integration in this first

order result is either(si;+1) or (�1; si), depending only on the sign of@ 0

i
f i(si; s).

As we assumed the mutation distributionMi to be symmetric in its arguments0
i
� si,

we obtain the same result in both cases by substituting equation (6.10) into (6.7)

d

dt
si =

1

2
� �i(si) � �

2

i (si) � n̂i(s) � @
0

i f i(si; s) (6.12)

where

�2i (si) =

Z
�s2i �Mi(si;�si) d�si (6.13)

denotes thesecond moment of the mutation distributionMi. Since the first moment of

Mi vanishes due to symmetry, the second moment of this distribution equals its variance.

The set of equations (6.12) provides a first order, deterministic approximation of the

coevolutionary dynamics. These equations define a simple version of themonomorphic

deterministic model; a more refined one is provided in form of equations (6.19).
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Interpretation of the First Order Result

From equation (6.12) we see that the rate of evolution in the traitsi is determined by

two factors.

1. The first terms in equation (6.12) represent the influence of mutation. This product

is affected by the fraction�i(si) of mutations per birth and by the variance�2
i
(si)

of the mutation distributionMi. For homogeneous mutation processes these terms

are constant. The third factor̂ni(s) is the equilibrium population size. All these

three terms make up theevolutionary rate coefficientwhich is non-negative and

serves to scale the rate of evolutionary change.

2. The last factor accounts for the impact of selection. The function

@ 0

i f i(si; s) =
@

@s0

i

fi

�
s0

i; s
� �
�
�
s
0

i=si

= lim
�si!0

1

�si
�

�
f i(si +�si; s)� f i(si; s)

�

= lim
�si!0

1

�si
� f i(si +�si; s)

(6.14)

which we call theselection derivative(Marrow et al. 1992), indicates the sensitivity

of the per capita growth rate of a species to a change in the traitsi. It is a measure

of the selection pressure generated by the environment through the ecological

interactions. Consequently, this factor determines the direction of adaptive change.

When the selection derivative off i is positive (negative), an increase (a decrease)

of the trait valuesi will be advantageous in the vicinity of the resident trait value.

The sign of the selection derivative evidently carries important information on the

dynamical structure of the mutation-selection process; yet, in Section 7.2 we demonstrate

that this information in general is not sufficient to predict evolutionary attractors.

Recovery of the Canonical Equation of Adaptive Dynamics

By means of equation (6.12) we have recovered the canonical equation (2.3) of adap-

tive dynamics from the stochastic ecological processes underlying the coevolutionary

process.

For the evolutionary rate coefficients we obtain

ki(s) =
1

2
� �i(si) � �

2

i (si) � n̂i(s) : (6.15)
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In addition, we have shown the appropriate measure of “fitness” to be given by the per

capita growth rate of a rare mutant

Wi

�
s

0

i; s
�
= f i

�
s

0

i; s
�
: (6.16)

In the next section and in Chapter 8 we indicate how the canonical result can be

generalized.

6.3 Deterministic Approximation in Higher Orders

The result (6.12) for the deterministic approximation of the adaptive process needs to

be generalized for two reasons.

1. The process of mutation has induced a global coupling in the adaptive dynamics

(6.7). To substitute it precisely by a local one, an infinite number of orders in the

Taylor expansions off i(s
0

i
; s) andb

�1

i (s0
i
; s) � f i(s

0

i
; s) abouts0

i
= si is required.

2. Rather than restricting mutation distributionsMi to be symmetric, general distribu-

tion functions ought to be allowed (Mackay 1990).

Higher Order Result

The rth order results for the Taylor expansions off i(s
0

i
; s) and b

�1

i (s0
i
; s) � f i(s

0

i
; s)

about s0
i
= si are given by

f i

�
s
0

i; s

�
=

rX
j=1

�
s
0

i � si

�j
�

1

j!
� @

0j
i f i(si; s) (6.17)

and

b
�1

i

�
s
0

i; s
�
� f i

�
s
0

i; s
�

=

rX
j=1

�
s
0

i � si

�j
�

1

j!
�

jX
j0=1

�
j

j
0

�
� @

0j0

i f i(si; s) � @
0j�j0

i b
�1

i (si; s) :
(6.18)

Again we have already accounted forf i(si; s) = 0.

Substituting equations (6.18) into (6.7) yields the result for the deterministic approxi-

mation of the coevolutionary dynamics inrth order

d

dt
si =�i(si) � n̂i(s)�

rX
j=1

mj+1;i(s) �
1

j!
�

jX
j0=1

�
j

j
0

�
� @

0j0

i f i(si; s) � @
0j�j0

i b
�1

i (si; s)
(6.19)
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with

mji(s) =

Z
Ri(s)

�
s0

i � si
�j
�Mi

�
s0

i � si
�
ds0

i : (6.20)

The range of integration in (6.20) is given by substituting (6.17) into (6.8)

Ri(s) = fs0

i 2
bSi j

rX
j=1

�
s0

i � si
�j
�
1

j!
� @

0j
i f i(si; s) > 0g : (6.21)

The interpretation of the adaptive dynamics (6.19) is analogous to that given for (6.12)

in the last section. Themji(s) are called thejth mutation moments of theith species.

They actually coincide with thejth moments of the mutation distributionMi only if the

range of integrationRi(s) is (�1;+1). However, as (6.21) indicates, this is generally

not the case. Even in the first order result the range of integration was restricted to

either (si;+1) or (�1; si) and the situation gets more complicated now that higher

orders are considered.

Notice that in the derivation above we did not require any symmetry properties of the

mutation distributions such that the result (6.19) is independent of this assumption.

Comparison to First Order Result

The corrections arising from the higher order result (6.19) in comparison to the first

order result (6.12) can be small for two reasons.

1. The ratios of the per capita growth and birth rates,f i(s
0

i; s) and bi(s0

i; s), can be

almost linear, i.e. they can possess only weak nonlinearities ins0

i aroundsi. In

this case thejth order derivatives@ 0j
i

�
b
�1
i (si; s) � f i(si; s)

�
with j > 1 are small

compared to the first order derivative.

2. Moreover, the mutation distributionsMi can be narrow, i.e. they may have only

small variances. Then the higher order mutation momentsmj+1;i(s) with j > 1 are

negligible compared to the second order mutation moment.
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We conclude that in either limit – that of vanishing nonlinearity or that of vanishing

variance – the first order result (6.12) of the adaptive dynamics becomes an exact

representation of the deterministic path. The virtue of the dynamics (6.12) is its

simplicity combined with good accuracy as long as one of the two conditions above is

met. The virtue of the dynamics (6.19) is its generality, as it covers the coevolutionary

dynamics of mutation-selection systems allowing both for nonlinearities in the ecological

rates and for finite mutational steps.

Note that even forr = 1 equations (6.12) and (6.19) are in general not equivalent.

When the mutation process is asymmetric,1

2
� �2

i
(si) will not coincide withm2i(s). In

particular, the value ofm2i(s) then depends on the distribution of advantageous mutant

trait valuess0

i
around the resident trait valuesi.

The importance of the higher order correction terms is discussed in Section 7.4. We there

describe two special consequences. One effect, theshifting of evolutionary isoclines,

only occurs in the second order result for asymmetric mutation processes, for symmetric

mutation processes the third order corrections are to be considered. The other effect,

the phenomenon ofevolutionary slowing down, can be understood by means of the

second order result.

6.4 An Algorithm for the Monomorphic Deterministic Model

An algorithm for the monomorphic deterministic model derived from equations (6.12)

or (6.19) is presented in Figure 6.1. It employs thefourth order Runge-Kutta method

described below.

The Euler Method

The simplest choice for an update method in Step C of the algorithm for the monomor-

phic deterministic model could be based on the Euler method

t! t+ dt; si ! si + wi (6.22)

with wi = dt � _si(s). Here, _si(s) denotes the right hand side of either equation (6.12)

or (6.19).

However, the error for this method of numerical integration is of orderO
�
dt2

�
. For

results of sufficient accuracy thus small time stepsdt are required.
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An Algorithm for the

Monomorphic Deterministic Model

A. Initialize the adaptive trait valuessi with i = 1; . . . ; N at time t = 0

and specify the time stepdt as well as the timetend when to stop the

dynamics.

B. Construct the vectorsw1i = dt � _si(s), w2i = dt � _si
�
s+ 1

2
� w1

�
, w3i =

dt � _si
�
s+ 1

2
� w2

�
andw4i = dt � _si(s+ w3) with i = 1; . . . ; N .

C. Update time and adaptive trait values according tot ! t + dt and

si ! si +
1

6
� (w1i + 2 � w2i + 2 � w3i + w4i).

D. Continue from Step B untilt � tend.

Figure 6.1 An algorithm for the monomorphic deterministic model. The protocol employs the fourth
order Runge-Kutta method described in the text.

The Fourth Order Runge-Kutta Method

A better choice is provided by the fourth order Runge-Kutta method

t! t+ dt; si ! si +
1

6
� (w1i + 2 � w2i + 2 � w3i + w4i) (6.23)

with w1i to w4i as defined in Step B of Figure 6.1.

Here, the error inevitably associated with any method of numerical integration is only

of orderO
�
dt5

�
. As time stepsdt thus may be larger while producing the same error,

this method is advantageous to the simpler Euler method.

6.5 Sample Simulations and Further Inquiry

The deterministic approximation of the monomorphic stochastic model opens up ample

opportunity for further investigation of the adaptive dynamics in coevolutionary com-

munities. We will utilize this representation in Chapters 7 and 9; here we only outline

some general perspectives.
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Figure 6.2 Orbits of the monomorphic deterministic model. The deterministic trajectories which
correspond to the trait substitution sequences in Figure 5.3, to the mean paths in Figure 5.4 and to
the realizations of the polymorphic stochastic model in Figure 4.4 are depicted by continuous lines with
initial conditions indicated by asterisks. More trajectories have been added to supplement the phase
portrait; the structure of the evolutionary flow in trait space thereby becomes visible. The discontinuous
oval curve is the boundary of the region of coexistence. The dotted curves are the inner evolutionary
isoclines of the two species (straight line: predator, curved line: prey), see Section 7.1. Parameters of
the coevolutionary predator-prey community are the same as in Figure 5.4.

Phase Portraits

The deterministic approximations (6.12) and (6.19) readily allow us to calculatephase

portraits of the adaptive dynamics.

An application to predator-prey coevolution is depicted in Figure 6.2. The evolutionary

trajectories, following the deterministic path, coincide with the mean paths calculated

from the stochastic process itself, see Figure 5.4. We could easily supplement the picture

by considering a large number of trajectories.

A variety of such phase portraits is obtained in the investigation of the coevolutionary

predator-prey community in Chapter 9, see Figures 9.4, 9.5 and 9.6.
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Figure 6.3 The monomorphic models and multiple attractors in trait space. Ten trait substitution
sequences with a common initial condition are obtained as stochastic realizations of the monomorphic
stochastic model and depicted by continuous lines. The set of these trait substitution sequences splits
permanently into two separate bundles since the initial condition is close to a basin boundary, a feature
that cannot be captured by a deterministic description. The basin boundary or separatrix is obtained
from the monomorphic deterministic model and is depicted by the dashed and dotted line. The basin
boundary is the unstable manifold of a saddle, which is located at the middle intersection of the inner
evolutionary isoclines depicted as dotted curves. The outer two fixed points are stable nodes. To construct
the basin boundary the direction of time is to be reversed in the monomorphic deterministic model in
order to stabilize the unstable manifold. The discontinuous oval curve is the boundary of the region
of coexistence. Parameters of the coevolutionary predator-prey community are as given in Figure 9.3
except for�1 = �2 = 5 � 10

�3.

Bifurcation Analysis

In addition to investigating the coevolutionary dynamics by means of phase portraits,

much insight is gained by applying techniques frombifurcation analysisto the deter-

ministic approximations (6.12) or (6.19).

The effects of varying different ecological parameters, which have an impact on the

adaptive dynamics, can then be explored systematically, see Sections 7.2 and 9.4 and

in particular Figure 9.7.
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Figure 6.4 The monomorphic models and expanding flow in trait space. Ten trait substitution sequences
with a common initial condition are obtained as stochastic realizations of the monomorphic stochastic
model and depicted by continuous lines. The set of these trait substitution sequences splits temporarily
into two separate bundles since the initial condition is situated in a region of expanding flow, a feature
that cannot be captured by a deterministic description. The flow is defined in terms of the monomorphic
deterministic model and its orbits are depicted by the dotted lines. The discontinuous oval curve is the
boundary of the region of coexistence. Parameters of the coevolutionary predator-prey community are
the same as in Figure 6.2 except for�1 = 10

�3.

Caveats

Some caveats are however necessary for understanding the validity of any deterministic

approximation of a stochastic process.

First, if the adaptive dynamics turn out to be multistable, it will be possible for trait

substitution sequences to exhibit jumps between the existing basins of attraction. No

deterministic approximation is capable of capturing this feature. This must be kept in

mind while applying the deterministic approximation to initial states very close to the

basin boundary. Figure 6.3 illustrates this point. Moreover, large fluctuations between

the multiple stable states themselves in principle can happen. However, due to the

shape of the mutation distributions the latter will typically be associated with such
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extremely small probabilities per unit time that are negligible on ecological and even

on evolutionary timescales.

Second, if the flow of the dynamical system describing the deterministic path is

expanding, i.e. trajectories are diverging, the deviations of the stochastic realizations

from the mean path can grow too fast for the identification of the deterministic path with

the mean path to be reliable. An example is given in Figure 6.4. Note, however, that

the construction of phase portraits based on the deterministic path is useful in any case,

since these allow qualitative predictions of the stochastic dynamics by considering the

combined process of movement along the trajectories accompanied by jumps between

them. For illustration compare Figures 5.3 and 6.2.

Third, if the adaptive dynamics possess nonequilibrium attractors, the deterministic

approximation in principle cannot predict aspects of the asymptotic mean dynamics

of the stochastic process tangential to the attractor. The reason is that the tangential

fluctuations are not balanced by counteracting forces. In consequence, for example the

asymptotic mean phase of a stochastic limit cycle dynamics is not defined, though the

asymptotic mean period is accurately described. This point is demonstrated in Figure

9.8.





Chapter 7
Analysis of the Monomorphic Models

In this chapter we utilize the descriptions of the monomorphic stochastic model and the

monomorphic deterministic model, derived in the previous two chapters, to examine

in detail some of the rich variety of features that coevolutionary dynamics of this sort

can exhibit.

7.1 Characteristics of Isoclines

Given equation (6.12) which describes the coevolutionary dynamics of the monomorphic

deterministic model to first order, we can now investigate the conditions under which

evolution in single traits or in the whole community comes to a halt.

Definition of Isoclines

The evolutionarysi-isoclinesare defined as those manifolds in trait spacebS on which
d

dt
si = 0 holds. The intersection of all isoclines coincides with the set of fixed points

of the adaptive dynamics.

In a first step we analyze the location of the evolutionary isoclines considering only

infinitesimal mutational steps, in accordance with assumptions usually made in the

literature (see e.g. Reed and Stenseth 1984; Taylor 1989). The result (6.12) is then

exact, and we infer that the evolutionarysi-isoclines are given by the union of manifolds

on which either the selection derivative@ 0

i
f i(si; s) or the population sizêni(s) vanishes.
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We refer to the former asinner isoclines(these are subsets ofbS
c
) and call the latter

boundary isoclines(as they are subsets of@ bS
c
). Since extinction of one species

terminates the coevolutionary process of theN -species system, we concentrate on the

inner isoclines.

In a second step, the impact of mutational steps being finite rather than infinitesimal

can by investigated by means of the higher order correction terms provided by equation

(6.19). This case will be considered in Section 7.4.

Classification of Isoclines

Inner evolutionarysi-isoclines can be classified as below.

1. Inner isoclines on which

@
02

i
f

i
(s

i
; s) < 0 (7.1)

holds are called�-stable ornon-invadable.

2. Inner isoclines whose points satisfy

@
02

i
f

i
(si; s)� @

2

i
f

i
(si; s) < 0 (7.2)

are calledm-stable orconvergent.

3. Inner isoclines characterized by

@
02

i
f

i
(s

i
; s) + @

2

i
f

i
(s

i
; s) < 0 (7.3)

are said to benot mutually invadable.

The notions of�- andm-stability are due to Taylor (1989) the other names have been

used by Metz et al. (1994).

The notion of non-invadability is that on thes
i
-isoclines mutantss0

i
in speciesi with

phenotypes close tos
i

should not be able to invade; this idea is familiar from ESS

theory (Maynard Smith and Price 1973; Maynard Smith 1982; Parker and Maynard

Smith 1990) and the arguments of Roughgarden (1983) and Brown and Vincent (1987a,

1987b).

The term convergence was introduced to refer to the property of successive mutationss
0

i

to cause evolution towards thesi-isocline. Attention was first drawn to the distinction

between this and non-invadability by Eshel and Motro (1981) and Eshel (1983), and
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Class Inequality Set of invasion angles

(7.1) (7.2) (7.3) �
min

< �
i

< �
max

non-invadability........................

...............convergence..............

................nomutual invadability

1 yes yes yes 3 �

�

4
5 �

�

4

2 yes yes no 2 �

�

4
3 �

�

4

3 no yes no 1 �

�

4
2 �

�

4

4 no no no 7 �

�

4
� 2 � � 1 �

�

4

5 no no yes 6 �
�

4
7 �

�

4

6 yes no yes 5 �
�

4
6 �

�

4

Figure 7.1 Definition of the six different classes of evolutionary isoclines.

was discussed in more detail by Taylor (1989) as well as by Takada and Kigami (1991).

Note that the dynamical interpretation suggested by the term convergent is different for

coevolutionary communities withN = 1 and for those withN > 1; this distinction

will be clarified in the next section.

Mutual invadability refers to the property of a pair of phenotypess
0

i
ands00

i
at opposite

sides of thes
i
-isocline both to invade and to be invaded by the other phenotype;

Christiansen (1991) noted that neither phenotype can go to fixation in this case. If

an isocline has this property at a fixed point, the system could evolve from the fixed

point to a state in which two phenotypes are present in speciesi; the principle of mutual

exclusion guaranteeing that each mutant either replaces the previous resident or goes to

extinction would no longer hold. Identifying such fixed points thus is important, because

they indicate when the assumption of monomorphism (see Section 5.1) might become

inappropriate. For more details on this issue see the discussion in Sections 7.2 and 7.3.

The inequalities (7.1), (7.2) and (7.3) permit six classes of isoclines (Metz et al. 1994),

as summarized in Figure 7.1. There are only6 rather than23 = 8 classes, as

convergence and absence of mutual invadability imply non-invadability; similarly,

divergence and mutual invadability imply invadability. The class of an isocline can
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readily be determined: to do this we suggest a new mathematical tool, theinvasion

angle

�i(s) = arctan
�
@ 02

i f i(si; s); @
2

i f i(si; s)
�

(7.4)

where the functionarctan (x; y) returns the angular polar coordinate corresponding to

the two Cartesian coordinatesx andy. The invasion angle�i, evaluated at a point on

a si-isocline, unambiguously identifies the class of the isocline at that point (see Figure

7.1) and, in consequence, there is only a single degree of freedom in the classification

scheme of isoclines.

Illustration of the Classification

To understand the significance of the invasion angle and of the three inequalities above

we expandf i(s
0

i
; s), the per capita growth rate of a mutants0

i
in a community of resident

species with adaptive trait valuess, to second order into a Taylor series ins0

i
and si

around a point̂s situated on asi-isocline

f i

�
s0

i; s
�
=f i(ŝi; ŝ)+
�
s0

i � ŝi

�
� @ 0

i f i(ŝi; ŝ)+

(si � ŝi) � @if i(ŝi; ŝ)+
�
s0

i � ŝi

�2
� @ 02

i f i(ŝi; ŝ)+
�
s0

i � ŝi

�
� (si � ŝi) � 2 � @

0

i @if i(ŝi; ŝ)+

(si � ŝi)
2
� @2i f i(ŝi; ŝ)

(7.5)

By accounting for the constraintf i(s
0

i
; s) = 0 which holds for alls0

i
= si, we obtain

the identities

f i(ŝi; ŝ) = 0 ; (7.6)

@ 0

i f i(ŝi; ŝ) + @if i(ŝi; ŝ) = 0 (7.7)

and

@ 02

i f i(ŝi; ŝ) + 2 � @0

i@if i(ŝi; ŝ) + @2i f i(ŝi; ŝ) = 0 : (7.8)

From the first order result of the monomorphic deterministic model, equation (6.12), we

know that pointŝs on inner evolutionarysi-isoclines are characterized by@ 0

i
f i(ŝi; ŝ) =

0. With the three identities (7.6), (7.7) and (7.8) there thus remain only two degrees of
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freedom in equation (7.5). One can be eliminated by normalization, the other is given

by the invasion angle�i. When choosing normalization to be given by

max
(s0

i
�ŝ0

i
;si�ŝ0

i)2(�1;+1)
2

�
�f i

�
s0i; s

��� = 1 (7.9)

we obtain in lieu of equation (7.5)

f i

�
s0i; s

�
=c0 �

�
s0i � ŝi

�2
�

1

2
�

�
c0 + c

�
�

�
s0i � ŝi

�
� (si � ŝi)+

c � (si � ŝi)
2

(7.10)

with c0 = r � cos�i, c = r � sin�i and r = 1
2
� jcos�i + sin�ij

�1.

The saddle-surfacesdescribed by equation (7.10), that correspond to the six classes of

isoclines are illustrated in Figure 7.2. These surfaces intersect the planef i(s
0

i; s) = 0 at

two straight lines. Whereas one of these lines corresponds to(s0i � ŝi)=(si � ŝi) = 1,

one easily sees that the invasion angle�i determines the location of the second line

which is described by(s0i � ŝi)=(si � ŝi) = tan�i.

7.2 Characteristics of Fixed-Points

Much of the interest in models of coevolution has been to characterize properties of

fixed points in trait space at which the selection pressures generated by interacting

species are balanced, so that there is no further phenotypic evolution of the system.

The motivation for this work has come primarily from evolutionary game theory, and

a dynamic is often not made explicit in this context.

In this section we show that dynamical considerations are indispensable in a coevolu-

tionary context.

Communities with N=1

The three inequalities (7.1), (7.2) and (7.3) have been employed in the literature to

analyze fixed points of the evolutionary dynamics in communities comprising only a

single species,N = 1 (Eshel and Motro 1981; Eshel 1983; Taylor 1989; Takada and

Kigami 1991; Metz et al. 1994). In this case thes1-isocline coincides with the fixed

points of the evolutionary dynamics. Please note that the properties of such fixed points

– given below as encountered in the literature – only hold in the simple special case

N = 1.
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Figure 7.2 Illustration of the different classes of isoclines. In the vicinity of an isocline the surface
f

i
(s0

i
; s) to second order is saddle-like in the argumentss0

i
� ŝi andsi� ŝi. Figures (a) to (f) correspond

to classes 1 to 6 of isoclines as given in Figure 7.1.
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s
0

1
� ŝ1
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s1 � ŝ1e f

Figure 7.3 The vicinity of the different classes of fixed-points forN = 1. The sign off
1
(s0

1
; s1) is

shown by letters (P: positive; N: negative). The two straight lines correspond tof
1
(s0

1
; s1) = 0. The

small arc at the center measures the invasion angle�1. The three large arcs indicate the range of invasion
angles that fulfill the inequalities (7.1), (7.2) and (7.3) (inner: non-invadability; middle: convergence;
outer: no mutual invadability). It is helpful to compare this figure to Figure 7.2. After choosing a specific
resident adaptive trait values1, the above figures can be utilized to determine those mutant adaptive trait
valuess0

1
that could invade the resident population. In this vein the meaning of the three inequalities

(7.1), (7.2) and (7.3) can be understood (non-invadability/invadability: consider the range of mutants
being able to invade the resident at the fixed point; convergence/divergence: consider a sequence of trait
substitutions in the vicinity of the fixed point; no mutual invadability/mutual invadability: consider the
range of mutants being able to invade the resident in the vicinity of the fixed point and vice versa).
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Fixed points of classes 1 and 2 cause convergence, see Figure 7.3. In contrast to

class 1, a system tending to a class 2 fixed point can go through a transient period

of polymorphism before reaching the fixed point; Metz et al. (1994) refer to this as

a contracting polymorphism. Class 3 also gives convergence to the fixed point but,

at the fixed point itself, mutants at opposite sides can invade and coexist. This then

corresponds to Prout’s (1968) notion of aprotected polymorphism, referred to as a

polymorphic evolutionarily attainable traitby Christiansen (1991), and as anexpanding

polymorphismby Metz et al. (1994). Fixed points of classes 4 and 5 are invadable and

divergent; that class 4 in contrast to class 5 allows for mutual invadability might only

be important when starting the evolutionary process in the vicinity of the fixed point

which in the former case can give rise to a short initial period during which a transient

polymorphism can occur. A class 6 fixed point is non-invadable but divergent, i.e. it

would be uninvadable if the system started on at the fixed point, but starting from other

points in the neighborhood the system evolves away from it; such a configuration has

aptly been called aGarden of Eden configurationby Hofbauer and Sigmund (1990).

The six different classes of fixed points forN = 1 are illustrated in Figure 7.3. Notice

that the information presented in this figure can by inferred from Figure 7.2. Thus both

figures apply to communities withN > 1; however, interpreting the diagrams of Figure

7.3 in the sense described in the figure legend is only possible in the caseN = 1.

The relationship between the properties of fixed points given above and dynamical

stability is trivial for systems in which only one species evolves. It is readily shown

that the condition for dynamical stability of a fixed point under dynamics given by the

first order of the monomorphic deterministic model coincides with the condition for

convergence, inequality (7.2). To see this, consider the Jacobian of dynamics (6.12)

J = k1(s1) �

�
@ 02

1 f
1
(s1; s1) + @ 0

1@1f i(s1; s1)
�

(7.11)

evaluated at the fixed point̂s1; for the definition of the evolutionary rate coefficients

ki(s) see equation (6.15). By employing equation (7.8) we obtain for the Jacobian at

the fixed point

J = k1(ŝ1) �

1

2
�

�
@ 02

1 f
1
(ŝ1; ŝ1)� @21f1(ŝ1; ŝ1)

�
: (7.12)

Since the local stability of fixed points in one-dimensional systems depends only on the

sign of the Jacobian evaluated at these points, with inequality (7.2) we can conclude that
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dynamically stable fixed points (J < 0) are convergent and that unstable ones (J > 0)

are divergent. Moreover, since the condition for non-invadability is independent of

the condition for convergence, dynamical stability of the fixed point does not require

non-invadability.

Communities with N>1

We now turn to the coupled evolution of two species to see how the properties of

isoclines relate to dynamical stability of two-dimensional systems. Here the inner

fixed points are given by the intersection of the inner isoclines@ 0

1
f1(s

0

1
; s) = 0 and

@ 0

2
f2(s

0

2
; s) = 0. The six classes of isoclines above allow 36 types of fixed points, of

which 21 are distinct under permutation of the two species. With dynamics (6.12) the

Jacobian at the fixed point̂s = (ŝ1; ŝ2) is

J =

�
J11 J12

J21 J22

�
(7.13)

with

J11 = k1(s) �

�
@ 02

1 f
1
(ŝ1; ŝ) + @ 0

1@1f1(ŝ1; ŝ)
�
;

J12 = k1(s) � @ 0

1
@2f1(ŝ1; ŝ) ;

J21 = k2(s) � @ 0

2@1f2(ŝ2; ŝ) ;

J22 = k2(s) �

�
@ 02

2 f
2
(ŝ2; ŝ) + @ 0

2@2f2(ŝ2; ŝ)
�
:

(7.14)

As in the one-dimensional case, the bracketed terms[. . .] on the diagonal are the same

(apart from a positive factor of 2) as the expressions given in inequality (7.2), and are

therefore related to the isoclinic conditions for convergence of each species. But there is

a much more indirect relationship between these convergence conditions and dynamical

stability; we collect together the relevant results in the next paragraph.

A necessary and sufficient condition for local stability of fixed points in two-dimensional

systems is thattr J < 0 anddetJ > 0. From this the following results can be obtained;

see also Abrams et al. (1993). (i) Convergence of each species (i.e. bracketed terms[. . .]

in J negative) is neither necessary nor sufficient for local asymptotic stability of the fixed

point. Convergence is not sufficient because, although convergence impliestr J < 0,

the sign ofdetJ depends on the off-diagonal mixed partial derivatives. Convergence

is not necessary because it is possible to havetr J < 0 anddetJ > 0 when only one

species is convergent and the other divergent. (ii) If each species is divergent, i.e. both



96 Part B The Dynamical Theory of Coevolution

bracketed terms inJ are positive, we havetr J > 0 and hence the fixed point is unstable.

Thus six of the 21 types of fixed points are definitely evolutionary repellors, but the

remaining 15 could be either repellors or attractors. However, by allowing for the signs

of the off-diagonal elements ofJ , three further results about these remaining fixed

points can be given. (iii) If each species is convergent and the off-diagonal elements

are of opposite sign, the fixed point is an evolutionary attractor. (iv) If one species

is convergent, the other divergent and the off-diagonal elements have the same sign,

the fixed point is an evolutionary repellor. (v) In all cases not covered by (ii), (iii)

or (iv) local stability of the fixed point can be tuned just by varying the ratio of the

evolutionary rate coefficientsk1(ŝ)=k2(ŝ).

We conclude from these results that the simple identity of the condition for convergence

with that for local dynamical stability, which holds for single-species evolution, has no

counterpart in multispecies coevolution. The attractors of the coevolutionary process can

depend critically on detailed dynamical features of the coevolving system. In particular,

as the mutation process influences the evolutionary rate constantski(s), in general no

inferences as to the dynamical stability of evolutionary fixed points forN > 1 can be

made when considering the process of selection alone. For a contrasting view on this

issue see Rand et al. (1993).

Figure 7.4 illustrates the considerations above. Depicted are adaptive dynamics in a

coevolutionary community comprising two species. Species1 has as1-isocline that

changes along its length between classes 2, 3, and 4, see Figure 7.4a. At the point

of intersection with thes2-isocline, the isocline of species1 has the properties of

invadability, divergence and mutual invadability, whereas the isocline of species2

is of class 1 having the properties of non-invadability, convergence and no mutual

invadability. This example is interesting for several reasons.

First, the fixed point is an instance of case (v) above, i.e. its dynamical stability depends

on the evolutionary rate constants. If the mutation ratios of species1 and2 are chosen

in the ratio 1:10, allowing faster evolution in species2, the fixed point is stable and

serves as an attractor for the adaptive dynamics, see Figure 7.4b. On the other hand,

if the mutation ratios are chosen in the ratio 1:1, the fixed point is unstable and the

attractor is given by a limit cycle, see Figure 7.4c.
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Figure 7.4 Tuning of evolutionary stability by means of the mutation process. The discontinuous oval
curve is the boundary of the region of coexistence. The dotted curves are the inner evolutionary isoclines
of the two species (straight line: predator, curved line prey). (a) The sections of the isoclines are labeled
according to their class, see Figure 7.1. The fixed point at the intersection of the two isoclines is an
instance of case (v) described in the text. Here, evolutionary stability can be tuned just by varying the
ratio of the evolutionary rate coefficients. (b) The fixed point is stable for mutation ratios of the two
species obeying�1=�2 = 0:1. Orbits of the monomorphic deterministic model are depicted by continuous
lines. (c) The fixed point is unstable and is surrounded by a stable limit cycle for mutation ratios of
the two species obeying�1=�2 = 1. These distinct mutation ratios are the only difference between the
systems displayed in figures (b) and (c). Parameters of the coevolutionary predator-prey community are
as given in Figure 9.3 withh = 0:11 except in figure (b) where�1 = 10

�4.
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Second, the example illustrates how dynamical stability is independent of non-

invadability of the fixed point. It can be seen thatŝ can be an attractor, see again

Figure 7.4b, notwithstanding the fact that coevolution, according to the class 4 of

the s1-isocline, leads to a local minimum for the per capita growth rate of species1.

Also Takada and Kigami (1991) and Abrams et al. (1993) have noted that a system

of coevolving species may be driven to a fixed point where one species is at a local

“fitness” minimum.

Third, in the system illustrated in Figure 7.4, the three basic kinds of selection are all

present: selection is directional for both species away from the isoclines, stabilizing

for species2 around its isocline and disruptive for species1 at its isocline in the

neighborhood of the fixed point.

From the discussion above we draw two conclusions.

1. For coevolutionary communities withN > 1, comprising several species, the notion

of convergence, which proved useful in the classification of fixed-points for the

special caseN = 1, has to be replaced by the more general definition of dynamical

stability as demonstrated above.

2. In contrast, the concepts of invadability and mutual invadability generalize without

problems to communities withN > 1. As in the caseN = 1, the presence of

mutual invadability at a fixed-point indicates the possibility of polymorphism. If

mutual invadability is accompanied by invadability, there can even be potential for

the emergence of a protected polymorphism, i.e. for the occurrence of evolutionary

branching.

Whereas the first conclusion is essential for appreciating the impossibility of strip-

ping away the mutation process from the consideration of evolutionary outcomes; the

second conclusion is a first step in analyzing the prerequisites for the assumption of

monomorphism, introduced in Section 5.1. In the next section we take this investigation

further by proving the principle of mutual exclusion for a certain type of coevolutionary

communities.
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7.3 The Principle of Mutual Exclusion

We have assumed in Section 5.1 that without mutations two or more values of the

adaptive traitsi within a species cannot coexist in the limitt ! 1, only the single

most advantageous trait value surviving. This principle of mutual exclusion can be

proved for the case of Lotka-Volterra population dynamics.

The Principle of Mutual Exclusion for Lotka-Volterra Communities

The theorem is as follows. Consider in speciesj 2 1; . . . ;N two populations with

sizesnj andn0

j of a resident adaptive trait valuesj and a sufficiently close mutant trait

values0

j, respectively, in an environment determined by traitssi with population sizes

ni, i = 1; . . . ; N . The dynamics of the population sizes in the community are assumed

to be of Lotka-Volterra type.

When the mutant is absent, we call the remaining population dynamicsresident system,

when the resident is absentmutant system, and when both are presentcombined system.

Provided that

1. the selection derivative@ 0

jf j(sj; s) does not vanish,

2. the Lotka-Volterra interaction matrix of the combined system (i) is not singular, and

(ii) its elements for speciesj vary smoothly withsj,

we show that there cannot exist a fixed point of the combined system inRN+1
+

. From

this it can then be inferred that the mutant will either go to fixation or to extinction.

Notation of Proof

As in Section 5.1 we formally assign the population of the mutant adaptive trait value the

index i = 0: s0 = s0

j, n0 = n0

j, b0 = bj andd0 = dj . In the course of a trait substitution

sj ! s0

j the phenotypic distributions in the coevolutionary community are given by

ep =
�
n1 � �s1 ; . . . ; nj � �sj + n0 � �s0; . . . ; nN � �sN

�
: (7.15)

From the stochastic description of the invasion process

d

dt
P (n; t) =

NX
i=0

h ed j
i

�
si; s; n+ 1

i
�
� (ni + 1) � P

�
n+ 1

i; t
�
+

eb ji �si; s; n� 1
i
�
� (ni � 1) � P

�
n� 1

i; t
�
�

ed j
i (si; s; n) � ni � P (n; t)�

eb ji (si; s; n) � ni � P (n; t)

i
;

(7.16)
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see equation 5.4, we can formally construct a deterministic system describing resident

and mutant population dynamics when treating population sizes as continuous variables

and neglecting fluctuations

d

dt
ni = ni �

ef j
i (si; s; n) (7.17)

with ef j
i (si; s; n) =

eb ji (si; s; n)� ed
j
i (si; s; n) andn = (n0; n1; . . . ; nN ). The assumption

of continuous population sizes and negligible fluctuations is only justified for large

populations,n0; n1; . . . ; nN � 1. As we have frequently pointed out, this is not the

case when considering a mutant population which initially is of size1. Thus the

equations (7.17) are not capable of describing the dynamics of the invasion process, for

this purpose we have to rely on the stochastic representation (7.16). We only may use

the dynamical system (7.17) in circumstances when all considered populations (i.e. those

with positive sizes) are large. This constraint will be respected below.

The assumption that population dynamics are of Lotka-Volterra type is expressed by

ef j
i (si; s; n) = ri(si) +

NX

j=0

�ij(si; sj) � nj for all i = 0; . . . ; N : (7.18)

The fixed-points of the population dynamics of the combined system, denoted byn̂ =

(n̂0; n̂1; . . . ; n̂N ), are defined byef j
i (si; s; n̂(s)) = 0 for all i = 0; . . . ; N . Similarly, we

define the fixed-pointŝn(0) = (0; n̂
(0)
1 ; n̂

(0)
2 ; . . . ; n̂

(0)

N ) andn̂(1) = (n̂
(1)
0 ; 0; n̂

(0)
2 ; . . . ; n̂

(1)

N )

of the resident and of the mutant system, respectively, byef j
i (si; s; n̂

(1)(s)) = 0 for all

i = 1; 2; . . . ; N and by ef j
i (si; s; n̂

(0)(s)) = 0 for all i = 0; 2; . . . ; N . The superscript

thus refers to the index of the absent population.

To shorten notation, below we do not continue to repeat the dependence of the quantities
efi, r, �, n̂, n̂(0) and n̂(1) on the vectors = (s0; s1; . . . ; sN) and the indexj which are

constant throughout a particular trait substitution.

We denote minors of a matrixA by mij(A); here theith row and thejth column

have been eliminated. We further define the matriceszij(A) derived from a matrix

A by replacing the elements of theith row and thejth column by0, except for the

elementAij itself which is replaced by1; successive mappings of this sort are denoted

by zij;kl(A) = zij
�
zkl(A)

�
. Similarly, the vectorzi(a) is obtained from a vectora

by settingai to 0.
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Outline of Proof

The proof of the above theorem is divided into four steps.

1. First, we prove the equation

n̂0 � n̂1 =
�
det�2 �

�
�

�
detm00(�) � detm11(�)

�
�h ef0(n̂(0)) �

ef1(n̂(1))
i
:

(7.19)

2. Then, we show

detm00(�) ? 0 , detm11(�) ? 0 : (7.20)

3. Next, we demonstrate

ef0(n̂(0)) ? 0 ,
ef1(n̂(1)) 7 0 : (7.21)

In consequence of these results of parts 1 to 3,n̂0 and n̂1 have to be of opposite sign,

thus there is no fixed-point of the combined system inRN+1
+

.

4. Finally, we exploit the fact that if there is no fixed-point of the combined system

in RN+1
+

there can be no attractor at all inRN+1
+

.

Hence, under the two conditions mentioned above, the two adaptive trait valuessj and

s0j cannot coexist. As then the mutant will either go to fixation or to extinction, the

principle of mutual exclusion is proved.

Proof, Part 1

In this part of the proof we will use Kramer’s rule

xj = det�1A �
X
i

ai � (�1)
i+j

� detmij(A) (7.22)

to solve systemsA � x = a of linear equations, and Steiner’s rule

detA =
X
j

Aij � (�1)
i+j

� detmij(A) (7.23)

to evaluate the determinant of a matrixA by expanding it with respect to itsith row.

Note also that for any matrixA the identity

detmij(A) = det zij(A) (7.24)

holds.
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In a first stepwe evaluate the fixed-points of the combined, the resident and the mutant

system. The former are defined by the equations

rj +

NX
i=1

�ij � n̂i = 0 (7.25)

holding for allj = 0; . . . ;N . By solving this system of linear equations we obtain forn̂

n̂j = det
�1 � �

NX
i=0

(�ri) � (�1)
i+j

� detmij(�) : (7.26)

Similarly we get for n̂(0) and n̂(1)

n̂
(0)

j = det
�1 z00(�) �

NX
i=0

�
�z0(ri)

�
� (�1)

i+j
� detmij

�
z00(�)

�
(7.27)

and

n̂
(1)

j = det
�1 z11(�) �

NX
i=0

�
�z1(ri)

�
� (�1)

i+j
� detmij

�
z11(�)

�
: (7.28)

In a second stepwe compute the productef0(n̂(0)) � ef1(n̂(1)) according to equation (7.18)

ef0(n̂(0)) � ef1(n̂(1))
=

h
r0 +

NX
j=0

�0j � n̂
(0)

j

i
�

h
r1 +

NX
j=0

�1j � n̂
(1)

j

i
:

(7.29)

By utilizing equations (7.27) and (7.28) we get

ef0(n̂(0)) � ef1(n̂(1))
=

h
r0 + det

�1 z00(�) �

NX
i;j=0

�0j �
�
�z0(ri)

�
� (�1)

i+j
� det zij

�
z00(�)

� i
�

h
r1 + det

�1 z11(�) �

NX
i;j=0

�1j �
�
�z1(ri)

�
� (�1)

i+j
� det zij

�
z11(�)

� i
:

(7.30)
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Then we decompose the two sums into several separate terms

ef0(n̂(0)) �

ef1(n̂(1))
= det�1 z00(�) � det�1 z11(�)�h

r0 � det z00(�) � r1 � �01 � det z
11;00(�)+

r1 �

NX
j=2

�0j � (�1)j � det z1j;00(�)+

�01 �

NX
i=2

ri � (�1)i � det zi1;00(�)�

NX
i;j=2

�0j � ri � (�1)i+j
� det zij;00(�)

i
�

h
r1 � det z

11(�) � r0 � �10 � det z
00;11(�)+

r0 �

NX
j=2

�1j � (�1)
j
� det z0j;11(�)+

�10 �

NX
i=2

ri � (�1)
i
� det zi0;11(�)�

NX
i;j=2

�1j � ri � (�1)i+j
� det zij;11(�)

i
:

(7.31)

In the last transformation we have used (i)z0(ri) = 0 for i = 0, z0(ri) = ri for i 6= 0,

(ii) z1(ri) = 0 for i = 1, z1(ri) = ri for i 6= 1 and (iii) det zij;kl(�) = 0 for i = k

and j 6= l or i 6= k and j = l.

In a third stepwe compute the product̂n0 � n̂1 utilizing equation (7.26)

n̂0 � n̂1

=
h
det�1 � �

NX
i=0

(�ri) � (�1)i+0 � det zi0(�)
i
�

h
det�1 � �

NX
i=0

(�ri) � (�1)
i+1

� det zi1(�)
i
:

(7.32)
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By expandingdet zi0(�) with respect to its0th row anddet zi1(�) with respect to its

1st row we obtain

n̂0 � n̂1

= det�2 ��

h NX
i=0

ri � (�1)
i+0

�

NX
j=0

zi00j(�) � (�1)
0+j

� det z0j
�
zi0(�)

� i
�

h NX
i=0

ri � (�1)
i+1

�

NX
j=0

zi11j(�) � (�1)
1+j

� det z1j
�
zi1(�)

� i
:

(7.33)

Again, we write some terms of the sums explicitly

n̂0 � n̂1

= det�2 ��h
r0 � det z

00(�) � r1 � �01 � det z
11;00(�)+

r1 �

NX
j=2

�0j � (�1)
j
� det z1j;00(�)+

�01 �

NX
i=2

ri � (�1)
i
� det zi1;00(�)�

NX
i;j=2

�0j � ri � (�1)
i+j

� det zij;00(�)
i
�

h
r1 � det z

11(�) � r0 � �10 � det z
00;11(�)+

r0 �

NX
j=2

�1j � (�1)
j
� det z0j;11(�)+

�10 �

NX
i=2

ri � (�1)
i
� det zi0;11(�)�

NX
i;j=2

�1j � ri � (�1)
i+j

� det zij;11(�)
i
:

(7.34)

To obtain the last equation we have used (i)zij;ij(�) = zij(�), (ii) zij;kl(�) = �zkj;il(�)

and (iii) z
ij
kl
(�) = 0 for i = k andj 6= l or i 6= k and j = l, zij

kl
(�) = 1 for i = k and

j = l, z
ij
kl
(�) = �kl for i 6= k and j 6= l.

In a fourth stepwe compare the results (7.31) and (7.34). This completes the proof

of equation (7.19).
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Proof, Part 2

In this part of the proof we investigate the relative signs ofdetm00(�) anddetm11(�).

For this purpose we expanddetm11(�) to first order in the mutant adaptive trait value

s0

j around the resident trait valuesj

detm11(�) = detm00(�) +
�
s0

j � sj
�
�
@

@s0

j

detm11(�)
���
s0

j
=sj

: (7.35)

Provided that (i) all interaction coefficients�ij and �ji vary smoothly with the trait

value s0

j, (ii) the resident system is not singular,detm00(�) 6= 0, and (iii) the mutant

trait value is sufficiently close to the resident trait value,

��s0

j � sj
�� < detm00(�)=

@

@s0

j

detm11(�)
���
s0

j
=sj

; (7.36)

we thus can conclude thatdetm00(�) and detm11(�) are of the same sign. Conse-

quently, their product is positive.

Proof, Part 3

This part of the proof is concerned with the relative signs ofef0(n̂(0)) and ef1(n̂(1)).
With equations (5.10,11,12) we haveef0(n̂(0)) = f j(s

0

j; s) and ef1(n̂(1)) = f j(sj; s
0)

wheres0 has componentss0

i = si for all i = 1; . . . ; N 6= j ands0

i = s0

j for i = j.

Expansion of these functions to first order in the mutant adaptive trait values0

j around

the resident trait valuesj yields

ef0(n̂(0)) = f j(sj; s) +
�
s0

j � sj
�
� @ 0

jf j(sj; s);

ef1(n̂(1)) = f j(sj; s) +
�
s0

j � sj
�
� @jf j(sj; s) :

(7.37)

We exploit equations (7.6) and (7.7) and obtain

ef0(n̂(0)) = +
�
s0

j � sj
�
� @ 0

jf j(sj; s);

ef1(n̂(1)) = �
�
s0

j � sj
�
� @ 0

jf j(sj; s) :
(7.38)

From this we conclude thatef0(n̂(0)) and ef1(n̂(1)) will be of opposite sign unless the

selection derivative@ 0

jf j(sj; s) vanishes. Hence their product is negative.

Proof, Part 4

This part of the proof is standard, it can be found e.g. in Hofbauer and Sigmund (1988,

see Theorem 1 in their Section 9).
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The Monomorphic Regime apart from Isoclines

In Section 5.1 we have based the assumption of monomorphism on two separate

conditions, the smallness of mutation ratios and the principle of mutual exclusion.

The latter has now been clarified for coevolutionary Lotka-Volterra communities. For

generic communities of this type (having an interaction matrix that depends smoothly

on trait values and that is not singular) and for sufficiently small mutational steps, the

principle of mutual exclusion in speciesj is valid apart from thesj-isoclines of the

adaptive dynamics (where the selection derivative@ 0

jf j(sj; s) does vanish).

In a last step we hence investigate under what conditions the assumption of monomor-

phism holds in the vicinity of these isoclines.

The Monomorphic Regime in the Vicinity of Isoclines

The investigation of the two conditions for the assumption of monomorphism, the

smallness of mutation ratios and the principle of mutual exclusion, requires particular

care in the vicinity of evolutionary isoclines. A violation of the first condition can

occur for speciesi in the vicinity of an inner evolutionarysi-isocline, since here the per

capita growth rates of a resident trait and a close mutant trait will differ only slightly.

For this reason it may take a long time until the mutant replaces the former resident.

We have seen above that for Lotka-Volterra communities the second condition may not

hold, either, in the vicinity of an inner evolutionarysi-isocline. From Sections 7.1 and

7.2 we know that this might be the case for isoclines which are mutually invadable.

Nevertheless, the breach of the assumption of monomorphism, in the cases mentioned

here, can be of minor relevance. There are several reasons for this supposition and we

discuss the possible cases in turn.

1. Close to an evolutionary isocline that is not mutually invadable, the only problem

is the lack of the timescale separation between the population dynamics, forcing

deleterious mutants to go extinct, and the process of mutation, enabling new mutants

to enter the population. Here, a polymorphic distribution around the isocline can

build up, for relatively long time is required to drive out the deleterious mutants.

However, after a sufficient time the most advantageous mutant will eventually have

succeeded in banishing the other trait values such that the polymorphic distribution

is only present for an intermediate time interval. In addition, when the mutation
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ratio �i is not too high or the mutation variance�2
i

too large, this distribution is

sharply peaked on the isocline.

2. In the vicinity of an evolutionary isocline that is mutually invadable the principle

of mutual exclusion may fail to hold. If the isocline is non-invadable, mutants on

opposite sides of the isocline may temporarily coexist. But, due to non-invadability,

only one trait value remains when the isocline is reached. Again, when the mutation

variance�2

i
is small, this temporal deviation from monomorphism may be neglected.

We thus conclude that in both cases 1 and 2 the monomorphic framework can be

retained as an approximation.

3. If an evolutionary isocline is both mutually invadable and also invadable, mutants on

opposite sides of the isocline can coexist permanently. This process may give rise

to evolutionary branching(Metz et al. 1994). However, as remarked in Section 4.5,

evolutionary branching has not been observed by the author in the monomorphic

regime of the generalized replicator equation. It appears that the incidence of

evolutionary branching is not robust under coevolutionary dynamics when treated

stochastically. We thus conjecture that even in this case 3 the monomorphic

description can be retained. Nevertheless, further investigation of this issue is

suggested.

There is yet another incentive for relying on the monomorphic framework in the vicinity

of isoclines. Though we haved
dt
si = 0 for a pointŝ situated on an evolutionary isocline

of speciesi, in a coevolutionary context the adaptive trait values of the other species

usually are still bound to change,d
dt
sj 6= 0 for j = 1; . . . ; N 6= i. This will hold

unlessŝ is a fixed-point of the coevolutionary dynamics or the adaptive change insi

happens on a faster timescale than that of allsj. In consequence, the dynamics in the

other species will drive the adaptive trait valuess away from thesi-isocline and the

phenomena described under 1 to 3 above cannot occur.

Conclusions

We summarize the analysis of this section in terms of the following statements.

1. For generic Lotka-Volterra communities with small mutation ratios in all species

and small mutational steps, a monomorphic description will hold apart from the

isoclines of the adaptive dynamics.
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2. In cases not covered by 1, a monomorphic description will hold if the isocline of a

species is only traversed owing to adaptive change in the other species.

3. In cases not covered by 1 or 2, a monomorphic description will hold approximately

if the considered isocline is not mutually invadable or mutually invadable but non-

invadable.

4. In cases not covered by 1, 2 or 3, a monomorphic description will hold when

considering stochastic coevolutionary dynamics.

Please note that, although the principle of mutual exclusion has been taken for granted

in the exploration of coevolutionary communities which are not of Lotka-Volterra type

(e.g. Rand et al. 1993; Rand and Wilson 1994), our proof is restricted to the class of

Lotka-Volterra communities. To our knowledge, there exists no proof of this principle

for population dynamics of arbitrary type.

7.4 Consequences of Higher Order Corrections

The higher order correction terms to the monomorphic deterministic model can have

important consequences in specific circumstances. Here, we describe two special effects.

1. Finite mutation variances give rise to inner evolutionary isoclines that are displaced

relative to those obtained for infinitesimal mutation variances. This shifting of

isoclines already occurs in the second order result for asymmetric mutation processes

whereas for symmetric mutation processes the third order corrections are to be

considered.

2. The other effect, the phenomenon of evolutionary slowing down, can be demon-

strated by means of the second order result. Its investigation leads to the conclusion

that fixed points lying on non-invadable inner evolutionary isoclines for some traits

are attained at a rate which is algebraically slow rather than exponentially fast in

those traits.
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Figure 7.5 Shifting of evolutionary isoclines. The continuous curves are the inner evolutionary isoclines
of the two species (straight line: predator, curved line: prey) for infinitesimal mutation variances,�1 ! 0

and�2 ! 0. The dotted curves are the inner evolutionary isoclines of the two species for finite mutation
variances,�1 = �2 = 5 �10

�2. The discontinuous oval curve is the boundary of the region of coexistence.
Except for the mutation variances parameters of the coevolutionary predator-prey community are the
same as in Figure 6.2.

Shifting of Evolutionary Isoclines

We now analyze inner evolutionarysi-isoclines in the context of the higher order result

(6.19). In other words, we investigate the impact of allowing mutational steps to be

finite in size rather than infinitesimal. The class of an isocline in this case is determined

by that of the corresponding isocline in the first order result. As to the location of the

isoclines the results are as follows.

First, we consider the second order result. According to equation (6.21) the range of

integration here is given byRi(s) =
�
s

0

i
2 bSi j (s

0

i
� si) � @

0

i
f i(si; s) + (s0

i
� si)

2
�

1

2
� @

02

i
f i(si; s) > 0

	
. For @ 0

i
f i(si; s) = 0 this range either vanishes or extends to

(�1;+1), depending on the sign of@ 02

i
f i(si; s). If thus an innersi-isocline is non-

invadable, the mutation momentm3i(s), see equation (6.20), and in consequence the
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second order correction in equation (6.19) drops out owing to the vanishing integration

range. If the innersi-isocline is invadable, the same conclusion holds true for symmetric

mutation distributions sincem3i(s) now coincides with the vanishing third moment

of those distributions. For asymmetric mutation distribution we already in second

order get a shifting of invadable inner evolutionary isoclines. For symmetric mutation

distributions, however, the evolutionary isoclines of the second order result match

those already established by the first order result. In both cases the inner isoclines

are determined by the vanishing of the selection derivative,@ 0

i
f i(si; s) = 0.

This simple picture changes when we consider the adaptive dynamics in terms of the

third and higher order results. We first examine the case of invadable evolutionary

si-isoclines. Since in general the integration range is now no longer symmetric, the

odd mutation moments do not vanish, and neither do the even mutation moments.

Further, the second and higher order derivatives@
0j
i f i(si; s) and the first and higher order

derivatives@ 0j�j0

i b
�1

i (si; s) in equation (6.19) usually contribute. The third and higher

order corrections therefore cause a displacement of the invadable inner evolutionary

isoclines. These displacements are quantitative deviations from the first order result. But

the higher order corrections can give rise even to qualitative discrepancies. Consider a

manifold in trait space on which@ 0

i f i(si; s) = @ 02

i f i(si; s) = 0 but@ 03

i f i(si; s) 6= 0 hold.

In terms of the first order result (6.12) this manifold would be called an evolutionary

si-isocline. In terms of the more general higher order result (6.19) we notice that this

manifold is not an isocline at all, for the evolutionary rated
dt
si, though probably being

small, does not vanish here. The deviations are not so dramatic for non-invadable

si-isoclines. Here the range of integration cannot contain the resident traitsi. The

displacement of the isocline thus will only be significant, if the mutation distribution

Mi(si; s
0

i � si) extends considerably beyond that zeros0i of f i(s
0

i; s) which is closest

to the zero atsi itself. In general however, inner evolutionary isoclines are no longer

determined by the vanishing of the selection derivative.

We summarize that the shift of inner evolutionary isoclines owing to the finiteness of

mutational steps is a second or third order effect, depending on the symmetry of the

mutation distribution. This shift is illustrated for the case of predator-prey coevolution,

see Chapter 9, by the dotted curves in Figure 7.5. Note that not only the isoclines can

be displaced, but in consequence also the fixed points themselves. Thus the shifting

discussed here may affect the asymptotic stationary states of the coevolutionary system.



Chapter 7 Analysis of the Monomorphic Models 111

s2 log
10

(s2 � ŝ2)
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Figure 7.6 Evolutionary slowing down. (a) The continuous curve shows the mean path dynamics of
the predator’s trait close to the evolutionary equilibrium̂s in Figure 5.4 (constructed from 20 trait
substitution sequences). The fixed pointŝ lies on a non-invadable predator isocline. In the figure
the actual algebraically slow approach toŝ is compared to the exponentially fast one, depicted by the
discontinuous curve, that is obtained from the first order result, which cannot account for evolutionary
slowing down. (b) A double logarithmic plot of the considered time series confirms the derived power
law s2(t) � ŝ2 / t

�1=3, the jaggedness of the continuous curve stems from the extreme amplification
of the impact of single trait substitutions due to the logarithmic scale. The straight line resulting from a
linear least square fit to the time series turns out to have a slope of�0:3154, close to the predicted value
of �1=3, thus confirming the prediction of fourth order slowing down. Parameters of the coevolutionary
predator-prey community are the same as in Figures 5.3, 5.4 and 6.2.

Conditions for Evolutionary Slowing Down

For the purpose of illustration let us start by considering the two dynamical systems
d

dt
x1 = �x1 and d

dt
x2 = �x

3

2
. Both examples possess a locally stable fixed point at

the origin. The time evolution of these systems is described byx1(t) = x1(0) � e
�t

andx2(t) = �
�
x
�2

2
(0) + 2t

�
�1=2

. Note that fort!1 the first system approaches the

fixed point exponentially, x
1
(t) / e�t, while in the second case the approach is only

algebraic, x
2
(t) / t

�1=2, and therefore much slower. The latter effect is called slowing

down. It can occur at fixed points that are not only characterized by the vanishing

of the rate of the dynamical system,d
dt
x = 0, but also by a vanishing of the rate’s

slope, d
dx

d
dt
x = 0.

In general, a dynamical systemd
dt
x = F (x) is said to exhibitrth order slowing down

at a fixed pointx̂ if F (x) =
P
1

j=r aj� � (x� x̂)j aroundx = x̂ with (i) r > 1 and

with (ii) �ar� < 0 for r even andar� < 0 for r odd. The distinction� refers to
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the two cases�(x� x̂) > 0 and is necessary to account for slowing down of even

order. Condition (ii) only ensures the local stability of the fixed pointx = x̂, whereas

condition (i) implies the vanishing of the rate’s slope atx = x̂. The algebraically slow

approach towards the fixed point is described byx(t)� x̂ / �(ar� � t)
1=(1�r).

The phenomenon of slowing down does arise in the context of coevolutionary dynamics.

Before turning to the general case, for intuition we first utilize the second order result.

We consider a locally stable fixed point of the adaptive dynamics which is situated

on a non-invadable inner evolutionarysi-isocline such that@ 02
i
f i(si; s) < 0 holds

in the vicinity of this isocline. Thus the range of integration is given according to

equation (6.21) byRi(s) =
�
si; si � 2 � @ 0

i
f i(si; s)=@

02
i
f i(si; s)

�
for @ 0

i
f i(si; s) > 0

and byRi(s) =
�
si � 2 � @ 0

i
f i(si; s)=@

02
i
f i(si; s); si

�
for the other side of the isocline.

Evidently, the range of integration in second order vanishes on the isocline itself. The

ecological interpretation of this statement is intuitive: fewer and fewer mutantss0
i

are

advantageous while approaching the fixed point, until finally all possible mutants are

deleterious.

In order to prove formally that this process gives rise to slowing down, we examine

the coefficientsaj� defined above in the case of the adaptive dynamics described by

equation (6.7). For adaptation in a single species the results obtained area0� = a1� =

a2� = a3� = 0 whereasa4+ = �a4� < 0. Thus we are confronted with fourth

order slowing down. We conclude that evolutionarily stable fixed points of the adaptive

dynamics are attained at a rate that is algebraically slow in those traitssi whose isoclines

are non-invadable at the fixed point. In principle, the evolutionary slowing down thus

can drastically increase the length of evolutionary transients. In the theory of phase

transitions a related phenomenon is known ascritical slowing down(Huang 1987).

Here, the algebraically slow relaxation towards an equilibrium point occurs at a critical

value of a control parameter, e.g. temperature, that is external to the considered system.

In such systems, fluctuations around the equilibrium point are much larger at the critical

value than apart from it. In contrast, the phenomenon of evolutionary slowing down

causes fluctuations to vanish at the equilibrium point and, moreover, it is an effect

which is internally driven (one could interpret the range of integrationRi(s) as a control

parameter that is tuned towards its critical value while the adaptive dynamic approaches

the non-invadable isocline).
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Let us now briefly consider invadable isoclines. Here, the evolutionary rated
dtsi in the

vicinity of the isoclines actually is increased by a factor2, since here the integration

range is doubling rather than vanishing. Compared to the first order result, this amounts

only to a quantitative but not to a qualitative change.

The phenomenon of evolutionary slowing down can be exemplified in the coevolutionary

predator-prey system. Figure 7.6a shows the algebraically slow dynamics taking place

in lieu of an exponentially fast approach towards a stable fixed point of the adaptive

dynamics. A double logarithmic plot in Figure 7.6b confirms the predicted power law

s2(t) � ŝ2 / �t
�1=3 and thus the fourth order of the evolutionary slowing down.

7.5 Construction of Adaptive Landscapes

The dynamic of evolutionary processes is frequently associated with the concept of

optimization, optimization in turn being interpreted in the sense of maximization

(Lewontin 1987; Emlen 1987). The influential metaphor of the adaptive landscape,

introduced by Wright (1931), see Section 2.3, has helped to support this tendency. In

this section we advance arguments why we think that the notion of hill-climbing on an

adaptive landscape is tempting but obsolete in a coevolutionary context.

Problems with the Hill-climbing Metaphor in a Coevolutionary Context

First, we have seen in Section 7.2 that the determination of coevolutionary endpoints

may not be decomposed into analyzing the impacts of mutation and selection separately.

The quantitative details of the mutation process can be essential for predicting the

direction of coevolutionary change. In contrast, the metaphor of the adaptive landscape

suggests that directionality is imposed on the evolutionary dynamics by a “fitness"

function which is only dependent on the process of selection.

Second, the adaptive landscape for coevolutionary processes ought to be a variable

one. For a particular species, its shape has to undergo transformations according to the

altering biotic environment generated by the other species which in turn are subject to

adaptive change. We show that once the variability of the landscape is tolerated, it is

possible to cast an arbitrary dynamical system in a mathematical form that corresponds
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to a hill-climbing process on a variable adaptive landscape. To see this we consider

the set of equations

d

dt
x = F (x) (7.39)

with x = (x1; . . . ; xN ) and F = (F1; . . . ; FN). It can easily be checked (using

Leibnitz’ rule for differentiation with respect to integration limits) that equation (7.39)

is mathematically equivalent to

d

dt
xi =

@

@x0

i

Wi

�
x0

i; x
� ���

x
0

i
=xi

for i = 1; . . . ; N (7.40)

with

Wi

�
x0

i; x
�
=

Z x
0

i

xi

F (x)

���
xi=x

00

i

dx00

i : (7.41)

Alternatively, we can write

d

dt
x = rx0W

�
x0; x

� ���
x0
=x

(7.42)

and

W
�
x0; x

�
=

NX
i=1

Wi

�
x0

i; x
�

(7.43)

with rx0 =
�
@=@x0

1
; . . . ; @=@x0

N

�
. Equation (7.40) describes the dynamics of the

arbitrary system (7.39) as an interplay of several hill-climbing processes onN separate

adaptive landscapesWi(x
0

i
; x) for speciesi = 1; . . . ; N . In contrast, equation (7.42)

corresponds to a hill-climbing process on a single landscapeW (x0; x). Note that these

landscapes are extended in the space of allx0 whereas their shape is parametrized by

the value ofx, the current state of the dynamical system.
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Envisaging Coevolutionary Dynamics on Variable Adaptive Landscapes

The canonical equation (2.3) of adaptive dynamics, which we have underpinned by a

formal derivation in Section 6.2, is also inspired by the idea of envisaging adaptation

as a hill-climbing process. However, when the evolutionary rate coefficientski(s) are

allowed to depend on the adaptive states (Abrams et al. 1993), the adaptive dynamics

can deviate from the path given by the direction of steepest ascent on the landscape

described byf i(s
0

i
; s).

To cast our coevolutionary dynamics in terms of a process of hill-climbing on a variable

adaptive landscape we set in equation (7.39)x = s and, in accordance with equation

(6.12),F (s) = 1

2
� �i(si) � �2

i
(si) � n̂i(s) � @ 0

i
f i(si; s). From equations (7.41) and (7.43)

we obtain the adaptive landscape for the coevolutionary dynamics of the monomorphic

deterministic model

W
�
s0; s

�
=

1

2
�

NX
i=1

Z
s

0

i

si

�
�i(si) � �2i (si) � n̂i(s) � @ 0

i f i(si; s)
� ���

si=s
00

i

ds00

i : (7.44)

Here, setting the arbitrary lower integration limit tosi amounts to normalizing the

absolute height of the adaptive landscape to zero for the current combination of trait

values,W (s; s) = 0. To recover the dynamics we use the transcription of equation (7.42)

d

dt
s = rs0W

�
s0; s

� ���
s0
=s

: (7.45)

We see that if we wish to describe the adaptive dynamics by a process of gradient

ascent (following the direction of steepest slope on an adaptive landscape) we ought to

incorporate features of the mutation process into the definition of the landscape. This

is why (i) the canonical equation (2.3) of adaptive dynamics can give rise to dynamics

leading to minima of the adaptive landscape functionsf i(s
0

i
; s) and why (ii) evolutionary

stability can be tuned without altering these landscape functions, see Section 7.2.

In Figures 7.7 and 7.8 we give two examples of employing equation (7.44) together

with (7.45) to generate variable adaptive landscapes for coevolutionary dynamics. Both

examples are based on the coevolutionary predator-prey community which is analyzed

in Chapter 9.

Visualizing the adaptive dynamics by means of a variable adaptive landscape might

help our imagination. First, we might take the transformation of the landscape’s

shape in the course of the coevolutionary process as picturing the alteration of the
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Figure 7.7 Coevolution towards an evolutionarily stable fixed point envisaged on a variable adaptive
landscape. The trajectory of the adaptive dynamics is given on the bottom plane; according to equation
(7.44) it can be understood as being determined by a hill-climbing process on the variable adaptive
landscape. The sphere upon the landscape shows the current state of the adaptive trait values. The
coordinates for the trajectory and the current state of the adaptive dynamics are(s1; s2), those for the
variable adaptive landscape(s0

1
; s

0

2
). Times shown are (a)t = 0, (b) t = 5 � 104, (c) t = 3 � 105, (d)

t = 5 �105, (e) t = 8 �105, and (f)t = 8 �106. Parameters of the coevolutionary predator-prey community
are the same as in Figure 4.4.
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Figure 7.8 Coevolution towards an evolutionarily stable limit cycle envisaged on a variable adaptive
landscape. The trajectory of the adaptive dynamics is given on the bottom plane; according to equation
(7.44) it can be understood as being determined by a hill-climbing process on the variable adaptive
landscape. The sphere upon the landscape shows the current state of the adaptive trait values. The
coordinates for the trajectory and the current state of the adaptive dynamics are(s1; s2), those for the
variable adaptive landscape(s0

1
; s0

2
). Times shown are (a)t = 0, (b) t = 1:2 � 106, (c) t = 2:7 � 106,

(d) t = 3:4 � 106, (e) t = 4:9 � 106, and (f) t = 5:5 � 106. The phenomenon of evolutionary cycling
is discussed in detail in Chapter 9. Parameters of the coevolutionary predator-prey community are as
given in Figure 9.3 withh = 0:11.
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species’ environment caused by and also causing their adaptive change. Second, one

could be tempted to interpret the constant height of the current adaptive state of the

coevolutionary community on the landscape as illustrating a point made by Fisher (1958)

that the changes brought about by natural selection must be offset against the resulting

deterioration of the environment (Frank and Slatkin 1992). But still, as demonstrated

above there is no explanatory potential in describing evolution as hill-climbing in a

coevolutionary context. The adaptive dynamics, equation (6.12), precedes the adaptive

landscape, equation (7.44), and not vice versa.



Chapter 8
Extension of the

Polymorphic and Monomorphic Models

In this chapter we discuss generalizations of the dynamical theory of coevolution as

developed in Chapters 4 to 6. We point out how to extend the theoretical framework

presented there, in order to cover more complicated ecological and evolutionary sce-

narios.

8.1 Multi-trait Coevolution and Functional Constraints

So far we have restricted attention to the case that each speciesi possesses only a single

adaptive traitsi. To understand the significance of coevolutionary phenomena on the

adaptive dynamics this was sufficient.

Multiple Traits

However, in real ecosystems adaptive change not only simultaneously happens with

respect to multiple species but also with respect to multiple traits within species. For

instance, life-history traits like rates of reproduction and growth at given ages typically

undergo concurrent evolution (Stearns 1992). We allow multiple traits within species

by turning si into a vector

si = (sil) (8.1)
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with a species indexi = 1; . . . ; N and a trait indexl = 1; . . . ; �i.

Moreover, allowing for multiple adaptive traits per species can be a prerequisite for

the reliability of the Markov assumption, introduced in Section 5.2; knowledge of all

the trait values at present ought to be sufficient to determine the potential of further

adaptive change in the immediate future.

Constraints

A third reason for considering multiple traits in phenotypic coevolution is that the path

of evolution can be constrained. In addition to natural bounds on certain trait values

– e.g. fecundities or weights necessarily must be non-negative – which already ought

to be accounted for when considering only one trait per species, the set of accessible

traits is further restricted by constraints on the combinations of different traits. These

constraints may depend on simple matters of physics – e.g. surface to volume ratios

cannot decrease beyond a certain threshold. Alternatively, the constraints may be an

outcome of developmental pathways of the organism – e.g. an organism that matures at

a small size has only a small amount of resources to give to reproduction. Constraints

may also follow from the mapping from genotype to phenotype – e.g. if the same gene

influences two traits, the trait values that result are not independent; this effect is called

pleiotropy (Falconer 1989). For a more detailed discussion of constraints see Maynard

Smith et al. (1985), Loeschcke (1987) or Stearns (1992). We allow for such constraints

as follows.

1. Constraints restrict the set of trait values accessible within each species to a subspace

of bSi which we denote bybSi;c0 . The Cartesian product of all these sets is called
bSc0 = �

N
i=1

bSi;c0. The adaptive dynamics of theN -species community are then

confined to the subspacebSC of bS with

bSC = bSc \
bSc0 (8.2)

where bSc denotes the region of coexistence as defined in equation (5.8).

2. Due to pleiotropy the effects of mutations on different traits can be correlated. For

this reason we write the probability distribution for a change�si from a given trait

valuesi due to mutation as a single multivariate distributionMi(si;�si) rather than

as a product of�i separate distributionsMil(si;�sil).
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Below we generalize the results obtained in the previous sections to match the extended

framework of multiple-trait coevolution.

Extension of the Polymorphic Stochastic Model

No notational changes are required to extend the results of Chapter 4 to multiple-trait

coevolution. Note only that the phenotypic distributionspi as well as the mutation

and offspring distributionsMi and Bi now are multivariate, that the delta functions

in equation (4.1) and (4.9) take vectors as parameters such that the usual definitions

�si =
Q

�i

l=1
�sil and�(s0

i
� si) =

Q
�i

l=1
�
�
s0

il
� sil

�
apply, and that the integrationsds0

i

anddsi in equation (4.15) now stand fords0

i
=
Q

�i

l=1
ds0

il
anddsi =

Q
�i

l=1
dsil.

Extension of the Monomorphic Stochastic Model

Similarly, the results for the stochastic representation in Chapter 5, in particular equa-

tions (5.13), (5.14) and (5.18), carry over without alteration. The delta functions in equa-

tion (5.14) now take vectors as arguments, such that again�(s0

i
� si) =

Q
�i

l=1
�
�
s0

il
� sil

�

applies, the mutation distribution in equation (5.18) is multivariate and the integration

ds0 in equation (5.13) now is given byds0 =
Q

N

i=1
ds0

i
=
Q

N

i=1

Q
�i

l=1
ds0

il
.

Extension of the Monomorphic Deterministic Model

The results of Chapter 6 for the deterministic approximation to the monomorphic co-

evolutionary dynamics generalize as below. No modifications are required in equations

(6.7) and (6.8). However, the integral in equation (6.7) now is multi-dimensional with

dsi =
Q

�i

l=1
dsil, and consequently the rangeRi(s) of integration in (6.8) now becomes

a subspace of dimension�i instead of a mere interval.

In generalizing equation (6.12) we obtain

d

dt
si =

1

2
� �i(si) � �

2

i (si) � n̂i(s) � r
0

if i(si; s) (8.3)

as the first order result for the deterministic approximation of the multiple-trait co-

evolutionary dynamics inbSC . Herer 0

i
f i(si; s) with r

0

i
=
�
@ 0

i1
; . . . ; @ 0

i�i

�
denotes the

selection gradientfor speciesi, a vector being composed of simple selection deriva-

tives @ 0

il
f i(si; s) with @ 0

il
= @=@s0

il
for the traitsl = 1; . . . ; �i of speciesi. In the case
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of multiple-trait coevolution�2
i

is the variance-covariance matrixof the multivariate

mutation distributionMi. The elements of this square matrix�2
i
=

�
�2

i;ll0

�
are given by

�2i;ll0(si) =

Z
�sil � �sil0 � Mi(si;�si) d�si (8.4)

with l; l0 = 1; . . . ; �i.

Notice that finite off-diagonal elements in�2i (non-vanishing covariances) cause the

adaptive dynamics to take an altered path, i.e. the direction of adaptive change is not

parallel to the selection gradient. Notice also that up to first order the inner evolutionary

isoclines of the adaptive system (8.3) for speciesi are now given by those manifolds

in bSC where the selection gradientr 0

if i(si; s) either vanishes or lies in the null space

of the variance-covariance matrix�2i (si). The location and type of boundary isoclines

on @ bSC is less easy to settle and phase portraits of the system (8.3) will prove useful

in this circumstance.

8.2 Nonequilibrium Population Dynamics and
Varying Environments

In this section we analyze the issues of coevolution under nonequilibrium population

dynamics and under varying external influences on the environment.

In relaxing the assumption of a fixed point attractorn̂(s) in population size space made

in Section 5.1, we now allow for arbitrary attractorsA(s) that give rise toperiodic,

quasi-periodic or chaotic population dynamics. Similarly, external influences can

impose an extra time dependence on the coevolutionary community thus rendering the

system nonautonomous. Although both effects give rise to changes in the environment

experienced by an individual within the coevolutionary community, the termvarying

environmentusually is used as an abbreviation for the latter, since only in this case

the coevolutionary community, considered as a single system, is exposed to variation

from beyond its boundary.

After discussing relations between different timescales in the coevolutionary commu-

nity, we provide generalizations of the two monomorphic models of coevolutionary

processes to nonequilibrium population dynamics and varying environments. In the

literature different invasion criteria have been suggested in this context. We outline the

mathematical concepts and finally investigate in how far these criteria can be approved

in the light of the formalism developed in this work.
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Timescales in the Coevolutionary Community

Already in the case of a fixed point attractor in population size space we had to

distinguish between the timescale�a of adaptive change and the timescale�f on which

a mutant either goes extinct or reaches fixation while the population dynamics of the

combined system attain its attractor. Both�a and�f are larger than the typical time�i

between birth or death events of individuals in the coevolutionary community.

When population dynamics settles to a nonequilibrium attractorA(s) in population

size space, an additional timescale�p for the motion on this attractor is introduced.

Moreover, variation of the environment due to external influences on a timescale�e

imposes an extra time dependence on the coevolutionary community.

No premises as to the relations between the five timescales above enter the derivation of

the polymorphic stochastic model. For the monomorphic models, resident populations

are considered sufficiently large in order not to be subject to accidental extinction,

consequently�a; �f ; �p � �i obtains. Moreover, the assumption of small mutation

ratios implies�a � �f . The assumptions of equilibrium population dynamics and the

absence of an external time dependence in the coevolutionary community are formally

expressed by�p; �e !1. In summary, the considerations in Chapters 5, 6 and 7 have

been underlined by the relations

�a � �f � �i ^ �p; �e !1: (8.5)

In this section we investigate the consequences of relaxing the last two assumptions

�p ! 1 and �e ! 1.

Consideration of the Polymorphic Stochastic Model

External variation of the environment of the coevolutionary community is explicitly

allowed in the polymorphic stochastic model, see equations (4.7) and (4.15). However,

the particular algorithm presented for the polymorphic stochastic model in Chapter 4 is

based on the minimal process method, and thus is exact for�e !1. As explained in

Section 4.4 this algorithm can be used as an approximation even for environments which

are subject to external variation provided that�e � �i. For �e 6� �i other algorithms

should be devised, whereas the polymorphic stochastic model itself stays valid.

No assumptions as to the attractors of the population dynamics of the different species

in the coevolutionary community have been made when deriving the polymorphic
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stochastic model. In fact, population dynamics and adaptive dynamics are not formally

treated separately in this model. In consequence, the polymorphic stochastic model is

fully capable of describing coevolutionary communities with nonequilibrium population

dynamics.

Extension of the Monomorphic Stochastic Model

In the case�f � �p ^ �e ! 1 invasion and fixation of a successful mutant happen

slowly compared to the dynamics on the attractorA(s). This will typically be the case

for mutants whose adaptive trait valuess0

i are sufficiently close to the resident trait value

si. To determine the fate of a rare mutant we then can take its per capita rates onA(s)

to be effectively given bybi(s0

i; s), di(s
0

i; s), defined in analogy to

f i
�
s0

i; s
�
= lim

T!1

1

T
�

Z T

0

ef i
i

�
s0i; s; n(t)

�
dt (8.6)

where the bar here denotes the time average along a trajectoryn(t) on A(s). The

dynamics ofn(t) is described by equation (5.5). Due to ergodicity the choice ofn(0)

is not affecting these averages and the time average can effectively be replaced by a

phase average on the attractorA(s)

f i
�
s0i; s

�
=

Z
A(s)

ef i
i

�
s0i; s; n

�
d�(n) ; (8.7)

see the remark on the natural measured�(n) of A(s) further below. In generalizing

equations (5.18) we obtain for the probabilities per unit time in the stochastic repre-

sentation

wi

�
s0i; s

�
=�i � bi(si; s) � ni(s) �Mi

�
si; s

0

i � si
�
�

b
�1

i

�
s0i; s

�
� (f i

�
s0i; s

�
)+ :

(8.8)

Similar conclusions can be drawn for the case�f � �e ^ �p !1 where the invasion of

a successful mutant happens slowly compared to the dynamics of the external influences

on the environment. Equation (8.8) carries over andf i(s
0

i; s) now indicates a time

average over the change of the external influences on the environment. When the

varying external influences possess a stationary frequency distribution, the time average

again can be obtained instead as an average over these external influences weighted by

their probability to occur.
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Evidently, for coevolutionary communities with both nonequilibrium population dy-

namics and varying environment the above arguments can be combined provided that

�f � �p; �e. In this casef i(s
0

i; s) is given by a twofold average.

Another extreme is described by the condition�e � �f ^ �p ! 1. Here, the

environment of a mutant is practically constant during its successful or unsuccessful

invasion. Instead of equation (8.9) we therefore have

wi

�
s0

i; s; t
�
=�i � bi(si; s; t) � n̂i(s; t) �Mi

�
si; s

0

i � si
�
�

b
�1

i

�
s0i; s; t

�
� (f i

�
s0i; s; t

�
)+ :

(8.9)

Notice that in this case the capability of mutants to invade a community of resident

species not only depends on the resident trait valuess but also on the states of the

external influences on the environment at the particular time of invasion.

The cases with�p � �f are more involved and will not be covered here.

When the environment of a mutant changes due to nonequilibrium population dynamics

or due to external influences on a timescale that is comparable to�f , the fate of the

mutant cannot be decided upon its initial per capita growth rate. The assumption of

invasion implying fixation, see Section 5.1, which in turn rests on the principle of mutual

exclusion, is likely not to hold in this case. In such cases retreat to the polymorphic

stochastic model is recommended.

However, for small mutational steps, the timescale�f for fixation of successful mutants

will not be too small, such that the feasible cases, see equation (8.8), can be taken as

the relevant ones.

Extension of the Monomorphic Deterministic Model

The discussion provided above for the monomorphic stochastic model directly applies

to the monomorphic deterministic model. In generalizing equation (6.12) and by using

equation (8.8) in the case�f � �p; �e we obtain for the deterministic approximation of

the adaptive dynamics in first order

d

dt
si = �i �m2i(s) � ni(s) � @

0

i f i(si; s) : (8.10)

For the case�e � �f ^ �p ! 1 we employ equation (8.9) to get

d

dt
si = �i �m2i(s) � n̂i(s; t) � @

0

i f i(si; s; t) : (8.11)
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In equations (8.10) and (8.11) we have used the second mutation momentm2i rather

than 1
2

� �2
i

in order to allow for asymmetric mutation distributions.

The construction of the higher order deterministic approximations for the adaptive

dynamics follows the same scheme as in Section 6.3 and is not repeated here.

Invasion Criteria from the Literature

As a special application of the monomorphic stochastic model, we can use our math-

ematical framework to deduce a criterion for resolving whether or not a given mutant

can successfully invade a coevolutionary community comprising given resident pop-

ulations. We already have obtained such a criterion in Section 5.3, equation (5.19),

assuming equilibrium population dynamics. It is of particular interest to investigate

how this result generalizes to encompass nonequilibrium population dynamics. Be-

fore we establish our own criterion, we briefly review some mathematical concepts

suggested for this purpose in the literature.

To decide upon the initial increase of a rare mutants0

i
in an environment given by the

residentss the following constructs have been suggested

E1

�
s0

i; s
�
= lim

T!1

1

T
�

Z T

0

ef i
i

�
s0i; s; n(t)

�
dt ; (8.12)

E2

�
s0
i; s

�
= lim

T!1

1

T
� ln

j�n(T )j

j�n(0)j
; (8.13)

E3

�
s0i; s

�
=

Z
A(s)

ef i
i

�
s0i; s; n

�
d�(n) : (8.14)

In the literature, the invasion criterion for the initial increase of the rare mutant is taken

to beEk > 0 with k = 2 or 3 (Metz et al. 1992, Rand et al. 1993). For the notions of

resident and combined systems, used below, see Section 7.3.

The first quantityE1 equalsf i(s
0

i
; s), the time average of the per capita growth rateof

the rare mutant along a trajectoryn(t) that starts on the attractorA(s) of the resident

system, see equation (8.6). We have introducedE1 as it serves as a convenient common

denominator for the other two quantitiesE2 andE3, see below.

The second quantityE2 (Metz et al. 1992) is theLyapunov exponentof the combined

system along the direction of the mutant’s population size for a point on the attractor

A of the resident system. Lyapunov exponents in general are given by the average
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logarithmic growth rate of the distance between two specific trajectories. Here, the first

trajectoryn(t) starts fromn(0) on the attractorA itself, the second trajectoryn0(t) has

initial conditionsn0(0) = n(0)+�n(0) where�n(0) denotes an initial displacement in

the direction of the mutant’s population size. The distance between these two trajectories

is given byj�n(t)j with �n(t) = n0(t)�n(t), where the particular choice of the distance

function j. . .j does not affect the result (Oseledec 1968). Note that the mathematical

definition of a Lyapunov exponent requires the time development ofn0(t) to be evaluated

according to the linearization of the dynamics of the combined system along the

attractorA (Eckmann and Ruelle 1985). As a convenient alternative for numerical

estimations of Lyapunov exponents one might utilize the combined system directly but

then choose a small�n(0) and extend the average only over a finite time interval

(0; T ); in order to nonetheless cover the attractorA sufficiently, several repetitions

of this procedure usually are necessary where each single repetition is followed by a

re-scaling� ��n(T ) ! �n(0) with � � 1 (Baker and Gollub 1990).

The third quantityE3 (Rand et al. 1993) is calledinvasion exponentand in our case is

simply the phase average of the per capita growth rate of the mutant on the attractorA of

the resident system weighted by the natural measured�(n) of this attractor. Taking the

natural measure rather than an arbitrary invariant measure is important when the attractor

A is chaotic (Ott 1993). For practical applications this caveat however is spurious due

to the noise inevitably associated with any numerical estimation (Schuster 1989).

Equivalence of Invasion Criteria

The equivalence of the three criteria can readily be established.

First, the time averageE1 coincides with the phase averageE3 (Ott 1993) – there can

be exceptional initial conditionsn(0) that do not satisfy this identity, but since the set

of these has Lebesque measure zero they are irrelevant for realistic systems.

Second, the time averageE1 equals the Lyapunov exponentE2. To show this, we

linearize the dynamics of the combined system about the trajectoryn(t) and obtain
d

dt
�n(t) = J(n(t)) ��n(t) whereJ(n) denotes the Jacobian matrix of the dynamics of

the combined system evaluated atn. From the population dynamics of the combined

system we get�ni(0) = 0 ) �ni(t) = 0 (the left hand side holds since the initial

displacement betweenn(0) andn0(0) is only affecting the mutant’s population sizen0

i
)

as well asn0

i
(0) = 0 ) n0

i
(t) = 0 (the left hand side holds for the trajectoryn(t)
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since it starts on the attractor of the resident system where the mutant is absent). From

the first implication we obtainj�n(t)j = j�n0

i
(t)j and applying the second implication

to the linearized dynamics yieldsd
dt
�n0

i(t) =
ef i
i (s

0

i; s; n)jn=n(t) ��n0

i(t). From these

equations we concludej�n(T )j=j�n(0)j = exp
R T

0
ef i
i (s

0

i; s; n(t)) dt. Comparing this

result to equations (8.12) and (8.13) completes the proof ofE1 = E2.

Recovery of Invasion Criteria

We now investigate whether or not we recover the conditionE1 > 0 for the initial

increase of a rare mutant in the light of our stochastic approach.

A rare mutants0

i can successfully invade a community given by the resident traits

s provided that there is a positive transition probability per unit time for the trait

substitutionsi ! s0

i, i.e.wi(s
0

i; s) > 0. We easily draw the conclusion that, if we

consider only the case�f � �p ^ �e !1, our stochastic approach yields the criterion

E1 > 0 which is equivalent to those proposed previously. To see this, consider equation

(8.8) together with the definitions of(. . .)
+

and that off i(s
0

i; s) in equation (8.6).

In addition to recovering this result suggested in the literature, we analogously can

establish corresponding criteria for the other cases analyzed in this section. Furthermore,

our analysis has not only furnished us with these criteria for the initial increase of a rare

mutant but provides a full dynamical description of the stochastic adaptive process.



Part C
Application of the

Dynamical Theory of Coevolution

The population dynamics of predator-prey systems are a classical model of theoretical

ecology. The question as to the consequences of superimposing an adaptive process

onto the population dynamics of predator and prey has fostered a variety of theoretical

models of phenotypic coevolution in such communities.

In this part we utilize the three models of coevolution derived in the last chapters to

investigate the variety of possible evolutionary dynamics in a prototypical predator-prey

community. In particular we focus on the potential for evolutionary cycling – a type of

evolutionary change belonging to the class of Red Queen dynamics – and demonstrate

that this mode of coevolution is a feasible outcome in predator-prey communities. This

finding corroborates speculations put forward in the literature and once again underlines

the necessity for a dynamical theory of coevolution.





Chapter 9
Predator-Prey Coevolution

9.1 Background

Predator-prey interactions are ubiquitous in nature (Crawley 1992). The ecological

interactions between predator and prey species can sometimes be strong enough for the

predator to have a major effect on the environment in which the prey is evolving and

vice versa. Such interactions have therefore motivated a variety of theoretical models

of phenotypic coevolution in predator-prey communities (e.g. Rosenzweig 1973; Parker

1985; Abrams 1986; Brown and Vincent 1992).

Arms Races

A number of biological issues are raised by the coevolution of predators and prey. Most

important is an instability inherent in their coevolution, since natural selection by the

prey on the predator favors predator phenotypes best able to consume the prey, whereas

selection by the predator on the prey favors prey phenotypes least likely to be killed.

This may lead to an escalation in traits affecting attack and defence, referred to as an

evolutionaryrat race by Rosenzweig (1973) and anarms raceby Dawkins and Krebs

(1979). Abrams (1986) argued that an arms race does not exhaust the possibilities;

for example, continuing evolution in one species may occur even if the other remains

constant.
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Figure 9.1 "Well, in our country,” said Alice, still panting a little, “you’d generally get to somewhere
else – if you ran very fast for a long time as we’ve been doing.” “A slow sort of country!” said the Queen.
“Now, here, you see, it takes all the runningyou can do, to keep in the same place.” (after Carroll 1871)
Since Van Valen (1973) the Red Queen serves as a metaphor for the deterioration of a species’ environment
owing to continual coevolution with other species. This process can give rise to Red Queen dynamics,
i.e. continuous evolutionary change in a community in the absence of external forcing.

Although evidence is hard to find, Bakker (1983) documented changes in mammalian

herbivores and carnivores during the Paleocene to Mid Eocene that could be of the kind

suggested by Dawkins and Krebs (1979). Those taxa characteristic of open habitats,

where pursuit and flight are critical features of predation, show similar speed-enhancing

changes in limb morphology; during this time the prey appear to have evolved faster

than predators, for more details see Section 1.2. Dawkins and Krebs (1979) argued that

an asymmetry in the selection pressures would be expected, on the grounds that the

prey is running for its life whereas the predator “is only running for his dinner”.

The Red Queen

Of some interest has thus been the general question as to whether the phenotypes of the

predator and prey evolve to an equilibrium asymptotic state such as an evolutionarily

stable strategy (Maynard Smith and Price 1973; Maynard Smith 1982).

Following Van Valen’s (1973) Red Queen’s hypothesis, the alternative – the interaction

between species prevents attainment of an equilibrium point such that there is continuous
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evolutionary change in their phenotypes – has become known asRed Queen dynamics

(Stenseth and Maynard Smith 1984; Rosenzweig et al. 1987; Marrow et al. 1992).

Such dynamics are interpreted to indicate the continuous deterioration of a species’

environment owing to the continual evolution of other species (Futuyma 1986; Ebeling

and Feistel 1982). The name was inspired by the book “Through the Looking-Glass,

and What Alice Found There” by Lewis Carroll (1871) where the Red Queen explains:

”Now, here, you see, it takes all the running you can do, to keep in the same place.”

We refer to a Red Queen dynamic as any phenotypic dynamic that, in the absence of

external forcing, does not tend to an equilibrium state.

In the literature, it has been argued that a Red Queen dynamic would require the set of

feasible phenotypes to be unbounded, so that the phenotypes could evolve to ever more

extreme states. Rosenzweig et al. (1987) concluded that “the Red Queen depends on the

existence of special phenotypic features, i.e. those which are independent, boundless,

and about which it may be said, the larger (or smaller, or denser, or furrier, or ...),

the better.” This requirement is unlikely to be met in reality, and calls into question

whether Red Queen dynamics could occur at all.

Outline of Analysis

To investigate whether Red Queen dynamics are possible, prototypical coevolutionary

predator-prey communities have been devised (Marrow et al. 1992; Marrow and Can-

nings 1993). Analysis of these communities has been interpreted to suggested that, over

the course of evolution, the phenotypes could either tend to equilibrium or to nonequi-

librium asymptotic states. However, the models considered in these analyses were not

dynamical and the time-dependence owing to the processes of mutation and selection

was not incorporated. We have seen in Section 7.2 that under these circumstances pre-

diction of evolutionary outcomes generally is impossible; to determine the asymptotic

states of coevolving systems it is necessary to employ a dynamical framework. Conse-

quently, we here analyze the coevolutionary predator-prey community in terms of our

three dynamical models of coevolution.

Section 9.2 introduces the ecological interactions which define the predator-prey com-

munity. In Section 9.3 we illustrate different coevolutionary outcomes in this community

and demonstrate that these can be grouped into three classes: (i) the predator goes ex-

tinct, (ii) coevolution leads to constant phenotypes in predator and prey, and (iii) the
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phenotypes in both species undergo coupled and sustained oscillations on a limit cycle

corresponding to Red Queen dynamics. Section 9.4 analyzes in detail the requirements

for this evolutionary cycling. The dependence of cycling on the interaction and muta-

tion structure of the predator and prey is revealed, and we show that the phenomenon

is robust under changes in the modelling approach. We conclude that the conceptual

framework of evolutionary theory, with its current focus on fixed points (like evolution-

arily stable strategies) as the endpoints of evolution, needs to be expanded to encompass

more complex evolutionary attractors such as the limit cycles presented here.

9.2 Specification of the Coevolutionary Community

According to the framework established in Section 4.1 we base our dynamical models of

predator-prey coevolution on the ecological processes in the predator-prey community.

In doing so we ensure that the process of natural selection directing evolution is driven

explicitly by the ecology of predator-prey interactions, rather than by an external ad

hoc notion of relative “fitness” of different phenotypes.

Birth and Death Events

For simplicity, we focus on a single adaptive trait in each species; in view of the

importance of body size in determining interactions between predator and prey (Cohen

et al. 1993), one might think of these traits as body sizess1 ands2 of prey and predator

respectively.

Figure 9.2 provides a characterization of the coevolutionary predator-prey community

by specifying the fundamental birth and death processes. In particular, Figure 9.2a

describes the birth and death events that are dependent on phenotype, these being the

events that arise from encounters with other individuals, as opposed to the constant

birth and death events given in Figure 9.2b.
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a Birth and death processes affected by phenotype

Target
individual

Encountered
individual

Birth/death event Probability of event per
encounter per unit time

prey s1 prey ~s1 death of preys1 �(s1)

prey s1 predators2 death of preys1 �(s1; s2)

predators2 prey s1 birth predators2 
(s1; s2)

b Birth and death processes independent of phenotype

Target individual Birth/death event Probability of event per
capita per unit time

prey s1 birth of preys1 r1

predators2 death of predators2 r2

c Mutation processes

Birth event Mutation event Probability distribution
of event

birth of preys1 prey s1 ! s0

1
(1� �1) � �(s

0

1
� s1) +

�1 �M1(s
0

1
� s1)

birth of predators2 predators2 ! s0

2
(1� �2) � �(s

0

2
� s2) +

�2 �M2(s
0

2
� s2)

Figure 9.2 Specification of birth, death and mutation processes for a prey individual with phenotypes1

and predator with phenotypes2 in the coevolutionary predator-prey community.

Mutation

Evolutionary processes in the community require a mechanism for generating phenotypic

variation on which natural selection caused by the interaction between predator and prey

can operate. We assume that variation is created by a simple mutation process; in order

to keep the analysis tractable we envisage that the genetic systems of the species are

clonal.

Figure 9.2c shows that each birth event gives rise with probabilities�1 and �2 to a

mutant offspring in the phenotypic traitss1 and s2 of prey and predator respectively.

The new phenotypes are chosen according to the mutation distributionsM1 andM2 of

prey and predator respectively. These distributions are assumed to be Gaussian with

mean0 and variances�2
1

and �2
2

respectively.
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Figure 9.3 Specification of the interactions in the coevolutionary predator-prey community
as introduced in Figure 9.2. The functions used to describe the effect of phenotypes
on the birth and death probabilities arising from encounters between individuals are: (a)
prey self-limitation �(s1) = u �

�
c1 � c2 � s1 + c3 � s

2

1

	
, (b) effect of predator on prey

�(s1; s2) = u � exp
�
��2

1
+ 2 � c4 � �1 � �2 � �2

2

	
, where �1 = (s1 � c3)=c5 and �2 = (s2 � c7)=c8.

u = 10�3 is a constant that scales population sizes. Parameters take the values:c1 = 3:0, c2 = 10:0,
c3 = 10:0, c4 = 0:6, c5 = 0:5, c6 = 0:22, c7 = 0:5, c8 = 0:25. The function
(s1; s2) is not shown
since it is related to�(s1; s2) by the constant of proportionalityh. The constant birth and death terms
are: r1 = 0:5, r2 = 0:05. Mutation parameters used are:�1 = 10�3, �2 = 10�3; �1 = 2 � 10�3,
�2 = 2 � 10�3. The given parameter values are used throughout except where otherwise stated.

Selection

Natural selection arises from the dependence of the birth and death probabilities per unit

time �, �, and 
 on the phenotypes of the interacting individuals. Various functions

could be used for this purpose; we use functions as described in Figure 9.3.

The function �, which characterizes the ecological processes responsible for self-

limitation in the prey’s population size, is taken to be parabolic such that intermediate

phenotypes are favored in the absence of the predator (Figure 9.3a). The function�

describing the effect of a predator on the probability of death of the prey is taken to

be bivariate Gaussian (Figure 9.3b), on the grounds that the predator is likely to show
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some degree of specialization in the size of prey it chooses relative to its own size

(Cohen et al. 1993). On the basis that what is bad for the prey is good for the predator,

the function
 is related to� by a constant of proportionality,
 = h � �. We call h

the harvesting efficiency.

Simple though this example is, it illustrates some features of a coevolving predator-

prey system. In particular, it shows the tension typical of predator-prey coevolution:

the predator gains its greatest benefit from the prey at the combination of adaptive trait

valuess1 = 0:5, s2 = 0:5 where in contrast the prey suffers its greatest loss.

Resume

The ecological community presented here extends the model of Marrow et al. (1992) by

(i) providing a full dynamical description of the birth, death and mutation processes. It

further generalizes the former account in the sense that (ii) it allows stochastic population

dynamics arising from individual-based encounters, and (iii) it permits the populations

to have polymorphic phenotypic distributions since multiple adaptive trait values may

be present simultaneously in each species.

As a special case of our description, we recover the well-known Lotka-Volterra equations

d

dt
n1 = n1 � (+r1 � �(s1) � n1 � �(s1; s2) � n2) ;

d

dt
n2 = n2 � (�r2 + 
(s1; s2) � n1)

(9.1)

for the population sizesn1 and n2 of prey and predator, respectively, by assuming

no mutations, random encounters, deterministic population dynamics (the population

sizes of the species are large), and monomorphic phenotypic distributions (only one

phenotype is present within each species).

9.3 Investigation of Evolutionary Outcomes

Here we describe the variety of possible evolutionary outcomes in a predator-prey

community, using the monomorphic deterministic model as a starting point of our

investigation. Deterministic dynamics of this kind have been used elsewhere in the

literature (e.g. Hofbauer and Sigmund 1990; Vincent 1991; Abrams et al. 1993), but

have not previously been underpinned by a formal derivation.
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The Region of Coexistence

In the case of the monomorphic dynamics we can immediately infer from equations

(9.1) that there is a regionbSc
in the monomorphic trait spacebS where both species can

coexist with positive population densities.

The boundary of this region is depicted by the oval discontinuous curves in Figures

9.4, 9.5 and 9.6. Only within this region can the predator population harvest the

prey sufficiently to survive; given a pair of phenotypes(s1; s2) outside this region,

the predator population is driven to extinction by the population dynamics (9.1).

Accordingly, coevolution of the predator and prey can only be observed within this

region of coexistence. It is possible for a sequence of trait substitutions in the prey to

lead to extinction of the predator, as illustrated e.g. in Figure 9.5.

On the other hand, there is in this example no evolutionary path in which the predator

can gain such an advantage over the prey that it destroys the prey and brings about

its own extinction, as there is no region of trait space in which neither species has a

positive equilibrium population density.

Classification of Evolutionary Outcomes in Predator-Prey Coevolution

By tuning the shape of the interaction functions depicted in Figure 9.3, the variety of

possible coevolutionary outcomes in this predator-prey community can be explored. A

survey is given in Marrow et al. (1992).

This diversity of different coevolutionary outcomes can be grouped into a small number

of classes. For a coevolving predator-prey community starting with phenotypes in the

region of coexistence, there are eventually only three classes of possible outcomes. We

illustrate these classes in Figures 9.4 to 9.6 by means of typical instances.

1. Evolution to a fixed point. In Figure 9.4a, the adaptive trait values tend to an

equilibrium point; once this is reached, no further evolution occurs. There are in

fact three fixed points at the intersection of the isoclines in this example, as can be

seen from the accompanying phase portrait (Figure 9.4b); two of these are attractors

and they are separated by the unstable manifold of the third which is a saddle point.

Notice that the coevolutionary process here is multistable with two attractors having

disjunct domains of attraction; thus there may be no more reason for a particular
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Figure 9.4 Patterns of evolution of prey (s1) and predator (s1) phenotypes obtained from the monomor-
phic deterministic model. (a) Solution that tends to an equilibrium point over the course of time obtained
using the parameter values from Figure 9.3 withh = 1:0. (b) Phase portrait of the trait space from
which (a) is drawn with orbits shown as continuous lines. The starting point of the orbit shown in (a) is
indicated by an asterisk. The boundary of the regionbSc of coexistence of the predator and prey is given
as the discontinuous oval line. Isoclines are shown as dotted lines (straight line: predator; curved line:
prey); fixed points occur at the intersection of the isoclines.

observed asymptotic state than the more or less arbitrary initial conditions of the

adaptive process.

2. Evolution to extinction. In Figure 9.5a the coevolutionary process drives the

phenotypic values towards the boundary of the region of coexistence (see Figure

9.5b). There the predator population goes extinct and the predator phenotype is

no longer defined. The trait space of the community collapses from(s1; s2) to

the one-dimensional spaces1, where the prey phenotype continues to evolve to its

own equilibrium point. Note here that the extinction of the predator is driven by

the adaptive dynamics in(s1; s2) and not merely by the population dynamics in

(n1; n2).

3. Evolutionary cycling. In Figure 9.6a, the coevolutionary process in the predator-

prey community continues indefinitely; mutants replace residents in a cyclic manner

such that the phenotypes eventually return to their original values and do not reach

an equilibrium point. As can be seen from Figure 9.6b, the attractor is a limit
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Figure 9.5 Patterns of evolution of prey (s1) and predator (s1) phenotypes obtained from the monomor-
phic deterministic model. (a) Solution for a community that evolves to predator extinction at time
t = 1:3 � 10

6. After this time, the prey continues to evolve in the absence of the predator. Parameter
values as in Figure 9.3, exceptc1 = 1:0, c2 = 1:0, c3 = 15:0, and withh = 1:0. (b) Phase portrait of
the trait space from which solution (a) is drawn. The starting point of the orbit shown in (a) is indicated
by an asterisk. Isoclines are shown as dotted lines (straight line: predator; vertical line: prey). The prey
isocline lies outside the regionbSc of coexistence and orbits touch the boundary of this region, given as
the discontinuous oval line, at which point the predator goes extinct.

cycle, confirming the conjecture made by Marrow et al. (1992) that Red Queen

coevolution can occur in this predator-prey community.

These three outcomes of coevolution correspond to the endpoints of evolutionary arms

races discussed qualitatively by Dawkins and Krebs (1979), namely: (i) equilibrium

endpoints, (ii) one side wins, and (iii) cyclic endings.

9.4 Analysis of Evolutionary Cycling

This section investigates the robustness of the phenomenon of evolutionary cycling.

We do this in two ways. First, a bifurcation analysis of the monomorphic deterministic

model is given; this allows one to establish the range of parameters in the model that

permit the incidence of evolutionary cycling. Second, we examine the monomorphic

stochastic model and finally the polymorphic stochastic model to see how robust
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Figure 9.6 Patterns of evolution of prey (s1) and predator (s1) phenotypes obtained from the monomor-
phic deterministic model. (a) Solution exhibiting evolutionary cycling of predator and prey phenotypes.
Parameter values for this case are as in Figure 9.3 withh = 0:14. The starting point of the orbit shown
in (a) is indicated by an asterisk. (b) Phase portrait corresponding to (a) illustrating the basin of attraction
for cyclic solutions shown as continuous lines. The boundary of the regionbSc of coexistence of the
predator and prey is given as the discontinuous oval line. Isoclines are shown as dotted lines (straight
line: predator; curved line: prey); an unstable fixed point is located at the intersection of the isoclines.

the phenomenon of evolutionary cycling is when the simplifying assumptions of the

monomorphic deterministic model are removed.

Bifurcation Analysis of the Monomorphic Deterministic Model

We focus attention on the effect of two quantities of particular interest from an ecological

viewpoint. These are firstly the predator’s efficiency in harvesting the prey as given

by the ratio

h =



�
; (9.2)

and secondly the ratio of the evolutionary rate constants

r =
�1 � �2

1

�2 � �2

2

: (9.3)
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The existence, number and location of fixed points of the monomorphic deterministic

model that lie within the region of coexistencebS
c

can be obtained in first order from

the simultaneous solutionŝs of

@ 0

i
f
i
(ŝi; ŝ) = 0 (9.4)

for i = 1; 2. According to section 9.2 the per capita growth ratesf
i
(s0

i
; s) of rare

mutantss0

i
in a community of resident traits are given by

f1
�
s0

1; s
�
= +r1 � �

�
s0

1

�
� n̂1(s)� �

�
s0

1; s2
�
� n̂2(s) ;

f
2

�
s0

2
; s
�
= �r2 + 


�
s1; s

0

2

�
� n̂1(s) ;

(9.5)

where the equilibrium population sizesn̂(s) in bS
c

from equations (9.1) are obtained as

n̂1(s) =
r2


(s1; s2)
;

n̂2(s) =
r1 � 
(s1; s2)� r2 � �(s1)

�(s1; s2) � 
(s1; s2)
:

(9.6)

The stability of the fixed pointŝs can be checked by evaluating at these points the

Jacobian of the first order approximation of the monomorphic deterministic model.

This JacobianJ has been computed in Section 7.2, see equations (7.13,14). From the

conditionsdet J > 0 andtr J < 0 we infer that the fixed point̂s is stable if, and only if,
�
@ 02

1 f
1
(ŝ1; ŝ) + @ 0

1@1f1(ŝ1; ŝ)
�
�

�
@ 02

2
f
2
(ŝ2; ŝ) + @ 0

2
@2f2(ŝ2; ŝ)

�
�

@ 0

1@2f1(ŝ1; ŝ) � @
0

2@1f2(ŝ2; ŝ) > 0

(9.7)

and

r �
n̂1(s)

n̂2(s)
�

�
@ 02

1 f
1
(ŝ1; ŝ) + @ 0

1@1f1(ŝ1; ŝ)
�
�

�
@ 02

2
f
2
(ŝ2; ŝ) + @ 0

2
@2f2(ŝ2; ŝ)

�
< 0 :

(9.8)

From the first condition, inequality (9.7), we obtain those intervals of valuesh where

the fixed pointŝ could be stable; within these intervals we then employ the second

condition, inequality (9.8), to determine those combinations(h; r) for which the fixed

point actually is stable.

Since the adaptive dynamics in the predator-prey community are two-dimensional, the

only possible attractors are fixed points and limit cycles. From the Poincar´e-Bendixon
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Figure 9.7 Results of the bifurcation analysis, showing the effect of the harvesting efficiencyh, and
the ratio of the evolutionary rate constantsr on the dynamics of the monomorphic deterministic model.
Regions are: (1) predator absent, (2) one fixed point, which is an attractor, (3) three fixed points, two
of which are attractors, (4) limit-cycle attractor.

theorem, a sufficient condition for the existence of a stable limit cycle is the existence

of a region in trait space that (i) a trajectory of the adaptive dynamics cannot leave and

that (ii) contains no stable fixed point. Using the signs of the two selection derivatives

@ 0

1
f
1
(s1; s) and@ 0

2
f
2
(s2; s) between the isoclines, a region that cannot be left is easily

established; the stability of the fixed point(s) in this region is then checked as described

above.

Requirements for Evolutionary Cycling

The results of the bifurcation analysis are presented in Figure 9.7. Four distinct regions

within the parameter space can be seen:

1. Forh < 5% the two species cannot coexist, and therefore no coevolution can occur.

2. For 5% < h < 9:8% there exists only one fixed point for the monomorphic

deterministic model. This fixed point is an attractor; the system evolves to this

point and there is no further coevolution once it is reached.
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3. Forh > 14:8% there exist three fixed points of the dynamics. The two outer points

are stable, and which of these is reached depends on the phenotypes initially present.

4. For 9:8% < h < 14:8% and sufficiently high values ofr (as indicated in Figure

9.7), the attractor turns into a limit cycle, giving rise to Red Queen dynamics. On

the other hand, for low values ofr, the limit cycle breaks down and we recover the

dynamical behavior of cases 2 and 3 with the switch occurring ath = 12:6%.

In summary, we have revealed two types of local bifurcations in this system, both

being of codimension1. The transition ath = 12:6%, where the number of fixed points

changes from one to three is called apitchfork bifurcation. The transition across the

boundary of region 4, where a fixed point looses stability and gives rise to a stable limit

cycle, amounts to aHopf bifurcation.

In completion of the local bifurcation analysis outlined so far, the potential for the

incidence ofglobal bifurcationsought to be checked. From this it follows that the

boundary of region 4 is in fact slightly more complicated than the description above

suggests because two further kinds of dynamics can occur here: (i) a limit-cycle attractor

around each of the two outer fixed points, and (ii) a limit-cycle attractor around all

three fixed points with each of the outer fixed points also being an attractor. But the

parameter space permitting these dynamics is very small compared to the others and

they are therefore of less biological interest.

We conclude that evolutionary cycling requires an intermediate harvesting efficiency

plus prey evolution to occur sufficiently fast compared to predator evolution.

Evolutionary Cycling in the Monomorphic Stochastic Model

A realization of the monomorphic stochastic dynamics is given in Figures 9.8c and 9.8d.

The parameter values used are the same as those in Figures 9.8a and 9.8b where the

dynamics of the monomorphic deterministic model are depicted, and we see that the

cyclic behavior is still maintained. In addition, two major new effects should be noted.

First, it can be seen that the oscillations in phenotypic values do not all have the same

period. This phenomenon, which is well known in the theory of stochastic processes as

phase diffusion(Tomita et al. 1974) ordephasing(Schnakenberg 1993), comes about

because stochastic perturbations along the limit cycle are not balanced by a counteracting

force, whereas those orthogonal to the limit cycle are.
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Figure 9.8 Evolutionary cycling as exhibited by the three models of coevolutionary dynamics. The
monomorphic deterministic model is used in (a) and (b), the monomorphic stochastic model in (c) and
(d), and the polymorphic stochastic model in (e) and (f). Graphs (a), (c) and (e) show the resident
values of the prey (s1) and predator (s2) phenotypes as functions of timet. The corresponding orbits
are shown as continuous lines in the phase portraits given in graphs (b), (d) and (f). In the case of the
polymorphic stochastic model the displayed time series is made up of roughly 10 000 000 000 single
birth and death events. The boundary of the regionbSc of coexistence of predator and prey is given as the
discontinuous oval line. Isoclines are shown as dotted lines (straight line: predator; curved line: prey).
Parameter values for these simulations are identical and are set as given in Figure 9.3 withh = 0:14,
except�1 = �2 = 10

�2.
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Second, limit cycles whose extension in trait space is small relative to the typical

mutational step sizes (given by�1 and �2) will be obscured by the stochastic noise.

The boundaries of region 4, see Figure 9.7, will then be less sharp than those in the

monomorphic deterministic model. Thus, if the evolutionary cycling is to be visible,

the mutational steps must not be too large.

Evolutionary Cycling in the Polymorphic Stochastic Model

A realization of the polymorphic stochastic model is shown in Figures 9.8e and 9.8f,

using as before the parameter values of Figures 9.8a and 9.8b. The phenomenon

of evolutionary cycling still persists despite the phenotypic distributions now being

polymorphic.

In addition, this model allows investigating the effects of demographic stochasticity not

only of the mutant but also of the resident phenotypes. Although this superimposes

more random variation to the solution, cycling is maintained. Provided that phenotypic

variance is not too large and population sizes are not too small, we thus can conclude

that evolutionary cycling is robust to relaxation of the simplifying assumptions of the

monomorphic models.

9.5 Discussion

The main result of this analysis is that evolutionary limit cycles, in which the predator

and prey phenotypes continue to change indefinitely, are a natural outcome in a

coevolutionary community. The cyclic behavior is not an artefact of determinism

or monomorphism, because the phenomenon can be observed both in the stochastic

monomorphic simulations and in the stochastic polymorphic ones. Clearly there is no

general rule in nature to say that phenotypic evolution would lead to an equilibrium

point in the absence of external changes in the environment.

Interpretation of the Requirements for Evolutionary Cycling

The results from the bifurcation analysis are intuitive in that evolutionary cycling

requires: (i) the effect of selection by the predator on the prey to be great enough

to drive the prey from the phenotypic equilibrium it would attain in the absence of

the predator (h not too low), (ii) sufficient pressure for the predator to track the prey’s
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phenotypic change (h not too high), and (iii) in the resulting evolutionary race the prey

must be fast enough not to be “caught up” by the predator (r not too low).

In view of the respiratory costs that the predators have to meet from consumption of prey

simply to stay alive, one would expecth to be substantially less than1 and evolutionary

cycling to occur in a range ofh likely to be observed in reality.

Related Work

That cyclic phenotype dynamics can occur in coevolution is well known from theoretical

studies of genetic polymorphisms under frequency-dependent selection (e.g. Akin 1981;

Seger 1992), and research into the dynamics of strategy frequencies (Nowak and

Sigmund 1989).

The system considered here is different in two respects. First, the trait values are con-

tinuous, whereas cyclic dynamics have typically been observed in polymorphic systems

with large qualitative differences between a small number of coexisting phenotypes.

Second, and more important, the underlying process here would be a sequence of gene

substitutions in which mutants keep replacing the resident types rather than one in

which the genes always coexist and undergo oscillations in frequency. Thus we are

here looking at a process operating on an altogether larger evolutionary scale, such that

the populations can undergo drastic changes in their phenotypic state, and still return

to some earlier value.

Revival of the Red Queen

A simple classification of the outcomes of phenotypic evolution can be constructed from

two dichotomies. The first depends on whether an attractor exists, and the second on

whether the attractor is a fixed point.

This gives three classes of dynamics: (i) evolution to a fixed-point attractor with

stationary phenotypes, (ii) evolution to an attractor that is not a fixed point on which

the phenotypes continue to change indefinitely, and (iii) evolution without an attractor,

such that the phenotypes take more and more extreme values.

According to the definition in Section 9.1, Red Queen dynamics would encompass both

class (ii) and class (iii). Class (iii) is unrealistic for most kinds of phenotypes and, if

the Red Queen were to depend on the existence of such dynamics in nature, one could
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reasonably conclude that Red Queen dynamics would be very unusual (Rosenzweig et

al. 1987). But this would be to miss class (ii), and dynamics of this kind we have shown

here to be feasible. In fact, the limit cycle is but one of a number of nonequilibrium

attractors; for instance in systems with more than two coevolving species, chaotic

attractors could be found.

Conclusion

It seems therefore that there is a large variety of coevolutionary communities with

the potential for nonequilibrium evolutionary attractors. This needs to be emphasized

because the assumption that asymptotic states of evolution are fixed points underlies

much contemporary evolutionary thought. This assumption and the techniques that

go with it (in particular evolutionarily stable strategies) are clearly not appropriate for

dealing with nonequilibrium asymptotic states.

The prevailing view among evolutionary biologists, centered on equilibrium points,

needs to be extended to a dynamical framework to assimilate the Red Queen.



Summary and Conclusions

In this thesis we have presented first steps towards a dynamical theory of coevolution.

In contrast to evolutionary game theory, our approach is based on a dynamical frame-

work, thus incorporating the description of evolutionary transients and nonequilibrium

evolutionary attractors. Unlike standard replicator dynamics, it accounts for the con-

tinuous introduction of new adaptive trait values to the evolutionary community and

allows for arbitrary ecological interactions within the community, these interactions can

be specified at the level of individuals. Different to the canonical equation of adaptive

dynamics, our results provide a stochastic treatment of the adaptive process and higher

order correction terms to the canonical equation are derived.

Figure 1 summarizes the hierarchy of deductions given in this thesis. Taking the general

replicator concept as a starting point, these deductions connect the three dynamical

models of coevolution presented in Chapters 4, 5 and 6. The necessary assumptions

are displayed to indicate the domain of validity of these models. We have recovered

the canonical equation of adaptive dynamics as a special case from our framework – in

fact, from the results of Sections 5.3, 4.3 and 6.2 it is clear that the standard models

of evolutionary game theory, replicator dynamics and adaptive dynamics form a subset

of our hierarchy. In particular, when we read the diagram in Figure 1 from below,

we see that the limitations of the canonical equation of adaptive dynamics have been

relaxed to a substantial degree.
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Assumptions and Deductions

The polymorphic stochastic model

The monomorphic stochastic model

The monomorphic deterministic model

The replicator concept

spatial homogeneity,
(one trait per species)

small mutation ratios,
principle of mutual exclusion holds,
resident populations large,
(equilibrium resident population dynamics),
(no external time dependence of environment)

small mutation variances

only first order result,
symmetric mutation distributions

The canonical equation of adaptive dynamics

Figure 1 Assumptions and deductions in this thesis. The derivations connecting the three dynamical
models of coevolution given in Chapters 4, 5 and 6 are depicted by arrows. The assumptions that enter
these derivations are mentioned, those in parentheses are relaxed in Chapter 8. With every additional
assumption analytic tractability of the models is increased while at the same time interesting evolutionary
phenomena might be sacrificed.
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To conclude, we briefly summarize these extensions.

1. To obtain the canonical equation of adaptive dynamics from a mutation-selection

process, symmetry properties of the mutation distributions are needed, see Section

6.2. Both our monomorphic deterministic model in Section 6.3 and the two

stochastic models remove this assumption.

2. We have recovered the canonical equation as an exact description of the coevo-

lutionary deterministic path, provided that the mutational steps are considered to

be infinitesimal. Although the canonical equation gives a good approximation for

small finite mutation variance, the approximation becomes inaccurate as the vari-

ance increases. In these circumstances consideration of higher order corrections, as

provided in Section 6.3, is recommended.

3. Due to such higher order corrections, there can arise new evolutionary phenomena

not described by the canonical equation, like shifting of evolutionary isoclines

and evolutionary slowing down. Conditions for such effects can be established

analytically, see Section 7.4.

4. Being a deterministic description of the adaptive dynamics, the canonical equation

can only describe the mean evolutionary path, as derived in Sections 5.5 and 6.1,

and thus does not cover the full richness of dynamical effects that can occur in sto-

chastic mutation-selection systems. In contrast, the monomorphic and polymorphic

stochastic models account for such features as splitting probabilities at evolution-

ary basin boundaries, multiple evolutionary pathways (see Section 6.5) and phase

diffusion (see Section 9.4).

5. The scope of the canonical equation is confined to coevolutionary systems with

equilibrium population dynamics and a constant external environment. We have

demonstrated in Section 8.2 that this limitation can be partially overcome such that

more general ecological scenarios may be tackled.

6. The canonical equation is restricted to describing the adaptive dynamics of the

community. Only when both adaptive dynamics and population dynamics are

derived from the joint coevolutionary dynamics of the community, phenomena like

evolutionary extinction, see Section 9.3, can be analyzed.

7. Coevolutionary stability cannot be determined by considering non-invadability. In

Section 7.2 we have established and illustrated this result; in order to gain a full
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picture of coevolutionary stability, it is necessary to supplement the notion of non-

invadability (from evolutionary game theory) by that of dynamical stability (from

adaptive dynamics) and vice versa.

8. The canonical equation of adaptive dynamics does not permit interdependencies

between several traits within one species. In Section 8.1 we have shown how the

stochastic approach naturally leads to the introduction of the variance-covariance

matrix for the mutation distributions. Off-diagonal terms of the latter can give rise

to altered pathways towards evolutionary attractors.

9. Even if one of the key assumptions for monomorphism, see Section 5.1, cannot be

taken for granted, still the polymorphic stochastic model can be utilized to obtain

a full description of the coevolutionary dynamics. Examples are the mutation

catastrophe discussed in Section 4.5 and the increased variation of the adaptive

process, see Section 9.4, when resident population sizes are not large.

Such relaxation of the restrictions of the canonical equation are variations on a single

theme: In modelling complex systems, like those exhibiting coevolutionary dynamics,

one can always trade descriptive capacity for mathematical simplicity. The canonical

equation might indeed be sufficient for specific goals, but this depends on what

assumptions can reasonably be made. We have shown in this thesis that new and distinct

evolutionary phenomena emerge by removing any of these assumptions. Conversely, if

the generalizations summarized above are not to be made, it is important to be aware

of the evolutionary phenomena that are then sacrificed.
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Developed Software

The software for the present work has been developed in ANSI C*. There are four

packages,

1. coevolve_def.c ,

2. coevolve_aux.c ,

3. coevolve_det.c , and

4. coevolve_sto.c .

All four packages are integrated in the programcoevolve.c .

The first package,coevolve_def.c , contains the constants and functions that

serve to specify a particular coevolutionary community. The second package,co-

evolve_aux.c , defines several functions commonly used in the other three pack-

ages. The third package,coevolve_det.c , contains functions for the investigation

of the monomorphic coevolutionary dynamics and in particular the implementation of

the monomorphic deterministic model. The fourth package,coevolve_sto.c , com-

prises the implementation of the monomorphic and the polymorphic stochastic models.

The listings of the four packages and the integrating program are provided at the end of

this chapter, see Listings 1 to 4 and 5. No part of these packages may be used without

permission of the author. Below a command reference of the developed functions is

given.

* For compilation the AT&T C++ Translator, version 2.1.03, datemark 08/31/90 has been used.
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Function birth_mono() Package coevolve_def.c

� Description
User-defined function. Implementation of the per capita birth ratebi(s0

i
; s).

� Input

community_size NumberN of species making up the coevolutionary community.

species Species indexi.

s Adaptive trait values0

i
.

s_res Vector s = (s1; . . . ; sN ) of the resident trait values.

Additional functions and parameters may be supplied by the user within the packagecoevolve_def.c to facilitate the set-up

of the functionbirth_mono() .

� Output
Internal. Returnsbi(s0

i
; s).

Function death_mono() Package coevolve_def.c

� Description
User-defined function. Implementation of the per capita death ratedi(s

0

i
; s).

� Input
See functionbirth_mono() .

� Output
Internal. Returnsdi(s0

i
; s).

Function birth_polysto() Package coevolve_def.c

� Description
User-defined function. Implementation of the per capita birth ratebi(s0

i
; p).

� Input

community_size NumberN of species making up the coevolutionary community.

species Species indexi.

s Adaptive trait values0

i
.

firstgroupP Vector of N pointers. Each is directed to a group of individuals inpi which all have the same
trait values0

i
. These pointers determine one end of bidirectionally connected lists giving access to

all such groups inpi; elements of these lists are of typegrouptype as defined in the package
coevolve_aux.c .

Additional functions and parameters may be supplied by the user within the packagecoevolve_def.c to facilitate the set-up

of the functionbirth_polysto() .

� Output
Internal. Returnsbi(s0

i
; p).
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Function death_polysto() Package coevolve_def.c

� Description
User-defined function. Implementation of the per capita death ratedi(s

0

i
; p).

� Input
See functionbirth_polysto() .

� Output
Internal. Returnsdi(s0i ; p).

Function n_hat() Package coevolve_def.c

� Description
User-defined function. Implementation of the equilibrium population sizen̂i(s).

� Input

community_size NumberN of species making up the coevolutionary community.

species Species indexi.

s Vector s = (s1; . . . ; sN ) of the resident trait values.

Additional functions and parameters may be supplied by the user within the packagecoevolve_def.c to facilitate the set-up

of the functionn_hat() .

� Output
Internal. Returnŝni(s).

Function m() Package coevolve_def.c

� Description
User-defined function. Implementation of the mutation distributionMi(s

0

i
� si).

� Input

species Species indexi.

delta_s Differences0
i
� si between the resident trait value and the mutant trait value.

Additional functions and parameters may be supplied by the user within the packagecoevolve_def.c to facilitate the set-up

of the functionm() . In particular, providing the vector� = (�1 ; . . . ; �N ) of mutation standard deviations can be useful.

� Output
Internal. ReturnsMi(s

0

i
� si).

Function monodet() Package coevolve_det.c

� Description
Implementation of the monomorphic deterministic model.

� Input
community_size NumberN of species making up the coevolutionary community.

birth_mono() Function providing the per capita birth rates in the community, see above.

death_mono() Function providing the per capita death rates in the community, see above.

sigma Vector� = (�1; . . . ; �N ) of mutation standard deviations.

mu Vector� = (�1 ; . . . ; �N ) of mutation ratios.
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s_init Vector s = (s1; . . . ; sN ) of adaptive trait values that are resident initially.

t_end Time t at which simulation is to be aborted.

t_monodet_step Time step for numerical integration.

t_monodet_out Time step for output to be written to the filemonodet.dat .

monodet_method Flag. When set to0, the Euler method is used for numerical integration; when set to1, the fourth
order Runge-Kutta method is employed.

monodet_order Order in series expansion of the monomorphic deterministic model (can be1, 2 or 3; when set to
0, no series expansion is made).

monodet_logplot Flag. When set to1, values log10 jsi(t)� ŝij instead ofsi(t) are written to the filemono-
det.dat .

s_fixedpoint Vector of trait values at a fixed point̂s, only used whenmonodet_logplot is set to1.

monodet_direction Flag. When set to+1, direction of time is forward, when set to�1, backward.

extinction_
continuation

Flag. When set to1, simulation of the monomorphic deterministic model continues after a species
has gone extinct, otherwise simulation is aborted.

extinction_init Vector of flags. When the element corresponding to speciesi is set to0, this species is present
initially, otherwise it is extinct.

monitor_level Flag controlling the extent of information written tostdout (can be1, 2, 3 or 0; corresponding
to basic, normal, detailed or no output).

run_monodet Flag. When set to1, the functionmonodet() is executed.

� Output
To file monodet.dat . First column: timet; following columns: resident adaptive trait valuess1(t) to sN (t). In addition,

some information can be written tostdout .

Function portrait() Package coevolve_det.c

� Description
Construction of a phase portrait for the monomorphic deterministic model. Application is restricted to coevolutionary communities

with N = 2 or N = 3.

� Input

community_size NumberN of species making up the coevolutionary community.

birth_mono() Function providing the per capita birth rates in the community, see above.

death_mono() Function providing the per capita death rates in the community, see above.

sigma Vector� = (�1; . . . ; �N ) of mutation standard deviations.

mu Vector� = (�1 ; . . . ; �N ) of mutation ratios.

t_end Time t at which simulation is to be aborted.

t_monodet_step Time step for numerical integration.

t_monodet_out Time step for output to be written to the filemonodet.dat .

monodet_method Flag. When set to0, the Euler method is used for numerical integration; when set to1, the fourth
order Runge-Kutta method is employed.

monodet_order Order in series expansion of the monomorphic deterministic model (can be1, 2 or 3; when set to
0, no series expansion is made).

monodet_direction Flag. When set to+1, direction of time is forward, when set to�1, backward.

extinction_
continuation

Flag. When set to1, simulation of the monomorphic deterministic model continues after a species
has gone extinct, otherwise simulation is aborted.

extinction_init Vector of flags. When the element corresponding to speciesi is set to0, this species is present
initially, otherwise it is extinct.

portrait_type Flag. When set to1 starting points are distributed randomly, otherwise they are choosen to lay on
a two-dimensional rectangular grid.

portrait_grid Vector of incremental steps determining the density of starting points in the two directions.
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s_mindisplay Vector of lower bounds fors to be displayed.

s_maxdisplay Vector of upper bounds fors to be displayed.

random_seed Seed for the random number generator.

monitor_level Flag controlling the extent of information written tostdout (can be1, 2, 3 or 0; corresponding
to basic, normal, detailed or no output).

run_portrait Flag. When set to1, the functionportrait() is executed.

� Output
To file monodet.dat . First column: timet; following columns: resident adaptive trait valuess1(t) to sN (t). Trajectories from

different starting points are separated by blank lines. In addition, some information can be written tostdout .

Function sketch() Package coevolve_det.c

� Description
Coarse survey of the sign structure of@ 0

i
f
i
(si; s) andn̂i(s). Application is restricted to coevolutionary communities withN = 2.

� Input

community_size NumberN of species making up the coevolutionary community.

birth_mono() Function providing the per capita birth rates in the community, see above.

death_mono() Function providing the per capita death rates in the community, see above.

sketch_grid Vector of incremental steps determining the density of cells in the two directions.

s_mindisplay Vector of lower bounds fors to be displayed.

s_maxdisplay Vector of upper bounds fors to be displayed.

monitor_level Flag controlling the extent of information written tostdout (can be1, 2, 3 or 0; corresponding
to basic, normal, detailed or no output).

run_sketch Flag. When set to1, the functionsketch() is executed.

� Output
To file sketch.dat . Each cell comprises two digits (in order to roughly conserve aspect ratio). Key:

11 @ 0

1
f
1
(s1 ; s) > 0 @ 0

2
f
2
(s2 ; s) > 0 n̂1(s) > 0 n̂2(s) > 0

22 @ 0

1
f
1
(s1 ; s) > 0 @ 0

2
f
2
(s2 ; s) < 0 n̂1(s) > 0 n̂2(s) > 0

33 @ 0

1
f
1
(s1 ; s) < 0 @ 0

2
f
2
(s2 ; s) < 0 n̂1(s) > 0 n̂2(s) > 0

44 @ 0

1
f
1
(s1 ; s) < 0 @ 0

2
f
2
(s2 ; s) > 0 n̂1(s) > 0 n̂2(s) > 0

55 @ 0

1
f1(s1 ; s) > 0 n̂1(s) > 0 n̂2(s) = 0

66 @ 0

1
f1(s1 ; s) < 0 n̂1(s) > 0 n̂2(s) = 0

77 @ 0

2
f
2
(s2 ; s) > 0 n̂1(s) = 0 n̂2(s) > 0

88 @ 0

2
f
2
(s2 ; s) < 0 n̂1(s) = 0 n̂2(s) > 0

99 n̂1(s) = 0 n̂2(s) = 0

In addition, some information can be written tostdout .

Function contour() Package coevolve_det.c

� Description
Fine survey of the sign structure ofd

dt
si(s) and n̂i(s). Application is restricted to coevolutionary communities withN = 2.

� Input
community_size NumberN of species making up the coevolutionary community.

birth_mono() Function providing the per capita birth rates in the community, see above.

death_mono() Function providing the per capita death rates in the community, see above.
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contour_plot::
func

Flag contolling the function whose sign structure is to be depicted. Can be1, 2, 3 or 4 corresponding
to d

dt
s1(s), d

dt
s2(s), n̂1(s) or n̂2(s).

contour_plot::
contour_height

The contour lines, where the surfacesd
dt
si(s) andn̂i(s) have the heightcontour_height , are

written to the output files. Depiction of sign structure corresponds to setting this value to0.

contour_plot::
dev_tol

Upper bound for the deviation of the height of the contour lines written to the output files from
contour_height .

contour_plot::
s1_init

Starting values1 for search of contour lines.

contour_plot::
s2_init

Starting values2 for search of contour lines.

contour_plot::
dir_init

Direction in which to start search of contour lines.

contour_plot::
s_step

Incemental step between two successive points written to the output files.

contour_plot::
dir_step

Incremental step for two succesive directions in which to search of countour lines.

contour_plot::
max_points

Upper bound for the number of points written to the output files.

s_mindisplay Vector of lower bounds fors to be displayed.

s_maxdisplay Vector of upper bounds fors to be displayed.

monitor_level Flag controlling the extent of information written tostdout (can be1, 2, 3 or 0; corresponding
to basic, normal, detailed or no output).

run_contour Flag. When set to1, the functioncontour() is executed.

Please note that due to the multitude of parameter choices which can be made for each individual contour line to be plotted, the

parameters above that start withcontour_plot:: have to be specified in the source code of the packagecoevolve_det.c .

In order to depict two or more contour lines for a particular function,contour_plot() has to be called twice or more times.

� Output
To files contour_iso1.dat , contour_iso2.dat and contour_coex.dat . First columns: trait values1 , second

columns: trait values2 . In addition, some information can be written tostdout .

Function isotest() Package coevolve_det.c

� Description
Classification of isoclinesd

dt
si(s) = 0 andn̂i(s) according to the categories non-invadable or invadable, convergent or divergent,

not mutually invadable or mutually invadable. Application is restricted to coevolutionary communities withN = 2.

� Input
contour_plot::

isotest_displace
Amount of displacement of lines written to the output files relative to contour lines in the normal
direction of the contour line.

run_isotest Flag. When set to1, the functionisotest() is executed.

For further inputs see functioncontour() .

� Output
To files:
isotest1.dat Non-invadable isoclines.

isotest2.dat Invadable isoclines.

isotest3.dat Convergent isoclines.

isotest4.dat Divergent isoclines.

isotest5.dat Not mutually invadable isoclines.

isotest6.dat Mutually invadable isoclines.

First columns: trait values1 , second columns: trait values2 . In addition, some information can be written tostdout .
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Function landscape() Package coevolve_det.c

� Description
Depiction of the variable adaptive landscapes corresponding to the monomorphic deterministic model. Application is restricted to

coevolutionary communities withN = 2.

� Input

community_size NumberN of species making up the coevolutionary community.

birth_mono() Function providing the per capita birth rates in the community, see above.

death_mono() Function providing the per capita death rates in the community, see above.

sigma Vector � = (�1 ; . . . ; �N ) of mutation standard deviations.

mu Vector� = (�1 ; . . . ; �N ) of mutation ratios.

s_init Vector s = (s1 ; . . . ; sN ) of adaptive trait values that are resident initially.

t_end Time t at which simulation is to be aborted and the adaptive landscape is to be constructed.

t_monodet_step Time step for numerical integration.

t_monodet_out Time step for output to be written to the filemonodet.dat .

monodet_method Flag. When set to0, the Euler method is used for numerical integration; when set to1, the fourth
order Runge-Kutta method is employed.

monodet_order Order in series expansion of the monomorphic deterministic model (can be1, 2 or 3; when set to
0, no series expansion is made).

monodet_direction Flag. When set to+1, direction of time is forward, when set to�1, backward.

extinction_
continuation

Flag. When set to1, simulation of the monomorphic deterministic model continues after a species
has gone extinct, otherwise simulation is aborted.

extinction_init Vector of flags. When the element corresponding to speciesi is set to0, this species is present
initially, otherwise it is extinct.

landscape_grid Vector of incremental steps determining the density of lines to be used in the two directions to
depict the surface of the adaptive landscape.

s_mindisplay Vector of lower bounds fors to be displayed.

s_maxdisplay Vector of upper bounds fors to be displayed.

monitor_level Flag controlling the extent of information written tostdout (can be1, 2, 3 or 0; corresponding
to basic, normal, detailed or no output).

run_landscape Flag. When set to1, the functionlandscape() is executed.

� Output
To file landscape.dat . First column: trait valuess1, second column: trait valuess2, third column: heights. In addition,

some information can be written tostdout .

Function monosto() Package coevolve_sto.c

� Description
Implementation of the monomorphic stochastic model.

� Input
community_size NumberN of species making up the coevolutionary community.

birth_mono() Function providing the per capita birth rates in the community, see above.

death_mono() Function providing the per capita death rates in the community, see above.

m() Function providing the mutation distributions in the community, see above.

mu Vector� = (�1 ; . . . ; �N ) of mutation ratios.

s_init Vector s = (s1 ; . . . ; sN ) of adaptive trait values that are resident initially.

t_end Time t at which simulation is to be aborted.
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monosto_samples Number of stochastic realization to be simulated. From these, a mean path is automatically
constructed.

monosto_logplot Flag. When set to1, values log
10

jsi(t)� ŝi j instead of si(t) are written to the file
monosto.dat .

s_fixedpoint Vector of trait values at a fixed point̂s, only used whenmonosto_logplot is set to1.

monosto_grid Vector of incemental steps for the trait valuess1 to sN according to which the master equation is
discretized for the purpose of simulation.

s_min Vector of lower bounds fors to be used for discretizing the master equation.

s_max Vector of upper bounds fors to be used for discretizing the master equation.

s_mindisplay Vector of lower bounds fors to be displayed.

s_maxdisplay Vector of upper bounds fors to be displayed.

random_seed Seed for the random number generator.

monitor_level Flag controlling the extent of information written tostdout (can be1, 2, 3 or 0; corresponding
to basic, normal, detailed or no output).

run_monosto Flag. When set to1, the functionmonosto() is executed.

� Output
To files monosto.dat and monosto_mean.dat . First column: timet; following columns: resident adaptive trait values

s1(t) to sN (t). Subsequent simulations are separated by blank lines inmonosto.dat . In addition, some information can be

written to stdout .

Function polysto() Package coevolve_sto.c

� Description
Implementation of the polymorphic stochastic model.

� Input

community_size NumberN of species making up the coevolutionary community.

birth_polysto() Function providing the per capita birth rates in the community, see above.

death_polysto() Function providing the per capita death rates in the community, see above.

m() Function providing the mutation distributions in the community, see above.

mu Vector� = (�1 ; . . . ; �N ) of mutation ratios.

s_init Vector s = (s1 ; . . . ; sN ) of adaptive trait values that are resident initially.

t_end Time t at which simulation is to be aborted.

polysto_samples Number of stochastic realization to be simulated. From these, a mean path is automatically
constructed.

polysto_update Number of birth or death events after which the birth and death rates of all individuals are updated.

polysto_saveppm Flag. When set to1, .ppm files are produced.

ppm_color Flag. When set to1, color .ppm files are produced, otherwise gray scaling is used.

ppm_bins Number of discrete bins to be used to display in the.ppm files the distributions of individuals
having continuous trait values.

ppm_stretch Number of pixels in the.ppm files to be associated with each bin.

ppm_margin Number of pixels in the.ppm files to be used as a margin for the picture.

ppm_maxval Number contolling the color or gray scale resolution for the.ppm files. Normally set to255.

s_mindisplay Vector of lower bounds fors to be displayed.

s_maxdisplay Vector of upper bounds fors to be displayed.

random_seed Seed for the random number generator.

monitor_level Flag controlling the extent of information written tostdout (can be1, 2, 3 or 0; corresponding
to basic, normal, detailed or no output).

run_polysto Flag. When set to1, the functionpolysto() is executed.
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� Output
To file polysto_mean.dat . First column: timet; following columns: populations sizes, mean values and standard deviations

of the phenotypic distributions distributionsp1 to pN at time t. Optionally, output is generated topolysto1.ppm to

polysto N .ppm . These graphic files serve to display the time evolution of the phenotypic distributionsp1 to pN . In addition,

some information can be written tostdout .
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