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abstract: We derive a comprehensive overview of specialization
evolution based on analytical results and numerical illustrations. We
study the separate and joint evolution of two critical facets of spe-
cialization—local adaptation and habitat choice—under different life
cycles, modes of density regulation, variance-covariance structures,
and trade-off strengths. A particular feature of our analysis is the
investigation of arbitrary trade-off functions. We find that local-
adaptation evolution qualitatively changes the outcome of
habitat-choice evolution under a wide range of conditions. In ad-
dition, habitat-choice evolution qualitatively and invariably changes
the outcomes of local-adaptation evolution whenever trade-offs are
weak. Even weak trade-offs, which favor generalists when habitat
choice is fixed, select for specialists once local adaptation and habitat
choice are both allowed to evolve. Unless trapped by maladaptive
genetic constraints, joint evolution of local adaptation and habitat
choice in the models analyzed here thus always leads to specialists,
independent of life cycle, density regulation, and trade-off strength,
thus raising the bar for evolutionarily sound explanations of gener-
alism. Whether a single specialist or two specialists evolve depends
on the life cycle and the mode of density regulation. Finally, we
explain why the gradual evolutionary emergence of coexisting spe-
cialists requires more restrictive conditions than does their evolu-
tionarily stable maintenance.

Keywords: trade-off, soft selection, hard selection, protected poly-
morphism, adaptive dynamics, heterogeneous environment.

Introduction

Ecological specialization is widely recognized as a major
determinant of the emergence and maintenance of bio-
diversity (Futuyma and Moreno 1988; Maynard Smith
1989; Futuyma 1997). It is therefore of crucial importance
to understand the ultimate causes of ecological speciali-
zation, as well as the relationship between specialization
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and diversification. To this end, it is desirable to under-
stand when evolution in heterogeneous environments
leads to a single generalist, to a single specialist, or to the
diversification and maintenance of several specialists and/
or generalists.

Existing theory offers quite a variety of models for the
evolution of ecological specialization, each making differ-
ent assumptions. Table 1 offers an extensive overview. Even
though some factors have repeatedly been shown to be
crucial for promoting or inhibiting specialization, they
have yet to be analyzed in an integrative framework. Three
of these factors are of particular importance. First, it is
generally understood that for adaptation not to lead to a
single all-purpose phenotype, which is the fittest in every
habitat, one or more fitness trade-offs must exist (Levins
1968). Not surprisingly, the outcome of evolution has been
shown to depend on the trade-off considered, with weaker
trade-offs favoring generalists over specialists (e.g., Levins
1968; Brown 1990; van Tienderen 1991, 1997; Wilson and
Yoshimura 1994; Sasaki and de Jong 1999; Kisdi 2001; Egas
et al. 2004; Rueffler et al. 2004; Beltman and Metz 2005;
table 1).

Second, life-cycle characteristics have consistently been
shown to affect the emergence and maintenance of local-
adaptation polymorphisms in heterogeneous environ-
ments. Seminal population genetics models were intro-
duced by Levene (1953) and Dempster (1955); these were
analyzed and compared by, for example, Christiansen
(1975), Karlin and Campbell (1981), Karlin (1982),
Rausher (1984), Garcia-Dorado (1986, 1987), Hedrick
(1990a), de Meeûs et al. (1993), van Tienderen (1997),
and Ravigné et al. (2004). In particular, local density reg-
ulation has been shown to generate frequency-dependent
selection when acting on populations in habitats with dif-
ferent local allelic frequencies, thereby protecting local-
adaptation polymorphisms (Ravigné et al. 2004). Popu-
lation genetics simulation models (Diehl and Bush 1989;
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Table 1: Overview of some models addressing the evolution and coexistence of specialists and generalists in
heterogeneous environments

Reference

Focal
research
question

Regulation
and habitat

output

Local-
adaptation
trade-off

Habitat-
choice

evolution

Habitat-
choice

mechanism

Abrams 2006b 1 3 5 1 3, 4
Balkau and Feldman 1973 1 1 1 1 2
Beltman and Haccou 2005 2 3 5 2 4
Beltman and Metz 2005 2 3 5 2 4, 5
Beltman et al. 2004 1 3 5 1 4
Brown 1990 2 3 3 1, 2 4, 5
Brown 1998 2 3 3 1, 2 4, 5
Brown and Pavlovic 1992 2 3 6 1 2
Bulmer 1972 1 1 1 1 2
Castillo-Chavez et al. 1988 1 2 2 2 5
Christiansen 1974 1 1 1 1 2
Christiansen 1975 1 1, 3 1 1 2
Czochor and Leonard 1982 1 1, 2 1 1 1
Day 2001 2 3 5 1 2
de Meeûs and Goudet 2000 2 1, 2 2 1 1
de Meeûs et al. 1993 1, 2 1, 2 1 1, 2 1, 3
Deakin 1966 1 1 1 1 2
Deakin 1968, 1972 1 1 1 1 2
Dempster 1955 1 2 1 1 1
Diehl and Bush 1989 1 1 1 2 2, 5
Doyle 1975 4 1, 2 1 2 5
Egas et al. 2004 1, 2 3 5 1 3
Fretwell and Lucas 1970; Fretwell 1972 4 1, 3 1 2 3
Fry 2003 2 1 4 2 5
Fryxell 1997 4 3 1 2 5
Garcia-Dorado 1986 1 1 1 1 3
Garcia-Dorado 1987 1 1 1 2 3
Gliddon and Strobeck 1975 1 1 1 1 1
Hedrick 1990a 1 1 1 1 3
Hedrick 1990b 1 1, 3 1 1 3
Holsinger and Pacala 1990 2 1, 2 1 1 1
Holt and Gaines 1992 2 2 2 1 2
Holt 1985 4 1, 3 1 2 3
Jaenike and Holt 1991 2 2, 3 1 1 3, 5
Johnson et al. 1996 1 1 1 2 2, 5
Karlin 1982 1 1, 2 1 1 1, 2
Karlin and Campbell 1981 1 1, 2 1 1 1, 2
Karlin and McGregor 1972 1 1 1 1 2
Kawecki 1997 1 1 6 2 2, 5
Kisdi 2001 2 1 6 1 1
Kisdi 2002 2 3 5 2 2
Kisdi and Geritz 1999 2 1 5 1 2
Lawlor and Maynard Smith 1976 1 3 6 1, 2 5
Levene 1953 1 1 1 1 1
Levins 1962 1 2, 3 6 1 1
Levins 1963 1 1, 2 5 1 4, 5
Levins and MacArthur 1966 1 1 5 1 1, 2
MacArthur and Levins 1964 1 2 1 1 1, 2
MacArthur and Levins 1967 1 1 5 1 5
Maynard Smith 1966 1 1 1 1 2
Maynard Smith and Hoekstra 1980 1 1 1 1 2
McPeek and Holt 1992 4 1 1 2 2, 4
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Table 1 (Continued)

Reference

Focal
research
question

Regulation
and habitat

output

Local-
adaptation
trade-off

Habitat-
choice

evolution

Habitat-
choice

mechanism

Meszéna et al. 1997 2 1 5 1 2
Muko and Iwasa 2000 1 1, 3 1 1 1
Nurmi and Parvinen 2008 2 3 5 1 2
Prout 1968 1 1 1 1 1, 2
Rausher 1984 1, 4 1 1 2 5
Rausher and Englander 1987 1, 4 1 1 2 5
Ravigné et al. 2004 1 1, 2, 3 1 1 1, 3
Robinson and Wilson 1998 1 3 5 1 3
Rosenzweig 1981 1 3 6 2 4, 5
Rueffler et al. 2006a 2 1, 3 5 1 1
Rueffler et al. 2007 2 1, 3 5 2 3, 4
Sasaki and de Jong 1999 2 1, 2, 3 5 1 2
Spichtig and Kawecki 2004 1 1 5 1 2
Templeton and Rothman 1981 1 1, 2 1 1 3
van Tienderen 1991 3 1, 2 5 1 1
van Tienderen 1997 3 1, 2 5 1 1
Ward 1987 4 1, 2 1 2 5
Wiener and Feldman 1993 1 1 1 1 2
Wilson and Yoshimura 1994 1 1, 3 5 1 3
Yukilevich and True 2006 1 1 1 1 2
This study 1, 2, 4 1, 2, 3 6 1, 2 5

Note: While most of the 72 models listed in the table adopt a focus on the population ecology and evolutionary ecology of

specialization, a few representative models based on community ecology have also been included. The classification below is based

on five characteristic dimensions of model differentiation. Focal research question: 1 p maintenance of a local-adaptation poly-

morphism; 2 p emergence of a local-adaptation polymorphism; 3 p quantitative genetics of local adaptation; 4 p habitat-choice

evolution under fixed local adaptation. Regulation and habitat output: 1 p local regulation and constant (trait-independent)

habitat output (model 1); 2 p global regulation (model 2); 3 p local regulation and variable (trait-dependent) habitat output

(model 3). Local-adaptation trade-off: 1 p does not matter; 2 p linear; 3 p weak; 4 p strong; 5 p particular trade-off function;

6 p general trade-off function. Habitat-choice evolution: 1 p no; 2 p yes. Host-choice mechanism: 1 p no habitat choice

(random dispersal); 2 p philopatry; 3 p matching habitat choice (pleiotropically determined by local adaptation); 4 p learned

or plastic habitat choice; 5 p habitat choice based on a two-allele mechanism (independent of local adaptation).

Fry 2003), adaptive dynamics models (Egas et al. 2004;
Beltman and Metz 2005), and quantitative genetics models
(Ronce and Kirkpatrick 2001) have confirmed that pop-
ulation dynamics, the timing of density regulation, and
the spatial scale of density regulation (within or across
habitats) are essential for the emergence and maintenance
of local-adaptation polymorphisms (table 1).

Third, it has generally been recognized that patterns of
distribution of individuals among habitats strongly affect
the outcome of selection for local adaptation. Specifically,
both the emergence and the stable coexistence of locally
specialized phenotypes are greatly facilitated by mecha-
nisms of habitat choice that permit phenotypic segrega-
tion. Examples of such mechanisms are philopatry (e.g.,
Maynard Smith 1966; Brown and Pavlovic 1992; Meszéna
et al. 1997; Geritz and Kisdi 2000; Kisdi 2002), learned
habitat preference (e.g., Beltman et al. 2004; Beltman and
Haccou 2005; Beltman and Metz 2005; Stamps and Davis
2006), and matching habitat choice (a preference of in-
dividuals for the habitat they are best adapted to; e.g., de

Meeûs et al. 1993; Ravigné et al. 2004). Obviously, dispersal
and habitat choice may themselves be subject to adaptive
evolution (e.g., Fretwell and Lucas 1970; Doyle 1975; Ward
1987; Brown 1990; Fryxell 1997; for reviews of habitat
selection, see Jaenike 1990; Mayhew 1997; Morris 2003;
for a review of dispersal, see Ronce 2007) and are thus
expected to evolve jointly with local adaptation (de Meeûs
et al. 1993; Rausher 1993; table 1).

In this study we employ an integrative framework for
investigating the gradual evolution of local adaptation and
habitat choice in heterogeneous environments, with the
aim of bridging across and thereby unifying a host of
earlier, more specialized studies. Our analysis simulta-
neously considers key ecological factors, such as different
life cycles, modes of density regulation, and trade-off
shapes, as well as genetic factors, such as the mutational
or population-level trait variances and covariances. We
study the separate evolution of local adaptation (perfor-
mances) and habitat choice (preferences), as well as their
joint evolution. Summarized in figure 1, our main results
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Figure 1: Evolutionary outcomes predicted for simple analytical two-deme dispersal-selection models in dependence on the sequence of life-cycle
events, on the shape of the local-adaptation trade-off, and on whether habitat choice and local adaptation evolve jointly. Shaded area p conditions
under which habitat-choice evolution qualitatively changes local-adaptation evolution. Hatched area p conditions under which local-adaptation
evolution qualitatively changes habitat-choice evolution. For model 3 with moderately weak trade-offs, the population-level or mutational covariance
between the local-adaptation trait and the habitat-choice trait is assumed not to be too strongly positive. All other results are valid in general,
irrespective of the variance-covariance structure of the two traits.

offer a synthetic overview, based on analytically derived
conditions, of how outcomes of specialization evolution
depend on the aforementioned key ecological factors. A
particular feature of our analysis is the investigation of
arbitrary trade-off functions, which implies that our results
in this regard are as general as they can be. We also explore
how conditions for the gradual emergence of specialization
polymorphisms differ from those for their maintenance.

Methods

We consider a species that can inhabit two distinct habitats.
Here the term “habitat” is understood in a general sense,
as a subset of the environment exposing individuals to
specific selection pressures (Morris 2003). Individuals are

characterized by two traits: a local-adaptation trait that
determines their performance within each habitat and a
habitat-choice trait that determines their propensity to set-
tle in one habitat or the other. These traits naturally reflect
two key facets of ecological specialization: the capacity for
improved performance in a particular habitat and the ca-
pacity for preferentially entering a particular habitat
(Rausher 1984). We consider an asexual semelparous spe-
cies with nonoverlapping generations. All three life cycles
described below imply that individuals experience selec-
tion in a single habitat during each reproductive season
and thus describe coarse-grained environments (Levins
1968; Morris 1992). We highlight that our model also ap-
plies to the particular case of an iteroparous species with
discrete generations and survival and fecundities that are
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not age specific. The reason is that surviving parents are
then formally equivalent to one of their offspring. Iteropa-
rous individuals can experience both habitats during their
lifetime, so for them the models describe environments
that are fine-grained at the timescale of generations and
coarse-grained at the timescale of seasons.

Life Cycles

Life cycles underlying the evolution of specialization in
classical asexual dispersal-selection models comprise three
steps: mixing and dispersal between two different habitats,
selection within habitats, and density regulation. By def-
inition of these models, selection is phenotype-dependent
and density-independent, whereas density regulation is
density-dependent and phenotype-independent. Density
regulation may occur either separately within each habitat
(local regulation) or jointly across habitats (global regu-
lation). Whether dispersal occurs at the juvenile or the
adult stage and whether selection concerns viability or
fertility does not affect the structure, and thus the out-
come, of these models.

As we have recently shown (Ravigné et al. 2004; see also
Beltman et al. 2004), there are only three prototypical life
cycles that can result from permuting these three steps.
The first life cycle (hereafter model 1) was first described
by Levene (1953) and is the most common model con-
sidered for analyzing soft selection (Wallace 1975). It is
characterized by a periodic sequence of steps: (1) mixing
and dispersal between two different habitats, (2) selection
within habitats, and (3) local density regulation within
habitats. Since density regulation occurs locally after se-
lection, habitat contributions to the next generation are
independent of the phenotypic composition within a
habitat (this is known as “constant habitat outputs” in
dispersal-selection models of population genetics).

The second model (model 2) is the standard interpre-
tation of a verbal model introduced by Dempster (1955).
It is the most common model considered for analyzing
hard selection and is known to result in frequency-
independent selection: (1) mixing and dispersal between
two different habitats, (2) selection within habitats, and
(3) global density regulation across habitats. Here, since
density regulation is global, habitat outputs depend on the
phenotypic composition within habitats and thus vary
during the course of evolution (this is known as “variable
habitat outputs” in dispersal-selection models of popu-
lation genetics).

The regulation step may imply the gathering of all in-
dividuals in a third habitat in which density regulation
takes place. For instance, the aphid Pemphigus bursarius
(L.) feeds on lettuce roots during summer and can utilize
two different habitats, soil and poplar trees, during winter

(Phillips et al. 2000). If density is regulated on lettuce roots,
regulation is global for traits involved in adaptation to the
two winter habitats.

The last model (model 3) combines local density reg-
ulation (as in model 1) with variable habitat outputs (as
in model 2): (1) mixing and dispersal between two dif-
ferent habitats, (2) local density regulation within habitats,
and (3) selection within habitats.

Model 3 (Ravigné et al. 2004) has not been considered
traditionally. We previously showed that model 3 gives rise
to frequency-independent selection (i.e., hard selection)
when individuals distribute randomly among habitats, but
it causes frequency-dependent selection (i.e., soft selec-
tion) when they choose the habitat that they are best
adapted to (Ravigné et al. 2004).

For models 1 and 3, which imply local density regu-
lation, and denote the local carrying capacities ofC C1 2

habitats 1 and 2, respectively. For model 2, which implies
global density regulation, the global carrying capacity is
chosen as . Local and global density regulationsC � C1 2

are based on a ceiling: only and or indi-C C C � C1 2 1 2

viduals, respectively, survive the regulation step, indepen-
dent of their phenotype. Habitats (models 1 and 3) or the
entire environment (model 2) are thus assumed to be sat-
urated after the regulation step. The relative carrying ca-
pacities of habitats 1 and 2 are denoted by c p1

and , respectively.C /(C � C ) c p 1 � c1 1 2 2 1

It is worth pointing out that the question as to which
of the three life cycles described above best matches that
of a particular organism can have different answers de-
pending on the focal adaptive trait (Ravigné et al. 2004;
Rueffler et al. 2006a, 2006b).

Dispersal and Habitat Choice

During the dispersal step at the beginning of each of the
three life cycles, individuals settle in one habitat where
they, or their offspring, experience natural selection. The
distribution of individuals across habitats is determined
by their habitat-choice trait h ( ), measuring an0 ≤ h ≤ 1
individual’s probability of settling in habitat 2 (accord-
ingly, its probability of settling in habitat 1 is given by

). In phytophagous insects, h may, for instance, rep-1 � h
resent the proportion of eggs laid by a female of phenotype
h on a host plant of type 2 or the probability that emerging
larvae choose to settle in habitat 2. Habitat choice is as-
sumed to be genetically fixed without phenotypic plasticity.

Local Adaptation and Trade-Offs

As a second adaptive trait, we consider a local-adaptation
trait p ( ) affecting the local fitnesses and0 ≤ p ≤ 1 w (p)1

in habitats 1 and 2, respectively. These local fitnessesw (p)2
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vary only with the phenotype p and not with phenotypic
frequencies. In phytophagous insects, p and may,1 � p
for instance, describe the relative concentration of two
enzymes that facilitate assimilation of nutrients from host
plants of type 1 and 2 in the digestive tubes of larvae.
Accordingly, and may characterize the survivalw (p) w (p)1 2

of larvae feeding on host plants of type 1 or 2, respectively.
Alternatively, and may be interpreted as thew (p) w (p)1 2

differential fecundities of adult females feeding on host
plants of type 1 or 2, respectively.

Below we will mostly present analytical results that are
valid for arbitrary functions and . Followingw (p) w (p)1 2

Spichtig and Kawecki (2004; see also HilleRisLambers and
Dieckmann 2003; Egas et al. 2004), we will occasionally
use two specific functions,

gw (p) p 1 � sp , (1a)1

gw (p) p 1 � s(1 � p) , (1b)2

for the sake of concreteness and the purpose of illustration.
Here, the parameter determines the shape of the localg

fitness functions (see below), while the parameter de-s
termines the maximum level of local maladaptation (the
lowest possible local fitness is , where ).1 � s 0 ! s ! 1

Terminology for describing trade-offs such as those de-
fined by equations (1) is inhomogeneous in the literature.
A first convention for characterizing convexity or concav-
ity is based on the trade-off curve . The trade-off isw (w )2 1

described as convex if the second derivative of isw (w )2 1

positive, and it is described as concave otherwise. For the
specific functions in equations (1), implies a convexg ! 1
trade-off and a concave trade-off. A second con-g 1 1
vention—used, for example, in the seminal analysis of
trade-offs by Levins (1968)—is based on fitness sets. Fit-
ness sets are defined as the sets of possible (observable)
fitness combinations . These are thus delimited by(w , w )1 2

the axes of the positive quadrant together with the trade-
off curve . A fitness set is termed convex if anyw (w )2 1

straight line connecting two fitness combinations within
the set lies within the set (Levins 1968). Unfortunately,
convex fitness sets are delimited by concave trade-off
curves and vice versa, which can lead to confusion when
referring to trade-offs as being convex or concave. To avoid
any such confusion in this study, we adopt a third widely
used convention throughout: hereafter we will refer to
concave trade-off curves (and thus to convex fitness sets)
as “weak trade-offs” and to convex trade-off curves (and
thus to concave fitness sets) as “strong trade-offs” (see the
top row of fig. 1 for illustrations). Under a weak trade-
off between two components of fitness, increasing one of
them only weakly reduces the other, whereas when the
trade-off is strong, this reduction is strong. For the specific

functions in equations (1), implies a strong trade-g ! 1
off and a weak trade-off. Accordingly, trade-offg 1 1
strength in equations (1) can be measured by , and we1/g
thus refer to as the inverse trade-off strength.g

Evolutionary Dynamics

To investigate conditions facilitating the evolution of spe-
cialization, the local-adaptation trait p and the habitat-
choice trait h are allowed to evolve. Outcomes of selection
on these traits are examined using a generalized framework
in which evolutionary rates are proportional to selection
pressures. Two kinds of evolutionary dynamics are con-
sidered, which differ in their mathematical and biological
underpinnings. In one, the probability and size of mu-
tations are assumed to be very small, so that evolution
proceeds through the invasion and fixation of mutant phe-
notypes in otherwise monomorphic resident populations
(as assumed in adaptive dynamics theory; Metz et al. 1992,
1996; Dieckmann and Law 1996; Geritz et al. 1997); in
the other, all phenotypes are present at all times, so evo-
lution proceeds by their differential growth in fully poly-
morphic resident populations (as assumed in quantitative
genetics theory; Lande 1976; Iwasa et al. 1991; Taper and
Case 1992; Abrams et al. 1993). In first approximation,
both kinds of dynamics give rise to evolutionary rates that
are proportional to selection gradients (Iwasa et al. 1991;
Dieckmann and Law 1996). The constant of proportion-
ality involves the variance-covariance matrix either of the
mutation distribution (in adaptive dynamics theory) or of
the population distribution (in quantitative genetics the-
ory). This formal equivalence allows our analysis to deal
with both kinds of evolutionary dynamics at once.

Our analysis of evolutionary outcomes proceeds in three
steps, which will be carried out below separately for the
three fundamental life cycles described above. We begin
by calculating invasion fitness, that is, the long-term ex-
ponential growth rate of rare phenotypes (Metz et al.
1992). We then identify those (combinations of) trait val-
ues for which all selection pressures vanish. These are
known as evolutionarily singular strategies and require that
invasion fitness in each trait be at a local minimum or
maximum (Metz et al. 1996; Geritz et al. 1997).

In a second step, we determine whether the identified
singular strategies are convergence stable (CS; i.e., attain-
able through gradual evolution; Christiansen 1991) and/
or locally evolutionarily stable (ES; i.e., situated at a local
fitness maximum; Maynard Smith and Price 1973). These
two stability properties are independent (Eshel and Motro
1981; Taylor 1989) and help distinguish between three
different types of singular strategies of single-trait evolu-
tion: evolutionary end points known as continuously sta-
ble strategies (both CS and ES, resulting in stabilizing se-
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lection; Eshel and Motro 1981), evolutionary repellers (not
CS, resulting in divergent selection; Metz et al. 1996), and
evolutionary branching points (CS but not ES, resulting
in disruptive selection; Metz et al. 1996). Phenotypic di-
morphisms may emerge and be maintained at the latter
type of singular strategy. This threefold classification car-
ries over from single-trait evolution to the joint evolution
of two traits, except that an extra test is then needed to
check whether a protected dimorphism can exist near a
singular strategy. For single-trait evolution, this is guar-
anteed for any singular strategy that is CS but not ES
(Dieckmann 1994; Geritz et al. 1997), whereas for joint
evolution this property, known as mutual invasibility, has
to be established separately for identifying evolutionary
branching points.

As a third step, we consider the sensitivity of our results
with respect to model parameters. The latter include ,c1

as well as s and for the particular trade-offs consideredg

in equations (1). When evolution occurs in only one trait,
a fourth parameter is given by the nonevolving value of
either or p. Since all of these parameters are alreadyh
dimensionless and affect dynamics separately, the number
of essential parameters (either three or four) cannot be
further decreased. In addition, since the joint evolutionary
dynamics of the two traits might depend on their variances
and covariance (either mutational variances and covari-
ance as in adaptive dynamics theory or population-level
variances and covariance as in quantitative genetics the-
ory), we also study the robustness of our results with re-
spect to variation of these quantities.

Results

In this section we derive analytical expressions for the
invasion fitness in each of the three life cycles and examine
the resultant evolutionary dynamics of local adaptation
and habitat choice—first separately and then jointly. On
this basis, we explain the crucial differences between sep-
arate and joint evolution, investigate evolutionary bista-
bilities, and contrast conditions for the maintenance and
gradual emergence of specialization polymorphisms.

Invasion Fitnesses

When density regulation occurs locally after selection
(model 1), the invasion fitness of a variant with trait values

and in a population with trait values p and h is˜p̃ h

˜ ˜˜ ˜(1 � h)w (p) hw (p)1 2˜˜s (p, h) p ln c � c . (2a)p, h 1 2[ ](1 � h)w (p) hw (p)1 2

When density regulation occurs globally (model 2), the
invasion fitness is

˜ ˜˜ ˜(1 � h)w (p) hw (p)1 2˜˜s (p, h) p ln � . (2b)p, h [ ](1 � h)w (p) hw (p)1 2

When density regulation occurs locally before selection
(model 3), the invasion fitness is

˜˜c w (p) 1 � h1 1˜˜s (p, h) p lnp, h [c w (p) � c w (p) 1 � h1 1 2 2

˜˜c w (p) h2 2� . (2c)]c w (p) � c w (p) h1 1 2 2

To illustrate the method of derivation, the invasion fitness
in equation (2a) is deduced in appendix A. In our model,
p and h can be interpreted in two alternative ways. First,
they may be viewed as the trait values of a monomorphic
resident population, as in adaptive dynamics theory. Sec-
ond, p and h can be interpreted as the population’s mean
trait values in a polymorphic resident population, as in
quantitative genetics theory, assuming that the population-
level variances of both traits around these means are small.
Our analyses below are independent of a preference for
one or the other of these interpretations.

Evolution of Local Adaptation Alone

We first analyze the evolution of local adaptation when
habitat choice is fixed and monomorphic for some value
of h (under passive and random dispersal, h, the proba-
bility of settling in habitat 2, is given simply by the fre-
quency of habitat 2 in the environment, ). Resultsh p c 2

are summarized in figure 1, and proofs are given in ap-
pendix B. Similar analyses were performed by Geritz et al.
(1997), Kisdi and Geritz (1999; model 1 for Gaussian local
fitnesses), and Kisdi (2001; model 1 for general local fit-
nesses). The qualitative conclusions reported in those ear-
lier studies were similar to those derived here. In particular,
most previous studies have emphasized the influence of
trade-off strength on evolutionary outcomes, including
models dealing with fine-grained environments (e.g., Ruef-
fler et al. 2006a). Models 2 and 3 have not been considered
in the form in which they are analyzed here. However,
Meszéna et al. (1997), Egas et al. (2004; similar fitness
functions but different density regulation), and Beltman
and Metz (2005) examined life cycles that were similar to
our model 3.

Constant habitat outputs. For constant habitat outputs
(local regulation after selection; model 1), evolutionarily
singular strategies must satisfy∗p
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Figure 2: Evolutionarily singular local-adaptation strategies resulting from different trade-off strengths. Dotted curves p the singular strategy is an
evolutionary repeller (not convergence stable [CS]). Selection is divergent and favors the emergence of a single specialist. Dashed curves p the
singular strategy is an evolutionary branching point (CS but not evolutionarily stable [ES]). Selection is disruptive and favors the emergence of two
coexisting specialists. Thick continuous curves p the singular strategy is an evolutionary attractor (both CS and ES). Selection is stabilizing and
favors intermediate levels of adaptation, tuned by habitat choice in model 2 and by habitat carrying capacities in models 1 and 3. Arrows indicate
the direction of selection. A, Constant (trait-independent) and symmetric habitat outputs (model 1 with ). Selection favors generalists forc p c1 2

weak trade-offs, two coexisting specialists for moderately strong trade-offs, and a single specialist for very strong trade-offs. B, Constant and asymmetric
habitat outputs (model 1 with and ). The range of moderately strong trade-offs that cause the emergence of two coexisting specialistsc p 0.4 c p 0.61 2

is narrowed compared to the symmetric case. C, Variable (trait-dependent) and symmetric habitat outputs (model 2 with or, equivalently,h p 0.5
model 3 with ). No evolutionary branching can occur. Selection favors either a generalist (for weak trade-offs) or a single specialist (forc p c1 2

strong trade-offs). D, Variable and asymmetric habitat outputs (model 2 with or, equivalently, model 3 with and ).h p 0.6 c p 0.4 c p 0.61 2

Specialization is now biased toward the most frequent (or productive) habitat. Other parameter: .s p 0.8

′ ∗ ′ ∗w (p ) w (p )1 2c � c p 0, (3a)1 2∗ ∗w (p ) w (p )1 2

with for . Evolutionarily sin-′w (p) p dw (p)/dp i p 1, 2i i

gular strategies in model 1 are therefore independent of
habitat choice. If an evolutionarily singular strategy does
not exist, selection always remains directional, so that the
population will evolve an extreme degree of local adap-
tation ( or ). If the trade-off is symmetric∗ ∗p p 0 p p 1
( ), and local carrying capacities arew (p) p w (1 � p)1 2

equal ( ), the generalist strategy is always∗c p c p p 1/21 2

singular (for the specific trade-offs given by eqq. [1] this
is illustrated in fig. 2A). If carrying capacities differ, in-
termediate strategies other than may be singular∗p p 1/2
(fig. 2B). For moderately strong trade-offs, the interme-
diate singular strategy is surrounded by two additional
singular strategies (fig. 2A, 2B).

We now examine the properties of the evolutionarily
singular strategies in equation (3a). Results are sum-∗p
marized in figure 1. Singular strategies in model 1 are∗p
locally ES if

′′ ∗ ′′ ∗w (p ) w (p )1 2c � c ! 0 (3b)1 2∗ ∗w (p ) w (p )1 2

and CS if

′′ ∗ ′′ ∗ ′ ∗ 2 ′ ∗ 2w (p ) w (p ) w (p ) w (p )1 2 1 2c � c ! c � c , (3c)1 2 1 2∗ ∗ ∗ 2 ∗ 2w (p ) w (p ) w (p ) w (p )1 2 1 2

with for . The first inequality′′ 2 2w (p) p d w (p)/dp i p 1, 2i i

is fulfilled if the trade-off is weak at , while the second∗p
one is fulfilled if the trade-off is weak or moderately strong
at . Thus, if the trade-off is weak at , the singular∗ ∗p p
strategy is both ES and CS: selection at is stabilizing,∗p
and is an evolutionary end point (e.g., for the specific∗p
trade-offs given by eqq. [1], this is shown by thick curves
in fig. 2A, 2B). The selected intermediate local-adaptation
trait is then more or less generalist depending on relative
carrying capacities (fig. 2A, 2B). If the trade-off is very
strong at , the singular strategy is neither ES nor CS:∗p
selection around is divergent and is an evolutionary∗ ∗p p
repeller (dotted curves in fig. 2A, 2B). Selection then favors
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maximal adaptation to one habitat, depending on the ini-
tial trait value and relative carrying capacities. If the trade-
off is only moderately strong at p∗, the intermediate sin-
gular strategy is CS but not ES: selection at p∗ is disruptive,
and p∗ is an evolutionary branching point (dashed curves
in fig. 2A, 2B). In this case, an initial morph that is not
too close to one of the specialists first converges toward
p∗ and then becomes dimorphic owing to the frequency-
dependent disruptive selection experienced at p∗; the re-
sultant two specialists subsequently evolve away from p∗.
If one habitat has a much larger carrying capacity than
the other, the range of trade-off strengths (as measured
by ) for which two coexisting specialists can evolve in1/g
this manner is reduced compared to the symmetric situ-
ation (compare fig. 2A and 2B).

It is worth highlighting that some trade-offs (such as
those defined by eqq. [1]) imply the existence of three
singular strategies. In such situations, evolutionary out-
comes will depend on a population’s initial level of local
adaptation. As illustrated in figure 2A and 2B, with mod-
erately strong trade-offs, the intermediate branching point
is then surrounded by two repellers. Consequently, a pop-
ulation that starts outside the range of local-adaptation
traits delimited by the two repellers cannot reach the
branching point through gradual evolution and will in-
stead maximally adapt to one habitat. In contrast, a pop-
ulation starting between the two repellers will first evolve
to the branching point and may then split into two co-
existing specialists. For the specific trade-offs defined by
equations (1), we corroborated that after evolutionary
branching these two coexisting specialists become maxi-
mally adapted to either of the two habitats (results not
shown). Contingent on the initial level of local adaptation,
three qualitatively different evolutionary outcomes are
thus possible.

Variable habitat outputs. With fixed habitat choice, life
cycles with variable habitat outputs (models 2 and 3) be-
have analogously to one another (for the specific trade-
offs given by eqq. [1], this behavior is illustrated in fig.
2C, 2D), but rather differently from life cycles with con-
stant habitat outputs (model 1). Evolutionarily singular
strategies p∗ must satisfy the following equations, respec-
tively, for global density regulation (model 2) and for local
density regulation (model 3):

′ ∗ ′ ∗(1 � h)w (p ) � hw (p ) p 0, (4a)1 2

′ ∗ ′ ∗c w (p ) � c w (p ) p 0. (4b)1 1 2 2

The singular strategy thus depends only on the distribution
of individuals at the time of selection (described by 1 �

and in model 2 and by and in model 3) and onh h c c1 2

the local trade-off shape (described by and ).′ ∗ ′ ∗w (p ) w (p )1 2

If both habitats have the same population size when se-
lection occurs (i.e., if they are equally visited in model 2,

, or if they have the same carrying capacity in1 � h p h
model 3, ), strategies p∗ with ′ ∗ ′ ∗c p c w (p ) p �w (p )1 2 1 2

are singular. If the trade-off is symmetric (w (p) p1

) and the local fitness functions are either convexw (1 � p)2

or concave, the latter condition is fulfilled only at ∗p p
. For instance, for the specific trade-offs given by equa-1/2

tions (1), in model 2 the singular strategy (fig. 2C, 2D) is
given by

1∗p p . (4c)
g�1 �1�1 � h � 1

We can see that implies , independent∗h p 1/2 p p 1/2
of the trade-off strength (fig. 2C). In model 3, the1/g
singular strategy (fig. 2A, 2D) is similarly given by

1∗p p . (4d)
g�1 �1�1 � c � 12

Analogously, implies , independent of∗c p 1/2 p p 1/22

the trade-off strength (fig. 2C).1/g
We return to general trade-off functions and examine

the properties of the evolutionarily singular strategies p∗

in equations (4a) and (4b). If the trade-off is strong at p∗,
p∗ is a repeller (neither ES nor CS; eqq. [B7]/[B8] and
[B11]/[B12] are not fulfilled). In this case, the population
maximally adapts to one habitat or the other, depending
on the initial trait value and relative carrying capacities.
If the trade-off is weak at p∗, p∗ is an evolutionary end
point (both CS and ES; eqq. [B7]/[B8] and [B11]/[B12]
are fulfilled). The selected local-adaptation trait p∗ will
then be intermediate between the two extreme specialists.
Equations (4) show that this intermediate phenotype is
tuned by habitat contributions to the next generation (i.e.,
according to relative population sizes just before mixing)
if density regulation is local (model 3), whereas it depends
on habitat choice if density regulation is global (model 2).
It thus corresponds to a strategy that is equally well
adapted to both habitats (fig. 2C) only when those are of
similar quality under local density regulation (model 3)
or are visited in equivalent frequencies under global den-
sity regulation (model 2). When one habitat is visited more
frequently than the other under global density regulation
(model 2) or when it possesses a larger carrying capacity
than the other under local density regulation (model 3),
evolution thus often favors local adaptation biased toward
this habitat, irrespective of trade-off shape (fig. 2D).
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Evolution of Habitat Choice Alone

We now assume that every individual in the population
has the same fixed and nonevolving level of local adap-
tation p. Results are summarized in figure 1, and proofs
are given in appendix C. Conclusions reported in this
section can be found in classical studies on the evolution
of habitat choice (e.g., Fretwell and Lucas 1970; Rosen-
zweig 1981).

With constant habitat outputs (model 1), the only sin-
gular strategy for habitat choice is CS and ES (or, more
precisely, neutrally ES; see app. C):

∗h p c . (5a)2

With variable habitat outputs due to global regulation
(model 2), habitat choice h is selectively neutral if p is
such that . Otherwise, selection is direc-w (p) p w (p)1 2

tional and favors maximal preference for the more favor-
able habitat:

h p 0 or h p 1. (5b)

With variable habitat outputs due to local regulation before
selection (model 3), the only singular strategy for h is CS
and ES:

( )c w p2 2∗h p . (5c)
( ) ( )c w p �c w p1 1 2 2

In life cycles with local density regulation (models 1 and
3), the selected strategy is an “opportunist” (Rosenzweig
1981): individuals distribute themselves according to hab-
itat productivities (i.e., according to local population sizes
before mixing). Hence, the intensity of competition is the
same in both habitats, implying an ideal free distribution
(Fretwell and Lucas 1970; Fretwell 1972; Rosenzweig 1981;
Morris 1988). In contrast, when density regulation is
global, the selected strategy exhibits extreme “pickiness”
(Rosenzweig 1981).

Joint Evolution of Local Adaptation and Habitat Choice

We now examine the general situation in which local ad-
aptation and habitat choice evolve jointly. Results are sum-
marized in figure 1, and proofs are given in appendix D.

With constant habitat outputs (local regulation after
selection, model 1), the singular strategy deter-∗ ∗(p , h )
mined by equations (3a) and (5a) is intermediate. It is not
ES (eq. [D23]). When the trade-off is sufficiently strong,
the singular strategy is an evolutionary saddle point (i.e., it
attracts the evolutionary dynamics in the two-dimensional
trait space in one direction but repels in another direction;

fig. 3A). In contrast, when the trade-off is weak or mod-
erately strong (fig. 3D; eqq. [5]), the singular strategy is
convergence stable, irrespective of the genetic variance-
covariance structure of p and h (eq. [D12]). It is then an
evolutionary branching point (i.e., a point in the vicinity
of which a dimorphism can emerge; fig. 3D), unless the
two traits are strongly negatively correlated (so that the
two strategies that would naturally diverge from the sin-
gular strategy cannot coexist; app. D). We have thus shown
that in model 1, under the assumptions considered here,
joint evolution cannot result in a generalist unless mal-
adaptive genetic constraints trap the population at the sin-
gular point.

With variable habitat outputs due to global regulation
(model 2), the singular strategy , if it exists (eq.∗ ∗(p , h )
[D4]), is always an evolutionary saddle point (fig. 3C; eq.
[D14]), irrespective of the variance-covariance structure.
Independent of trade-off shape, selection favors a picky
specialist that is completely adapted to one habitat and
consistently chooses it, leaving the other habitat empty.

With variable habitat outputs due to local regulation
before selection (model 3), the singular strategy is∗ ∗(p , h )
given by equations (4b) and (5c) (with ). It is never∗p p p
ES (eq. [D24]). If the trade-off is strong (eq. [D18] not
fulfilled), is an evolutionary saddle point (fig. 3B),∗ ∗(p , h )
irrespective of the variance-covariance structure. If the
trade-off is very weak (eq. [D20]), is an evolu-∗ ∗(p , h )
tionary branching point unless the two traits are strongly
negatively correlated (so that the two strategies that nat-
urally diverge from the singular strategy cannot coexist;
app. D). If the trade-off is moderately weak, the variance-
covariance structure determines whether the singular point
is CS (making it a branching point) or not (making it a
repeller): the singular point then is CS unless the covari-
ance between p and h is positive and larger than a threshold
that rises for trade-offs that are increasingly weak (eq.
[D21]).

Regarding the impact of genetic variances and covari-
ances on the outcomes of joint evolution, we can thus
conclude that, in general, the outcome of gradual evolution
is independent of the relative genetic variances of, and the
genetic covariance between, the local-adaptation trait and
the habitat-choice trait. Depending on the evolutionary
dynamics considered, this conclusion applies either to the
population-level variance-covariance structure in the quan-
titative genetics approach or to the mutational variance-
covariance structure in the adaptive dynamics approach.
This conclusion does not apply only when strongly neg-
atively correlated traits are combined with weak to mod-
erately strong trade-offs in model 1 or with weak trade-
offs in model 3, or when strongly positively correlated
traits are combined with moderately weak trade-offs in
model 3 (app. D).
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Figure 3: Joint evolutionary dynamics of local adaptation and habitat choice. Gray arrowheads depict the direction of the selection gradient, which
determines selection pressures on both traits. Lines with arrows show evolutionary trajectories for equal trait variances and absent trait covariance.
Black circles represent alternative end points of the evolutionary process. Gray circles represent evolutionary branching points. Open circles represent
evolutionary repellers. Dotted lines separate the basins of attraction of two alternative evolutionary end points; these lines are known as separatrices.
A–C, For very strong trade-offs, all three life cycles give rise to evolutionary bistability between two alternative evolutionary outcomes (here illustrated
for ). Under local regulation (models 1 and 3), the initial local-adaptation trait determines whether the population specializes on one habitatg p 0.2
or the other, whereas the initial habitat-choice trait has no effect on the evolutionary outcome (A, B). In contrast, under global regulation (model
2), the initial habitat-choice trait affects the evolutionary outcome together with the initial habitat-choice trait (C). D, For weak and moderately
strong trade-offs, life cycles with local regulation and constant habitat outputs (model 1) may select for the emergence of two coexisting specialists
through gradual evolution (here illustrated for ). E, For weak trade-offs, life cycles with local regulation and variable habitat outputs (modelg p 0.9
3) may select for the emergence of two coexisting specialists (here illustrated for ). In D and E, the joint evolution of local adaptation andg p 1.2
habitat choice first converges to the evolutionary branching point, before splitting into two increasingly specialized morphs as indicated by the
dashed lines with double-headed arrows. F, Under global regulation (model 2), the angle of the separatrix between the basins of attraction of the
two specialists varies with the inverse trade-off strength g. For weaker trade-offs (larger g), the separatrix is less steep, which implies that the initial
habitat-choice trait has a greater influence on the evolutionary outcome than the initial local-adaptation trait. For stronger trade-offs (smaller g),
the separatrix is steeper, which implies that the relative importance of initial trait values is reversed. All panels are also representative of evolutionary
dynamics with some covariance between local-adaptation and habitat-choice traits, unless the covariance is strongly positive in model 3 or strongly
negative in models 1 and 3. Other parameters: , , and .s p 0.8 c p 0.4 c p 0.61 2

Comparison of Evolutionary Dynamics and Outcomes

We now summarize conditions for the gradual emergence
of polymorphism under the joint evolution of habitat
choice and local adaptation. When the trade-off is weak,
polymorphisms can emerge if density regulation is local,
independent of whether this regulation leads to variable
habitat outputs (model 3) or to constant habitat outputs
(model 1); global regulation then precludes polymor-
phism. Conversely, when the trade-off is strong, variable
habitat outputs preclude the emergence of polymorphisms,
both in model 2 (local regulation before selection) and in

model 3 (global regulation); polymorphism can then
emerge only if local regulation occurs after selection
(model 1) and the trade-off is not too strong.

We have shown that in all three prototypical dispersal-
selection models, the joint evolution of habitat choice and
local adaptation leads to outcomes that qualitatively differ
from those obtained for single-trait evolution as soon as
local-adaptation trade-offs are weak (gray area, fig. 1). In
particular, and perhaps most unexpectedly from a tradi-
tional perspective, under joint evolution weak trade-offs
never select for generalists but instead always favor spe-
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Figure 4: Geometrical interpretation of why habitat-choice evolution qualitatively changes local-adaptation evolution under weak trade-offs. All
illustrations focus on model 1 with genetically independent traits (absent covariance) of equal variance. A, A weak local-adaptation trade-off (thick
line; for and ), the singular resident at (open circle), and its invasion boundary (thin line). Habitat choice is fixed ats p 0.9 g p 1.2 p p 0.5 h p

. Only variants above the invasion boundary (white region) can invade the corresponding resident, while those below (gray region) cannot. The0.5
resident thus is evolutionarily stable, as no variant constrained by the trade-off can invade it. B, The local-adaptation trade-off is now strong
( and ). The singular resident at (open circle) can be invaded by any variant lying above the invasion boundary (white region).s p 0.9 g p 0.7 p p 0.5
Since this includes variants permitted by the trade-off, the resident is not evolutionarily stable. C, D, Extension of preceding considerations to the
joint evolution of local adaptation and habitat choice. Three-dimensional trade-off (light gray surface) and invasion boundary (dark gray surface)
of the singular resident ( , ; open circle). Under a weak trade-off (C), variants with no habitat preference (black arrows; ,ˆp p 0.5 h p 0.5 p ( 0.5

) lie below the invasion boundary and therefore cannot invade the resident. When habitat choice is fixed at , thus isĥ p 0.5 h p 0.5 p p 0.5
evolutionarily stable. In contrast, variants whose local-adaption traits and habitat-choice traits differ from those of the resident in the same direction
(white arrows) lie above the invasion boundary and therefore can invade the resident. When habitat choice evolves, ( , ) thus is notp p 0.5 h p 0.5
evolutionarily stable. Under a strong trade-off (D), even variants with no habitat preference (black arrows; , ) can invade the resident.ˆp̂ ( 0.5 h p 0.5
E, F, Fitness landscapes around the singular resident ( , ). The darker the gray, the higher the fitness. Dashed lines connect variantsp p 0.5 h p 0.5

that experience the same fitness in the resident population. Continuous lines connect variants that experience the same fitness as theˆ ˆˆ ˆ(p, h) (p, h)
resident. Under a weak trade-off (E), the resident can be invaded only by variants whose local-adaption traits and habitat-choice traits differ from
those of the resident in the same direction (white arrows). Under a strong trade-off (F), the resident may also be invaded by variants with unchanged
habitat-choice traits (black arrows).

cialization. Whether such specialization is then associated
with diversification depends on the life cycle, with local
regulation enabling diversification.

Geometrical Interpretation of Analytical Results

To interpret the differences between single-trait and two-
trait evolution and to understand more generally how
trade-offs in our models affect singular strategies and their
properties, we employ a geometrical analysis (de Mazan-
court and Dieckmann 2004; Rueffler et al. 2004) that gen-
eralizes the classical fitness-set approach introduced by
Levins (1968) to systems with frequency-dependent selec-
tion. The method is based on plotting trade-off functions
together with invasion boundaries for the singular strategy
being the resident strategy (fig. 4). For each resident strat-
egy (not constrained by the trade-off, so that(w , w , h)1 2

and are independent), the invasion boundary isw w1 2

defined by the set of variant strategies that haveˆˆ ˆ(w , w , h)1 2

the same invasion fitness as the resident. We focus the
geometrical illustrations below on model 1, since it was
this life cycle that exhibited the most dramatic differences
between single-trait and two-trait evolution (fig. 1A, 1C).

When habitat choice is fixed and local adaptation
evolves alone, the invasion boundary lies in the two-
dimensional space defined by the two local fitnesses (fig.
4A, 4B). This invasion boundary is linear for all residents
and life cycles (fig. 4A, 4B; eqq. [E2]–[E4]). Figure 4A
shows geometrically why in this case a weak trade-off can
only induce evolutionarily stable strategies (either evolu-
tionary end points or Garden-of-Eden configurations;
Hofbauer and Sigmund 1990; Dieckmann 1997; de Ma-
zancourt and Dieckmann 2004; Rueffler et al. 2004): when
the singular local-adaptation trait is resident, resulting in
the resident strategy , all other trait com-∗ ∗(w (p ), w (p ))1 2

binations along the trade-off curve haveˆ ˆ(w , w ) w (w )1 2 2 1
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negative invasion fitness, so that evolution must come to
a halt there. This confirms our analytical results for single-
trait evolution (fig. 1A).

When allowing for two-trait evolution, in contrast, we
can see geometrically that weak trade-offs lead to evolu-
tionary branching points. In this case, the invasion bound-
ary is a curved surface in the three-dimensional space
defined by the two local fitnesses and the habitat-choice
trait (fig. 4C). The singular local-adaptation trait, which
was not invasible under single-trait evolution, now be-
comes invasible by morphs that differ consistently from it
in both their habitat-choice trait and their local-adaptation
trait: relative to the singular morph, such morphs have an
elevated preference for the habitat in which they perform
better. Geometrically, this invasibility is visible through the
corresponding part of the trade-off surface lying above the
invasion boundary, thus extending into the region of pos-
itive invasion fitness (fig. 4C). The resultant fitness land-
scape evidences disruptive selection (fig. 4E).

We provide analogous illustrations for a moderately
strong trade-off (fig. 4B, 4D, and 4F). While for two-trait
evolution the situation is similar to that for a weak trade-
off (compare fig. 4D with fig. 4C and fig. 4F with fig. 4E),
a salient difference occurs for single-trait evolution (com-
pare fig. 4B with fig. 4A): now, when the singular local-
adaptation trait is resident, all other trait combinations

along the trade-off curve have positive in-ˆ ˆ(w , w ) w (w )1 2 2 1

vasion fitness, so that evolutionary branching can occur
even when habitat choice is fixed.

Evolutionary Bistability

The analysis above reveals that sufficiently strong trade-
offs and global density regulation, either separately or
jointly, result in divergent selection on local adaptation
(fig. 1A, 1C). This favors maximal adaptation to one hab-
itat and, if habitat choice also evolves, maximal preference
to the same habitat. In such situations, the two specialist
phenotypes are alternative evolutionary end points, a sit-
uation that is best described as evolutionary bistability (fig.
1). It is then desirable to predict which habitat a given
population will ultimately specialize on.

When habitat choice is fixed, evolutionary bistability
occurs as summarized in figure 1A. The outcome of local-
adaptation evolution then depends on the population’s
initial local-adaptation trait, and the basins of attraction
of the two extreme specialist phenotypes are separated by
evolutionary repellers (dotted curves in fig. 2). These basin
boundaries may change with the strength of the trade-off
(fig. 2A, 2B, and 2D), as well as with the relative habitat
carrying capacities in life cycles with local regulation
(models 1 and 3; eqq. [3a] and [4b], respectively; fig. 2B
and 2D, respectively) or the relative habitat preferences in

life cycles with global regulation (model 2; eq. [4a]; fig.
2D).

When habitat choice evolves jointly with local adapta-
tion, evolutionary bistability occurs as summarized in fig-
ure 1C. Bistability is then associated with an evolutionary
saddle point, with this point’s stable manifold serving as
the separatrix (dotted curves in fig. 3) between the basins
of the two alternative evolutionary attractors. In general,
the orientation and shape of this separatrix will be affected
by the population-level variance-covariance structure
(quantitative genetics approach) or by the mutational
variance-covariance structure (adaptive dynamics ap-
proach) of the two considered traits. Assuming genetic
independence of habitat choice and local adaptation evo-
lution, so that the genetic covariance between these traits
vanishes, allows us to distinguish two qualitatively different
cases. When regulation is local (models 1 and 3), initial
habitat choice does not affect the evolutionary outcome
(vertical separatrices in fig. 3A and 3B), and the initial
local-
adaptation trait then matters just as when habitat choice
is fixed. In contrast, when regulation is global (model 2),
the initial values of both traits jointly affect the evolu-
tionary outcome (slanted separatrix in fig. 3C) and the
slope of the separatrix varies with trade-off strength (fig.
3E). Specifically, when the trade-off is weak (high ), theg

separatrix is less steep, so that the evolutionary outcome
depends more sensitively on initial habitat choice than on
initial local adaptation.

Maintenance and Gradual Emergence of
Coexisting Specialists

Our analysis so far has determined conditions for the
emergence of polymorphisms through gradual evolution.
Classical population genetics models (e.g., Levene 1953;
Dempster 1955; Maynard Smith 1966; Templeton and
Rothman 1981; Beltman et al. 2004; Ravigné et al. 2004;
model type 1 in table 1) instead focused on conditions for
the maintenance of polymorphisms.

A polymorphism is called protected, and can thus be
maintained against demographic perturbations, if all its
members can reinvade after their disappearance (Prout
1968). For instance, under random dispersal, it is easily
shown that with constant habitat outputs (model 1) and
with fitnesses defined by equations 1, a polymorphism of
two extreme specialists and is protected ifp p 0 p p 11 2

1 � s 1
! c , c ! . (6)1 22 � s 2 � s

This leads to two conclusions (fig. 5, upper left). First,
a polymorphism between the two specialists is protected
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Figure 5: Comparison of conditions for the maintenance and emergence of local-adaptation polymorphisms when habitat outputs are constant or
variable and habitat choice is fixed and random, fixed and matching, or evolving. The left pair of columns depict conditions for the maintenance
of two specialists at and (Ravigné et al. 2004) in dependence on the relative carrying capacity of habitat 1 (horizontal axes) and onp p 0 p p 1 c1

the loss of local fitness that a specialist experiences in the habitat to which it is not adapted (vertical axes), with either fixed and random habitats
choice or fixed and matching habitat choice. The right pair of columns depict conditions for the emergence of this polymorphism through gradual
evolution (eqq. [3b], [3c]) for trade-offs of decreasing strength, ranging from (strongest trade-off; black regions) to (weakest trade-g p 0.2 g p 1.2
off; light gray regions).

in model 1 if the carrying capacities of the two habitats
are not too different and if the maximum level of locals
maladaptation is large enough. Second, whether such a
polymorphism is protected is independent of the curvature
of the trade-off function, as the latter affects only inter-
mediate morphs. In contrast, our results above have shown
how the curvature of a trade-off function restricts the
conditions under which a polymorphism can emerge
through gradual evolution (figs. 1–4). The conditions for
the protection of a polymorphism are thus wider than
those for its emergence through gradual evolution (fig. 5).

Therefore, mutations or recombinations of particularly
large phenotypic effect, or the immigration of nonresident
strategies from the outside, can facilitate the emergence of
specialization polymorphisms. When a polymorphism of
two specialists cannot emerge through gradual evolution
but can be maintained once it has emerged, it may or may
not be immune against the invasion of intermediate strat-
egies depending on the considered trade-off strength. For
instance, with constant habitat outputs (model 1) and
fixed random dispersal, a protected dimorphism of spe-

cialists is globally evolutionarily stable if and only if the
trade-off is strong (app. B). In contrast, when the trade-
off is weak, any intermediate strategy can invade (app. B).
This is different under matching habitat choice (sensu Ra-
vigné et al. 2004): protected dimorphisms of specialists are
then always globally evolutionarily stable, irrespective of
habitat outputs and trade-off strength (app. B).

Discussion

Local adaptation and habitat choice have long been rec-
ognized as two critical facets of ecological specialization
(Rosenzweig 1981). Yet few theoretical studies have ex-
plicitly addressed their joint evolution (Castillo-Chavez et
al. 1988; de Meeûs et al. 1993; Beltman and Haccou 2005;
Beltman and Metz 2005; Rueffler et al. 2007; table 1). Here
we have introduced a simple integrative framework that
enabled us to study analytically the separate and joint evo-
lution of these two traits under different life cycles, modes
of density regulation, and arbitrary trade-off shapes. Be-
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low, we summarize our main findings and discuss them
in the wider context of past and future research.

Joint Evolution Qualitatively Changes
the Specialization Process

Central results of our study concern the conditions under
which, relative to separate evolution, the joint evolution
of local adaptation and habitat choice critically alters the
specialization process (fig. 1). We find that only very strong
trade-offs prevent the outcomes of joint evolution from
differing qualitatively from those of single-trait evolution.
In other words, under very strong trade-offs, outcomes of
joint evolution can be understood simply as the super-
position of outcomes of single-trait evolution. Indeed, very
strong trade-offs always favor (i) maximal local adaptation
to one habitat, and (ii) either maximal preference for that
habitat (when density regulation occurs globally across
habitats) or an ideal free distribution across habitats (when
density regulation occurs locally within habitats). This is
because under very strong trade-offs, the singular strategy
(usually an intermediate adaptation trait value) is an evo-
lutionary repeller. Even when habitat choice evolves jointly
with local adaptation, gradual adaptive evolution can only
diverge from this singular point, thereby leading to com-
plete specialization on one habitat.

Habitat-choice evolution can qualitatively change local-
adaptation evolution (shaded area, fig. 1C). This occurs
for weak trade-offs, which always favor generalists when
habitat choice is fixed (e.g., Levins 1962, 1968; MacArthur
and Levins 1964; MacArthur and Pianka 1966; Lawlor and
Maynard Smith 1976; Wilson and Turelli 1986; van Tien-
deren 1991; Kisdi and Geritz 1999; fig. 1A), but select for
specialists once habitat choice is allowed to evolve jointly
with local adaptation (fig. 1C). A corresponding result was
established by Rueffler et al. (2007) in a quite different
model.

Similarly, local-adaptation evolution can qualitatively
change habitat-choice evolution (hatched area in fig. 1C).
This occurs when density regulation is local, which under
fixed local adaptation always favors intermediate habitat
choice, and thus leads to an ideal free distribution across
habitats (Fretwell and Lucas 1970; Fretwell 1972; Doyle
1975; Rausher 1984; Fryxell 1997; fig. 1B). In contrast, the
joint evolution of local adaptation and habitat choice un-
der local density regulation can yield coexisting specialists,
each with a maximal preference for the matching habitat
(fig. 1C).

Evolution of Habitat Choice May Leave Habitats Empty

A particularly surprising outcome of evolution of habitat
choice occurs when density regulation is global (model 2,

often regarded as the prototypical model of hard selection;
Dempster 1955). Selection then always favors the emer-
gence of a single specialist, irrespective of whether local
adaptation evolves together with habitat choice. Under
joint evolution, this specialist is maximally adapted to one
habitat and exhibits maximal preference for it. To the ex-
tent that habitat choice is accurate, this evolutionary out-
come will leave the other habitat essentially empty. This
extends a result of former theoretical studies: even with
matching habitat choice, local-adaptation polymorphisms
cannot be maintained under hard selection (de Meeûs et
al. 1993; Ravigné et al. 2004). Furthermore, even when
local adaptation is fixed and only habitat choice evolves,
evolution under global density regulation leads to the ex-
ploitation of only a single niche.

These considerations could explain why some host
plants are not utilized by some herbivorous insects, even
though the plants are suitable for the insects’ survival and
reproduction (e.g., Smiley 1978; Rohde 1979; Myers et al.
1981; Anderson et al. 1989). The explanation has two com-
ponents. First, our analyses predict that under global reg-
ulation habitat preference will evolve to be maximal: reg-
ulation being global, there is no benefit in exploiting the
less crowded and/or productive habitat. Each genotype is
in competition with every other genotype in the whole
population. It is therefore evolutionarily advantageous for
the focal herbivore species to concentrate its habitat pref-
erence on the habitat to which it is adapted, even at the
expense of leaving the other habitat unexploited. Second,
and for the same reason, an immigrating herbivore species
that enters the empty habitat and is capable of exploiting
it, without, however, already possessing maximal habitat
preference for that empty habitat, will be competitively
excluded by the focal herbivore species (e.g., de Meeûs et
al. 1993). Owing to global regulation, the empty habitat
will thus remain (almost) empty even in the face of joint
evolution and immigration attempts. Under local regu-
lation, evolutionary bistability also leads to a single spe-
cialist, but when habitat choice evolves, this specialist oc-
curs in both habitats in an ideal free distribution (fig. 1C).

Joint Evolution Resolves the “Soft Selection/
Hard Selection Dilemma”

The so-called soft selection/hard selection dilemma was
put forward in the context of population genetics models
of resource specialization (de Meeûs 2000). The dilemma
arises from recognizing that the evolution of coexisting
picky specialists could be difficult, since specialization in
habitat choice and local adaptation, when viewed as sep-
arate processes, require different ecological settings to
evolve. Specifically, for fixed and monomorphic local ad-
aptation, matching habitat choice only evolves either un-
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der hard selection (model 2; Garcia-Dorado 1987; de
Meeûs et al. 1993; fig. 1B) or in the presence of a pre-
existing local-adaptation polymorphism (leading to the
well-known “ghost of competition past”; Lawlor and May-
nard Smith 1976; Rosenzweig 1981; Garcia-Dorado 1987;
Castillo-Chavez et al. 1988; Brown and Pavlovic 1992; de
Meeûs et al. 1993; Morris 1999). In contrast, for fixed and
unconditional habitat choice, local-adaptation polymor-
phisms can be protected only under soft selection (model
1; fig. 1A) and even then only evolve under restrictive
conditions (Levene 1953; Ravigné et al. 2004; fig. 5).

Our analyses above have shown that, when habitat
choice and local adaptation evolve jointly, the soft selec-
tion/hard selection dilemma is overcome: joint evolution
leads to coexisting picky specialists under a much wider
range of conditions (fig. 1C) than is expected from the
mere superposition of results of separate evolution (fig.
1A, 1B). In particular, joint evolution allows maximal hab-
itat preferences to evolve even under local regulation, thus
eliminating the previously perceived discrepancy with re-
quirements for local-adaptation polymorphisms.

Joint Evolution Raises the Bar for Understanding
the Evolution of Generalists

For the entire range of models studied here, joint evolution
precludes the emergence of generalists. Consequently, the
classical, and still widely touted, view that weak trade-offs
favor generalists (Levins 1968) can no longer be regarded
as being adequate.

Our study has shown that the evolution of generalists
can be explained only by additional factors that are not
part of our models. Previous theoretical studies have sug-
gested several such additional factors. First and foremost
is temporal variability in habitat quality, which has long
been recognized as favoring generalists (reviewed by Wil-
son and Yoshimura 1994; see also Kisdi 2002; Egas et al.
2004; Abrams 2006a). Fluctuating environments select for
mean geometric reproductive success, so that specialists
that recurrently experience poor performance in the hab-
itat to which they are adapted are intrinsically disadvan-
taged. However, when fluctuations are fast, the trade-off
curves examined in this study can simply be interpreted
in terms of mean geometric reproductive success, or long-
term fitness, instead of in terms of immediate perfor-
mance, or instantaneous fitness. Our analyses then directly
carry over to fluctuating environments.

Second, any ecological factor obstructing the evolution
of a matching habitat choice will favor generalist local-
adaptation strategies. Such constraints may originate from
selective pressures that favor dispersal (e.g., kin compe-
tition; Ronce et al. 2001; Ronce 2007) and thus indirectly
select against matching habitat choice (sensu Ravigné et

al. 2004; see also Edelaar et al. 2008). Constraints on
matching habitat choice may also arise from physiological
limits to choice accuracy that result from errors in per-
ception or implementation (Egas et al. 2004), or from costs
associated with lengthy decision taking (“neural con-
straint”; Bernays 1998; for reviews, see Mayhew 1997;
Morris 2003). Similarly, the time and effort required for
sampling possibly rare candidate habitats (Jaenike 1990;
Mayhew 1997) may favor generalism (Rosenzweig 1974;
Rueffler et al. 2007).

Third, generalist species may persist as a result of genetic
constraints. Even when selection favors the emergence of
specialists, the segregation and recombination implied by
sexual reproduction (with local-adaptation traits deter-
mined by multiple loci without extreme linkage or epis-
tasis, or by diploid inheritance without full dominance)
may impede specialization by constantly creating hybrids
between the two specialist phenotypes (Felsenstein 1981;
Dieckmann and Doebeli 1999; Doebeli and Dieckmann
2000). In this manner, frequency-dependent disruptive se-
lection may trap populations at fitness minima (Dieck-
mann et al. 2004a, 2004b). If this phenomenon were sig-
nificant in nature, generalists might be more frequent
among sexual species than among asexual and selfing
species. Moreover, theoretical studies suggest that sexual
species are more likely to escape such fitness traps by
so-called one-allele mechanisms (Felsenstein 1981; Dieck-
mann and Doebeli 1999, 2004), which apply when match-
ing habitat preferences are based, for example, on philo-
patry or learned habitat preference (e.g., Brown and
Pavlovic 1992; Kisdi and Geritz 1999; Day 2001; Beltman
and Metz 2005). It is thus conceivable that one-allele
mechanisms of habitat choice are relatively more common
among recently evolved sexual specialists.

Joint Evolution Still Needs to Be Understood under More
Complex Types of Density Regulation

A common feature of the three models analyzed here is
that population dynamics were kept as simple as possible.
Specifically, density regulation was assumed to occur at a
particular time in the life cycle and ensured that at most

individuals survived. This assumption is in lineC � C1 2

with most previous models of hard and soft selection and
probably is the main prerequisite that allowed us to obtain
analytical results (unlike, e.g., Beltman and Metz 2005).

Naturally, it would be worthwhile to investigate the sen-
sitivity of specialization evolution to more complex pop-
ulation dynamics. In many models incorporating such dy-
namics, the population is density regulated using logistic
functions (Egas et al. 2004) or Beverton-Holt functions
(Kisdi 2002; Beltman and Metz 2005). A careful compar-
ison between our results and evolutionary outcomes in
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those other models leads to the following two conclusions.
First, when local carrying capacities underlying more re-
alistic types of density regulation are assumed to be un-
affected by local-adaptation traits, then model 1 correctly
predicts, depending on the strength of the trade-off,
whether the generalist singular strategy is an evolutionary
end point, a branching point, or a repeller. Second, when
such local carrying capacities are assumed to change as
local adaptation evolves (e.g., Egas et al. 2004), then our
model 3 correctly predicts the evolutionary outcomes,
again in dependence of the assumed trade-off. These con-
clusions suggest that the three models investigated in this
study, simple as they may be, might indeed be good ap-
proximations of models with more complex types of den-
sity regulation. Future theoretical work on the interactions
between population dynamics and local adaptation could
examine how far these approximations can be taken.

This study has shown how three key determinants of
specialization evolution—the spatial scale of density reg-
ulation, the dependence of carrying capacities on local-
adaptation traits, and the shape of local-adaptation trade-
offs—can be integrated into a synthetic framework. This
allowed us to derive analytical results on how the joint
dynamics of local adaptation and habitat choice is crucial
for understanding specialization evolution. We hope that
theoretical and empirical studies will soon critically eval-
uate the generality of findings presented here.
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APPENDIX A

Invasion Fitnesses

Here we detail the calculation of invasion fitness for model
1; calculations for models 2 and 3 proceed analogously.
We consider the following processes in the life cycle of an
asexual population: dispersal, selection, regulation, and mix-
ing. At the beginning of each cycle, individuals are part of
a common pool with residents and a small numberN (t)

of variants. They first distribute across the two habitatsÑ (t)
according to their habitat-choice trait. After this stage, hab-
itat 1 thus contains variants and˜ ˜(1 � h) N (t) (1 � h) N (t)
residents, while habitat 2 contains variants and˜ ˜hN (t)

residents. Selection occurs as individuals differentiallyhN (t)
reproduce and/or survive in each habitat according to their
local adaptation trait. After this stage, there are thus (1 �

variants and residents in˜ ˜ ˜h) N (t) w (p) (1 � h) N (t) w (p)1 1

habitat 1, and variants and resi-˜ ˜ ˜hN (t) w (p) hN (t) w (p)2 2

dents in habitat 2. Regulation occurs next: only a fixed
number of individuals survive in each habitat; this number
is independent of their strategy. After this stage, the variant
population is given by

˜ ˜ ˜(1 � h)N(t)w (p)1Ñ (t) p C (A1)1 1 ˜ ˜ ˜(1 � h)N(t)w (p) � (1 � )N(t)w (p)h1 1

in habitat 1 and by

˜ ˜ ˜hN(t)w (p)2Ñ (t) p C (A2)2 2 ˜ ˜ ˜hN(t)w (p) � N(t)w (p)h2 2

in habitat 2. From one cycle to the next, the variant’s total
population size thus changes according to

˜ ˜ ˜( ) ( ) ( )N t � 1 pN t �N t . (A3)1 2

Assuming that the variant population is small relative to
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the resident population, so that , allows usN (t) ≈ C � C1 2

to simplify this result, which gives

˜ ˜˜ ˜C (1 � h)w (p) C hw (p)1 1 2 2˜ ˜N(t � 1) ≈ � N(t).[ ]C � C (1 � h)w (p) C � C hw (p)1 2 1 1 2 2

(A4)

Hence, we obtain the variant’s invasion fitness in model
1 as

˜ ˜˜ ˜(1 � h)w (p) hw (p)1 2˜˜s (p, h) p ln c � c , (A5)p, h 1 2[ ]˜(1 � )w (p) hw (p)h 1 2

thus recovering equation (2a).

APPENDIX B

Evolution of Local Adaptation Alone

Selection Gradients and Singular Strategies

The selection gradient is defined as the derivative of in-
vasion fitness taken with respect to the variant strategy
and evaluated at the resident strategy:

˜�s (p, h)p, h
D (p, h) p . (B1)p ( )˜ ˜�p ppp

For model 1, we obtain

′ ′w (p) w (p)1 2D (p, h) p c � c . (B2)p 1 2w (p) w (p)1 2

For model 2, we obtain

′ ′(1 � h)w (p) � hw (p)1 2D (p, h) p . (B3)p (1 � h)w (p) � hw (p)1 2

For model 3, we obtain

′ ′c w (p) � c w (p)1 1 2 2D (p, h) p . (B4)p c w (p) � c w (p)1 1 2 2

A strategy is singular if its selection gradient vanishes.
Hence in all three models, if a singular local-adaptation
trait p∗ exists, and either have opposite signs′ ∗ ′ ∗w (p ) w (p )1 2

(i.e., there is a trade-off in local adaptation) or both vanish
(i.e., p∗ is optimal in both habitats). If a singular local-
adaptation trait does not exist, the selection gradient never
vanishes, and selection then always remains directional.
For the remainder of the appendix, we focus on cases

characterized by trade-offs between levels of local adap-
tation that can be achieved in the two habitats.

Convergence Stability

A singular strategy p∗ is convergence stable and thus at-
tainable through gradual evolution, if the derivative of the
selection gradient evaluated at the singular strategy is neg-
ative (Geritz et al. 1997):

�D (p, h)p
! 0. (B5)( ) ∗�p ppp

For model 1, we obtain

′′ ∗ ′′ ∗ ′ ∗ 2 ′ ∗ 2w (p ) w (p ) w (p ) w (p )1 2 1 2c � c ! c � c . (B6)1 2 1 2∗ ∗ ∗ 2 ∗ 2w (p ) w (p ) w (p ) w (p )1 2 1 2

For model 2, we obtain

′′ ∗ ′′ ∗(1 � h)w (p ) � hw (p ) ! 0. (B7)1 2

For model 3, we obtain

′′ ∗ ′′ ∗c w (p ) � c w (p ) ! 0. (B8)1 1 2 2

Local Evolutionary Stability

A singular strategy is locally evolutionary stable, and thus
immune against invasion by neighboring strategies, if it
locally maximizes invasion fitness relative to variant traits.
The second derivative of invasion fitness taken with respect
to the variant strategy and evaluated at the singular strategy
must then be negative:

2 ˜� s (p, h)p, h
! 0. (B9)

2( )˜ ∗˜�p ppppp

For model 1, we obtain

′′ ∗ ′′ ∗w (p ) w (p )1 2c � c ! 0. (B10)1 2∗ ∗w (p ) w (p )1 2

For model 2, we obtain

′′ ∗ ′′ ∗(1 � h)w (p ) � hw (p ) ! 0. (B11)1 2

For model 3, we obtain

′′ ∗ ′′ ∗c w (p ) � c w (p ) ! 0. (B12)1 1 2 2
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Global Evolutionary Stability of Protected Dimorphisms

Even when a protected dimorphism cannot emerge
through gradual evolution, it may appear through mu-
tations or recombinations of particularly large phenotypic
effect, or through the immigration of nonresident strat-
egies from the outside. Such a dimorphism is globally
evolutionarily stable and thus immune against the invasion
of intermediate strategies, if the invasion fitnesses of all
intermediate strategies are negative in the population of
the two resident strategies. For model 1 with fixed random
dispersal ( ), the invasion fitness of a variant strategyh p c 2

in a dimorphic population with the resident specialistp̃
strategies and is then given byp p 0 p p 11 2

˜ ˜w (p)[w (1) � w (0)] � w (p)[w (0) � w (1)]1 2 2 2 1 1˜s (p) p ln .0, 1 { }w (0)w (1) � w (1)w (0)1 2 1 2

(B13)

With and , thisw (0) p w (1) p 1 w (1) p w (0) p 1 � s1 2 1 2

gives

˜ ˜w (p) � w (p)1 2˜s (p) p ln . (B14)0, 1 [ ]2 � s

This invasion fitness assumes positive values if and only
if the trade-off is weak. Hence, the considered dimorphism
is globally evolutionarily stable if and only if the trade-off
is strong. If we assume matching habitat choice (h p 01

and ) instead of fixed random dispersal, the in-h p 12

vasion fitness of local-adaptation trait with a habitat-p̃
choice trait in a dimorphism of specialists is given byh̃

˜ ˜˜ ˜ ˜s (p) p ln [(1 � h)w (p) � hw (p)]. (B15)0, 1 1 2

This invasion fitness can never assume positive values, and
hence the considered dimorphism is always globally evo-
lutionarily stable.

APPENDIX C

Evolution of Habitat Choice Alone

Selection Gradients and Singular Strategies

As before, the selection gradient is defined as the derivative
of invasion fitness taken with respect to the variant strategy
and evaluated as the resident strategy:

˜�s (p, h)p, h
D (p, h) p . (C1)h ( )˜ ˜�h hph

For model 1, we obtain

c c2 1D (p, h) p � (C2)h h 1 � h

and thus the singular habitat-choice trait

∗h p c . (C3)2

For model 2, we obtain

w (p) � w (p)2 1D (p, h) p . (C4)h (1 � h)w (p) � hw (p)1 2

Since the numerator of this expression does not vanish
unless local fitness is the same in both habitats, selection
on habitat choice in model 2 typically stays directional,
favoring maximal preference to the habitat in which local
fitness is highest. For model 3, we obtain

(1 � h)c w (p) � hc w (p)2 2 1 1D (p, h) p (C5)h (1 � h)h[c w (p) � c w (p)]1 1 2 2

and thus the singular habitat-choice trait

c w (p)1 1∗h p . (C6)
c w (p) � c w (p)1 1 2 2

Convergence Stability

For model 1, the singular habitat-choice trait is conver-
gence stable if

�1 �1c � c 1 0, (C7)1 2

which is always true. For model 3, the singular habitat-
choice trait is convergence stable if

2[c w (p) � c w (p)]1 1 2 2
1 0, (C8)

c c w (p)w (p)1 2 1 2

which again is always true. Hence, in both models the
singular habitat-choice trait is always convergence stable.

Local Evolutionary Stability

For models 1 and 3, we obtain

2 ˜� s (p, h)p, h
p 0. (C9)

2( )˜ ˜ ∗�h hphph

For models 1 and 3, rare habitat-choice variants in the
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neighborhood of the singular habitat-choice trait are
thus always selectively neutral. Therefore, when the sin-
gular habitat-choice trait is convergence stable, the pop-

ulation will evolve to it and stay in its neighborhood.
This is what we refer to as neutrally ES.

APPENDIX D

Joint Evolution of Local Adaptation and Habitat Choice

We now consider the joint evolution of habitat choice and local adaptation using methods presented by Meszéna et
al. (2001) and Leimar (2005, 2009). A strategy is then always described by a vector of two trait values.(p, h)

Selection Gradients and Singular Strategies

The selection gradient for joint evolution is the vector of the two partial derivatives of the invasion(D (p, h), D (p, h))p h

fitness taken with respect to the two variant traits and evaluated at the resident strategy. For model 1, we obtain

′ ′w (p) w (p)1 2D (p, h) p c � cp 1 2w (p) w (p)1 2
, (D1)

c c2 1{D (p, h) p �h h 1 � h

and the singular strategy is thus given by∗ ∗(p , h )

′ ∗ ′ ∗w (p ) w (p )1 2c � c p 01 2∗ ∗w (p ) w (p )1 2 . (D2){ ∗h p c 2

For model 2, we obtain

′ ′(1 � h)w (p) � hw (p)1 2D (p, h) pp (1 � h)w (p) � hw (p)1 2
, (D3)

w (p) � w (p)2 1{D (p, h) ph (1 � h)w (p) � hw (p)1 2

and

∗ ∗w (p ) p w (p )1 2

. (D4)′ ∗w (p )1∗h p{ ′ ∗ ′ ∗w (p ) � w (p )1 2

For model 3, we obtain

′ ′c w (p) � c w (p)1 1 2 2D (p, h) pp c w (p) � c w (p)1 1 2 2
(D5)

(1 � h)c w (p) � hc w (p)2 2 1 1{D (p, h) ph (1 � h)h[c w (p) � c w (p)]1 1 2 2

and
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′ ∗ ′ ∗c w (p ) � c w (p ) p 01 1 2 2

. (D6)∗c w (p )1 1∗{h p ∗ ∗c w (p ) � c w (p )1 1 2 2

Convergence Stability

A two-trait singular strategy is convergence stable if the Jacobian matrix of the evolutionary dynamics∗ ∗ ˜(p , h ) J
possesses only eigenvalues with negative real parts. This is the case if and only if the determinant of (which equalsJ̃
the product of ’s two eigenvalues) is positive and its trace (which equals the sum of ’s two eigenvalues) is negative.˜ ˜J J

can be computed as the product of two matrices, : the Jacobian matrix of the selection gradient,˜ ˜J J p JV J

�D (p, h) �D (p, h)p p 
�p �h

J p , (D7)
�D (p, h) �D (p, h)h h 

�p �h ∗ ∗ ppp , hph

and the (population-level or mutational) variance-covariance matrix ,V

V Vpp ph 
 V p . (D8)
V V ph hh

Excluding biologically degenerate cases, trait variances are always positive, , and their product always exceedsV , V 1 0pp hh

the squared covariance, .2V V 1 Vpp hh ph

For model 1, we obtain

′′ ∗ ′′ ∗ ′ ∗ 2 ′ ∗ 2w (p ) w (p ) w (p ) w (p )1 2 1 2 c � c � c � c 01 2 1 2∗ ∗ ∗ 2 ∗ 2w (p ) w (p ) w (p ) w (p )1 2 1 2J p (D9) 
�1 �10 �(c � c ) 1 2

and thus

′′ ∗ ′′ ∗ ′ ∗ 2 ′ ∗ 2w (p ) w (p ) w (p ) w (p )1 2 1 22 �1 �1det JV p � (V V � V )(c � c ) c � c � c � c (D10)pp hh ph 1 2 1 2 1 2∗ ∗ ∗ 2 ∗ 2( )w (p ) w (p ) w (p ) w (p )1 2 1 2

together with

′′ ∗ ′′ ∗ ′ ∗ 2 ′ ∗ 2w (p ) w (p ) w (p ) w (p )1 2 1 2 �1 �1tr JV p V c � c � c � c � V (c � c ). (D11)pp 1 2 1 2 hh 1 2∗ ∗ ∗ 2 ∗ 2( )w (p ) w (p ) w (p ) w (p )1 2 1 2

Both eigenvalues of have negative real parts if and only if their product is positive ( ) and their sum isJV det JV 1 0
negative ( ), which applies if and only iftr JV ! 0

′′ ∗ ′′ ∗ ′ ∗ 2 ′ ∗ 2w (p ) w (p ) w (p ) w (p )1 2 1 2c � c ! c � c . (D12)1 2 1 2∗ ∗ ∗ 2 ∗ 2w (p ) w (p ) w (p ) w (p )1 2 1 2

Hence, the singular strategy is convergence stable, independent of trait variances and covariance, if and only∗ ∗(p , h )
if equation (D12) is fulfilled, that is, for weak and moderately strong trade-offs. It is worth highlighting that this is
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the same condition that describes convergence stability when local adaptation evolves alone (eq. [3c]). For very strong
trade-offs, equation (D12) is not fulfilled and . This implies that the eigenvalues of are real with oppositedet JV ! 0 JV
signs, so that the singular strategy then is an evolutionary saddle point, independent of the variance-covariance∗ ∗(p , h )
matrix.

For model 2, we obtain

′′ ∗ ′′ ∗ ′ ∗ ′ ∗(1 � h)w (p ) � hw (p ) w (p ) � w (p )1 2 2 1 
J p (D13) 

′ ∗ ′ ∗w (p ) � w (p ) 0 2 1

and thus

2 ′ ∗ ′ ∗ 2(V V � V )[w (p ) � w (p )]pp hh ph 1 2det JV p � , (D14)∗ ∗ ∗ ∗ 2[(1 � h )w (p ) � h w (p )]1 2

which is always negative. Accordingly, the eigenvalues of are real with opposite signs, so that the singular strategyJV
lacks convergence stability and is an evolutionary saddle point, independent of the trade-off shape and the∗ ∗(p , h )

variance-covariance matrix.
For model 3, we obtain

′′ ∗ ′′ ∗c w (p ) � c w (p )1 1 2 2 0∗ ∗c w (p ) � c w (p )1 1 2 2
J p (D15)′ ∗ ′ ∗ ∗ ∗ 2w (p ) w (p ) [c w (p ) � c w (p )]2 1 1 1 2 2 � �∗ ∗ ∗ ∗w (p ) w (p ) c c w (p )w (p ) 2 1 1 2 1 2

and thus

2 ∗ ∗ ′′ ∗ ′′ ∗(V V � V )[c w (p ) � c w (p )][c w (p ) � c w (p )]pp hh ph 1 1 2 2 1 1 2 2det JV p � (D16)∗ ∗c c w (p )w (p )1 2 1 2

together with

′′ ∗ ′′ ∗ ∗ ∗ 2 ′ ∗ ′ ∗c w (p ) � c w (p ) [c w (p ) � c w (p )] w (p ) w (p )1 1 2 2 1 1 2 2 2 1tr JV p V � V � V � . (D17)pp hh ph∗ ∗ ∗ ∗ ∗ ∗( )c w (p ) � c w (p ) c c w (p )w (p ) w (p ) w (p )1 1 2 2 1 2 1 2 2 1

The condition thus applies if and only ifdet JV 1 0

′′ ∗ ′′ ∗c w (p ) � c w (p ) ! 0, (D18)1 1 2 2

while the condition applies if and only iftr JV ! 0

′′ ∗ ′′ ∗ ∗ ∗ 2 ′ ∗ ′ ∗c w (p ) � c w (p ) V [c w (p ) � c w (p )] V w (p ) w (p )1 1 2 2 hh 1 1 2 2 ph 2 1
! � � . (D19)∗ ∗ ∗ ∗ ∗ ∗( )c w (p ) � c w (p ) V c c w (p )w (p ) V w (p ) w (p )1 1 2 2 pp 1 2 1 2 pp 2 1

We now have to distinguish three cases, according to the sign and magnitude of the left-hand side of equation (D19).
First, when the trade-off is strong (i.e., eq. [D18] is not fulfilled), , so the eigenvalues of are real withdet JV ! 0 JV
opposite signs and the singular strategy is an evolutionary saddle point, independent of the variance-covariance∗ ∗(p , h )
matrix. Second, when the trade-off is very weak, that is,

2′′ ∗ ′′ ∗ ∗ ∗ ′ ∗ ′ ∗c w (p ) � c w (p ) 1 c c w (p )w (p ) w (p ) w (p )1 1 2 2 1 2 1 2 2 1
! � � , (D20)∗ ∗ ∗ ∗ 2 ∗ ∗( )c w (p ) � c w (p ) 4 [c w (p ) � c w (p )] w (p ) w (p )1 1 2 2 1 1 2 2 2 1
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applies independent of the variance-covariance matrix. To see this, notice that the right-hand side of equationtr JV ! 0
(D20) is the minimum that the right-hand side of equation (D19) can assume upon variation of andm v p V /Vhh pphh

subject to the consistency condition : at and ,2 �1 2 1/2 �2 2v p V /V v 1 v m p �(1/4)x x v p (v ) v p (1/2)x xph pp hh ph hh phph hh ph ph hh hh

where and are, respectively, the coefficients of and on the right-hand side ofx 1 0 x 1 0 v v v x � v xhh ph hh phhh ph hh ph

equation (D19). Since equation (D20) thus ensures and , both eigenvalues of have negative realdet JV 1 0 tr JV ! 0 JV
parts and the singular strategy is convergence stable independent of the variance-covariance matrix. Third,∗ ∗(p , h )
when the trade-off is moderately weak, equation (D18) is fulfilled, so , but equation (D20) is not fulfilled,det JV 1 0
so the sign of depends on the variance-covariance matrix according to equation (D17). Therefore, convergencetr JV
stability depends on the variance-covariance matrix: the singular strategy then is convergence stable unless the∗ ∗(p , h )
covariance between the local-adaptation trait and the habitat-choice trait is positive and larger than a threshold that
rises for trade-offs that are increasingly weak,

∗ ∗ 2 ′′ ∗ ′′ ∗[c w (p )�c w (p )] c w (p )�c w (p )1 1 2 2 1 1 2 2V � V∗ ∗ ∗ ∗hh ppc c w (p )w (p ) c w (p )�c w (p )1 2 1 2 1 1 2 2

V 1 . (D21)ph ′ ∗ ′ ∗w (p ) w (p )2 1�∗ ∗w (p ) w (p )2 1

If the trade-off is weak and equation (D21) is fulfilled, the singular strategy is a repeller (fig. D1).∗ ∗(p , h )

Local Evolutionary Stability

A two-trait singular strategy is locally evolutionarily stable if the Hessian matrix∗ ∗(p , h )

2 2˜ ˜˜ ˜ � s (p, h) � s (p, h)p, h p, h

2 ˜˜ ˜�p �p�h
H p (D22)

2 2˜ ˜˜ ˜� s (p, h) � s (p, h)p, h p, h 
2˜ ˜˜�p� �h h ˜∗ ∗ p̃pppp , hphph

is negative definite. Notice that, in contrast to above, the matrix is always symmetric. Since the two-trait singularJ H
strategy is never convergence stable for model 2, below we consider only its evolutionary stability for models 1 and
3. For model 1, we obtain

′′ ∗ ′′ ∗ ′ ∗ ′ ∗w (p ) w (p ) w (p ) w (p )1 2 2 1 c � c �1 2∗ ∗ ∗ ∗w (p ) w (p ) w (p ) w (p )1 2 2 1
H p . (D23)′ ∗ ′ ∗w (p ) w (p )2 1 � 0∗ ∗w (p ) w (p ) 2 1

For model 3, we obtain

′′ ∗ ′′ ∗ ′ ∗ ′ ∗c w (p ) � c w (p ) w (p ) w (p )1 1 2 2 2 1 �∗ ∗ ∗ ∗c w (p ) � c w (p ) w (p ) w (p )1 1 2 2 2 1
H p . (D24)′ ∗ ′ ∗w (p ) w (p )2 1 � 0∗ ∗w (p ) w (p ) 2 1

Both matrixes above possess a negative determinant; hence, they are not negative definite, and the singular strategy
is a saddle point of the fitness landscape, that is, ES in some directions and not ES in other directions.

Mutual Invasibility

The direction in which a dimorphism of strategies diverges from an evolutionary branching point is given by v p
, where is the variance-covariance matrix and is the dominant eigenvector of the Hessian matrix . MutualVg V g H
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invasibility applies when each strategy in this dimorphism can invade the other, causing the dimorphism to be protected.
This is ensured if and only if is positive, where is the difference between the Hessian matrixTv Mv M p H � J Hs

and the symmetrized Jacobian matrix . For model 1, we obtainJs

T 2 �1 �1 2v Mv p z(XV � V ) � 2y(XV � V )(V � XV ) � c c (V � XV ) , (D25)pp ph pp ph hh ph 1 2 hh ph

where

′′ ∗ ′′ ∗w (p ) w (p )1 2x p c � c , (D26)1 2∗ ∗w (p ) w (p )1 2

′ ∗ ′ ∗w (p ) w (p )2 1y p � , (D27)∗ ∗w (p ) w (p )2 1

′ ∗ 2 ′ ∗ 2w (p ) w (p )1 2z p c � c , (D28)1 2∗ 2 ∗ 2w (p ) w (p )1 2

2 2�x � x � 4y
X p . (D29)

2y

In equation (D25), all terms are positive or 0, except , which can be negative. Hence, in the absence of covarianceVph

between the two traits ( ), or when the traits are positively correlated ( ), is always positive, ensuringTV p 0 V 1 0 v Mvph ph

that dimorphisms emerging around the evolutionary branching point are protected. The genetic covariance between
the local-adaptation trait and the habitat-choice trait may obstruct the emergence of such dimorphisms only when it
is sufficiently negative, falling below a threshold that depends on the shape of the trade-off, the relative habitat
frequencies, and the genetic variances of the two traits:

�1 �1 2 2 2 �1 �1�X(Xy � z)V � (c c X � y)V � (X V � V ) (y � c c z)pp 1 2 hh pp hh 1 2

V ! � . (D30)ph �1 �1 2c c X � 2Xy � z1 2

For model 3, we obtain

Tv Mv p (V � XV ) # [(XV � V )y � (V � XV )z], (D31)hh ph pp ph hh ph

where

′′ ∗ ′′ ∗c w (p ) � c w (p )1 1 2 2x p , (D32)∗ ∗c w (p ) � c w (p )1 1 2 2

′ ∗ ′ ∗w (p ) w (p )2 1y p � , (D33)∗ ∗w (p ) w (p )2 1

∗ ∗ 2[c w (p ) � c w (p )]1 1 2 2z p , (D34)∗ ∗c c w (p )w (p )1 2 1 2

2 2�x � x � 4y
X p . (D35)

2y

In equation (D31), all terms are positive or 0, except , which can be negative. Hence, in the absence of covarianceVph

between the two traits ( ), or when the traits are positively correlated ( ), is always positive, ensuringTV p 0 V 1 0 v Mvph ph

that dimorphisms emerging around the evolutionary branching point are protected. The genetic covariance between
the local-adaptation trait and the habitat-choice trait may obstruct the emergence of such dimorphisms only when it
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is sufficiently negative, falling below a threshold that depends on the shape of the trade-off, the relative habitat
frequencies, and the genetic variances of the two traits:

XyV � zVV pp hhhhV ! max � , � . (D36)ph ( )X Xz � y

Figure D1: Impact of the variance-covariance structure on the joint evolution of local adaptation and habitat choice under local regulation and
variable habitat outputs (model 3). Gray arrowheads depict the direction of the selection gradient after multiplication with the variance-covariance
matrix. Lines with arrows show the resultant evolutionary trajectories. Black circles in B represent alternative end points of the evolutionary process.
The gray circle in A represents an evolutionary branching point and the open circle in B an evolutionary repeller. The dashed lines with double-
headed arrows depict the direction in which dimorphic strategies diverge from the branching point. The dotted line is the separatrix that separates
the basins of attraction of the two alternative evolutionary end points. Habitats occur at equal frequencies ( ). The trade-off is moderatelyc p c p 0.51 2

weak (i.e., close to linear; ). The mutational or population-level variance of the local-adaptation trait is , while the variance of theg p 1.1 V p 4pp

habitat-choice trait is . A, No covariance between the two traits, . The singular strategy is an evolutionary branching point. AfterV p 1 V p 0hh ph

convergence to this point, the population splits and becomes dimorphic. B, Maximal positive covariance between the two traits, . The singularV p 2ph

strategy is an evolutionary repeller. It can never be attained through gradual evolution, and the population instead specializes on one habitat or the
other, depending on initial conditions. For some smaller values of (such as ), the evolutionary repeller is surrounded by an evolutionaryV V p 1.7ph ph

limit cycle along which the local-adaptation trait and the habitat-choice trait oscillate in perpetuity (result not shown; Red Queen evolution sensu
Dieckmann et al. 1995). Other parameter: .s p 0.9

APPENDIX E

Invasion Boundaries

The invasion boundary of a resident strategy is defined as
the set of strategies, unconstrained by a trade-off, that have
the same fitness as the resident strategy (de Mazancourt
and Dieckmann 2004; Rueffler et al. 2004). Their analysis
enables understanding the evolutionary implications of
trade-offs (fig. 4).

Evolution of Local Adaptation Alone

For fixed and monomorphic habitat choice , the invasionh
boundary of a resident strategy is given by(w (p), w (p))1 2

the set of local fitnesses that imply vanishing in-ˆ ˆ(w , w )1 2

vasion fitness. For model 1, we obtain

ˆ ˆw w1 2ln c � c p 0, (E1)1 2( )w (p) w (p)1 2

which yields

w (p) c w (p)2 1 2ˆ ˆw p � w . (E2)2 1c c w (p)2 2 1

For model 2, we obtain

1 � h 1 � h
ˆ ˆw p w (p) � w (p) � w . (E3)2 1 2 1h h

For model 3, we obtain

c c1 1ˆ ˆw p w (p) � w (p) � w . (E4)2 1 2 1c c2 2
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In all three models, the invasion boundary is there-ˆ ˆw (w )2 1

fore linear.

Joint Evolution of Local Adaptation and Habitat Choice

Under joint evolution, the invasion boundary of a resident
strategy is given by the set of strategies(w (p), w (p), h)1 2

that imply vanishing invasion fitness. For modelˆˆ ˆ(w , w , h)1 2

1, we obtain

ˆhw (p) c h(1 � h)w (p)2 1 2ˆ ˆw p � w . (E5)2 1ˆ ˆc c (1 � h)w (p)h h2 2 1

For model 2, we obtain

ˆ1 � h h 1 � h
ˆ ˆw p w (p) � w (p) � w . (E6)2 1 2 1ˆ ˆ ˆh h h

For model 3, we obtain

ˆc h h c h(1 � h)1 1ˆ ˆw p w (p) � w (p) � w . (E7)2 1 2 1ˆ ˆ ˆc c (1 � h)h h h2 2
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de Meeûs, T. 2000. Adaptive diversity, specialisation, habitat pref-
erence and parasites. Pages 27–42 in R. Poulin, S. Morand, and
A. Skorping, eds. Evolutionary biology of host-parasite relation-
ships: theory meets reality. Developments in Animal and Veteri-
nary Sciences. Elsevier, Amsterdam.
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