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Abstract The prevalence of structure in biological populations challenges funda-
mental assumptions at the heart of continuum models of population dynamics based
only on mean densities (local or global). Individual-based models (IBMs) were intro-
duced during the last decade in an attempt to overcome this limitation by following
explicitly each individual in the population. Although the IBM approach has been quite
useful, the capability to follow each individual usually comes at the expense of analyt-
ical tractability, which limits the generality of the statements that can be made. For the
specific case of spatial structure in populations of sessile (and identical) organisms,
space—time point processes with local regulation seem to cover the middle ground
between analytical tractability and a higher degree of biological realism. This approach
has shown that simplified representations of fecundity, local dispersal and density-
dependent mortality weighted by the local competitive environment are sufficient to
generate spatial patterns that mimic field observations. Continuum approximations of
these stochastic processes try to distill their fundamental properties, and they keep
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track of not only mean densities, but also higher order spatial correlations. However,
due to the non-linearities involved they result in infinite hierarchies of moment equa-
tions. This leads to the problem of finding a ‘moment closure’; that is, an appropriate
order of (lower order) truncation, together with a method of expressing the highest
order density not explicitly modelled in the truncated hierarchy in terms of the lower
order densities. We use the principle of constrained maximum entropy to derive a clo-
sure relationship for truncation at second order using normalisation and the product
densities of first and second orders as constraints, and apply it to one such hierarchy.
The resulting ‘maxent’ closure is similar to the Kirkwood superposition approxima-
tion, or ‘power-3’ closure, but it is complemented with previously unknown correction
terms that depend mainly on the avoidance function of an associated Poisson point
process over the region for which third order correlations are irreducible. This domain
of irreducible triplet correlations is found from an integral equation associated with
the normalisation constraint. This also serves the purpose of a validation check, since
a single, non-trivial domain can only be found if the assumptions of the closure are
consistent with the predictions of the hierarchy. Comparisons between simulations
of the point process, alternative heuristic closures, and the maxent closure show sig-
nificant improvements in the ability of the truncated hierarchy to predict equilibrium
values for mildly aggregated spatial patterns. However, the maxent closure performs
comparatively poorly in segregated ones. Although the closure is applied in the con-
text of point processes, the method does not require fixed locations to be valid, and
can in principle be applied to problems where the particles move, provided that their
correlation functions are stationary in space and time.

Keywords Birth—dispersal-death stochastic processes - Hierarchies of moment
equations - Spatially structured plant population dynamics -
Biologically driven spatial pattern formation - Model reduction

Mathematics Subject Classification (2000) 92B99 - 60K35 - 82B31

1 Introduction

One of the most widely used models in theoretical ecology is the logistic equation
(Murray 1993; Pearl and Reed 1920; Verhulst 1838)

d
om0y = rm () (1 - m;t))

m1(0) = no,

ey

which describes the dynamics of a population in terms of a single state variable m (),
which can be interpreted as the expected population size or as the global density.
The rate of change of the density in the logistic model is determined by three driv-
ers. The first two are present in the net growth term r = b — d, where b and d are
respectively the per capita fecundity and intrinsic mortality rates. The third one is the
density-dependent mortality rate, which is assumed to be proportional to the den-
sity, with constant of proportionality 1/K, where K is the ‘carrying capacity’, i.e.
the maximum number of individuals per unit area or volume that can be supported

@ Springer



Moment closure by entropy maximisation 607

by some unspecified limiting resource. This model is built on the following set of
assumptions (Bolker and Pacala 1997; Dieckmann and Law 2000; Law et al. 2003):

There are no facilitative interactions among conspecifics.

Contributions to mortality due to competition are pairwise additive.

The limiting resource is uniformly distributed in space.

There are no differences among individuals in age, size or phenotype.

The spatial locations of the individuals are uncorrelated.

Allocation to reproduction is independent of the local resource availability.
Density-dependent mortality occurs at the same temporal scales than fecundity
and intrinsic mortality.

NoUnAE DD

These assumptions are valid only for a rather restricted set of biological situations.
For instance, facilitative interactions are known to play a determinant role alongside
competition in shaping community structure and dynamics (Brooker et al. 2008).
In plant communities, non-successional positive interactions can result from addi-
tional resources being made available through synergies (e.g. hydraulic lift, microbial
enhancement, mycorrhizal networks), a reduction in the impact of climate extremes
and predation (Gross 2008) or a combination of these. The assumption of pairwise
additivity in density-dependent mortality enjoys some degree of empirical support for
plant populations (Weigelt et al. 2007), but it is still an unresolved issue (Damgaard
2007; Dormann and Roxburgh 2005). Forms of population structure driven by size (or
age), phenotype or spatial pre-patterning in the abiotic substrate having an impact on
fecundity, recruitment and survivorship are ubiquitously observed both in the field and
experimental literature (Purves and Law 2002; Silvertown and Doust 1993; Turnbull
et al. 2007). Seed dispersal and competitive interactions are known to occur over a
characteristic range of spatial scales rather than being uniformly distributed as is com-
monly assumed in the logistic model (Condit et al. 2000; Dale 1999; Gratzer et al.
2004; Schneider et al. 2006; Silvertown and Doust 1993; Silvertown and Wilson 2000;
Stoll and Weiner 2000).

These limitations have motivated the search for alternatives to the logistic equation
that can address questions of broader biological interest, while simultaneously main-
taining a reasonable degree of mathematical and computational tractability. Achieving
this goal depends heavily on the development of multiscale modeling approaches capa-
ble of linking patterns manifested at the larger, population-level scales, to their drivers,
which lie in biological processes occurring at the level of individuals. These typically
involve spatial and temporal scales that differ substantially from those at which the
population-level regularities are detected (Bolker and Pacala 1997; Bolker et al. 2003;
Dieckmann and Law 2000; Durret 1999; Law and Dieckmann 2000; Law et al. 2003;
Moorcroft and Pacala 2001; Levin 1994; Satd and Iwasa 2000).

Among all the possible paths suggested as one relaxes these assumptions
(1-7), understanding the role of spatial structure, particularly that driven by biological
processes alone, has received a considerable amount of interest (Bolker and Pacala
1997, 1999; Bolker et al. 2000; Borgogno et al. 2009; Dale 1999; Dieckmann et al.
2000; Durrett and Levin 1994; Filipe and Gibson 1998, 2001; Filipe and Maule 2003;
Filipe et al. 2004; Hiebeler 1997, 2006; Keeling et al. 1997; Keeling 1999; Keeling
et al. 2000; Keeling and Ross 2009; Iwasa 2000; Law et al. 2003; Lewis and Pacala
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2000; Ovaskainen and Cornell 2006a,b; Pascual and Levin 1999; Pascual et al. 2001,
2002; Picard and Franc 2001; Scanlon et al. 2007). The approaches that have been
developed for the spatial problem have a number of commonalities. They usually con-
sist of an individual-based model (IBM) (DeAngelis and Mooij 2005; Grimm 1999)
which follows simplified representations of the life histories of each individual in the
population. These representations include the biological processes believed to play a
role in driving the population-level phenomena, and typically include a combination
of fecundity, dispersal, mortality and in some cases, growth. These are modeled in
such a way that some form of density-dependent regulation is present in at least one
of them. Second, the density-dependent regulation is determined by the neighborhood
configuration surrounding each focal individual, which leads to a local regulation of
the process (Blath et al. 2007; Etheridge 2004; Fournier and Méléard 2004). Third,
the dynamics of the macroscopic patterns is obtained from an ensemble average of
a sufficiently large number of independent realisations of the individual-level model.
Insights about the emergence of various forms of population structure, in particular
space, are gained as these broad scale patterns are allowed to vary with the characteris-
tic scales that regulate the biological processes at the level of the individual organism
(Bolker and Pacala 1997; Law and Dieckmann 2000; Pacala and Levin 1997; Pascual
and Levin 1999; Wilson and Keeling 2000).

This approach, albeit quite illuminating, restricts severely statements that can be
made about how the various processes and scales involved interact to produce pattern,
since typically there is an absence of a model that summarizing the dynamics of
pattern at the larger scales. To circumvent this deficiency, several attempts to derive
population-level models from the IBM have been introduced in the literature, for both
discrete (Filipe and Gibson 1998, 2001; Filipe and Maule 2003; Hiebeler 2006; Iwasa
2000; Keeling 1999; Ovaskainen and Cornell 2006b) and continuous (Bolker and
Pacala 1997, 1999; Dieckmann and Law 2000; Law and Dieckmann 2000; Law et al.
2003; Murrell et al. 2004) representations of space. In the context of spatial pattern in
plant population dynamics (Bolker and Pacala 1997; Iwasa 2000; Law and Dieckmann
2000; Scanlon et al. 2007), these models typically take the form of hierarchies of equa-
tions for relevant families of summary spatial statistics where quantities in addition
to the mean density capture spatial correlations among pairs, triplets etc, that quantify
spatial pattern across a range of scales (Dale 1999; Stoyan et al. 1995). These sum-
mary statistics are closely related to the central, factorial or raw spatial moments of
the underlying spatial stochastic process. For pair configurations in plant population
models, common choices are the spatial auto-covariance or the second order product
density (Dale 1999; Daley and Vere-Jones 2003; Diggle 1983; Stoyan et al. 1995). A
discussion of these various approaches in the development of continuum approxima-
tions to spatio-temporal stochastic processes in ecology can be found in a compilation
edited by Dieckmann et al. Dieckmann et al. (2000).

The non-linearities involved in the density-dependent rules commonly employed
in the formulation of spatially explicit IBMs, inevitably result in infinite hierarchies
of evolution equations for the summary statistics, where the dynamics of the correla-
tions of order £ is tied to that of order k + 1. The hierarchy will grow even faster if
non-linearities of order higher than quadratic are involved in the dynamics. If one trun-
cates the hierarchy at some order, the evolution equation at the order of the truncation
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will depend on the unknown density of the next higher order. Analysis of these hierar-
chies can only proceed after truncation for some small order. This requires the solution
of two problems. The first, is identifying an appropriate order of truncation k. The sec-
ond is compensating for the resulting loss of information. The order of truncation in
existing models is chosen on the basis of computational complexity, and rarely goes
beyond two (Singer 2004; Bolker and Pacala 1997; Law and Dieckmann 2000). For
the second problem, the density of order k + 1 is replaced by a functional relationship
of all the densities of order up to &, usually called a ‘moment closure’. This functional
dependence of higher order quantities on lower order ones is constructed mainly on
heuristic reasoning (Bolker and Pacala 1997; Dieckmann and Law 2000; Murrell et al.
2004). For instance, when the order of truncation is two, assuming vanishing central
moments of order three leads to the so-called ‘power-1" closure (Bolker and Pacala
1997). The ‘power-2’ closure arises from an analogy with the pair approximation
used in discrete spatial models (Dieckmann and Law 2000; Iwasa 2000). Assuming
independence of the three pair correlations associated with each edge of a triplet for
all spatial scales leads to the ‘power-3’ or Kirkwood superposition approximation
(Dieckmann and Law 2000; Kirkwood and Boggs 1942). More elaborate ‘mixed’ clo-
sures involving combinations of these three basic forms (Filipe and Maule 2003), or
the introduction of weighting constants (Law et al. 2003; Murrell et al. 2004) have
also been proposed. Although closures for orders higher than three do exist, they have
restricted applicability due to the daunting computational problem that results (Singer
2004).

Despite some encouraging success that resulted in analytical solutions of the hierar-
chy at equilibrium for truncation at second order using the ‘power-1’ closure (Bolker
and Pacala 1997, 1999; Bolker et al. 2000), remarkably good fit of the numerical
solution of the hierarchy with individual-based simulations with so-called asymmetric
versions of ‘power-2’ closures (Law et al. 2003; Murrell et al. 2004), or the formal
derivation of power series expressions for the mean density (Ovaskainen and Cornell
2006a,b), most predict poorly the equilibrium densities even for situations of mild spa-
tial correlations. In the cases where they succeed over broader ranges of spatial corre-
lations (i.e. the asymmetric power-2), the closure depends on tuning a set of weighting
constants whose values can presently be found only by comparison with simulations
of the stochastic process, and its success is entirely model-specific (Ovaskainen and
Cornell 2006b). A significant obstacle in the widespread adoption of these contin-
uum approximations and their closures is that none is equipped with a criterion for
their domain of validity beyond comparisons with simulations of the individual-based
model, an exception being the work of Ovaskainen and Cornell (Ovaskainen and
Cornell 2006a,b) who provided error bounds, but require long range—albeit finite—
interactions to provide accurate results. Nevertheless, many of these heuristic closures
do provide a better approximation to the dynamics of a spatially structured popu-
lation than the logistic equation, and illuminate a variety of mechanisms by which
endogenously generated spatial pattern appears in plant populations.

Inspired by earlier results of Hillen (2004) and Singer (2004), who used the prin-
ciple of constrained maximum entropy (Khinchin 1957; Jaynes 1957; Shannon and
Weaver 1949) to respectively derive closures for velocity jump processes (Othmer
et al. 1988) and the BBGKY hierarchy arising in the statistical mechanics of fluids
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(Kirkwood and Boggs 1942), we develop a closure scheme based on constrained
entropy maximisation for the moment hierarchy developed by Law and Dieckmann
(2000), constrained to satisfy normalisation and the product densities up to order two.
In order to be able to relate the output of the entropy maximisation to the approx-
imating dynamical system, we also reframe the hierarchy of Law and Dieckmann
(2000) in terms of product densities rather than the spatial moments. These two kinds
of sets of summary statistics are very closely related, since the latter can be seen
as estimators of the former. The approach of Hillen (2004) consists of proving that
the L2-norm over the space of velocities of the transport equation of Othmer et al.
(1988) behaves like an entropy, with the velocity moments acting as constraints. Singer
(2004) treats the triplet product density as a probability density in order to construct
an entropy from the point of view of information theory (Jaynes 1957; Khinchin 1957,
Shannon and Weaver 1949), using consistency of the marginals as constraints. Our
approach differs from these two maximum entropy maximisation methods in a number
of ways. First, we use the information theoretical entropy functional for point processes
(Daley and Vere-Jones 2004; McFadden 1965), defined by the negative of the expected
log-likelihood. This definition includes all the orders that contribute spatial infor-
mation. Second, the product densities, which come from the moment hierarchy and
provide the constraints, are incorporated into the entropy functional by means of an
expansion that allows to express the likelihoods (or Janossy densities) in terms of
product densities and vice versa (Daley and Vere-Jones 1988, 2003). This allows to
establish a formal connection between the entropy functional and the moment hierar-
chy. Third, our closure is implicit, in the sense that the density of order three appears
on both sides of the closing relationship, thus allowing irreducible correlations of third
order to be explicitly included. Fourth, the method presented here complements the
Kirkwood (or power-3) closure with previously unknown correction terms that depend
on the area for which the three points in the triplet become independent. These correc-
tion terms are important where the three particles in the triplet configuration are close
to each other, but progressively vanish as these become separated, at which point the
maximum entropy closure reduces to the classical Kirkwood superposition approxi-
mation. In addition, the closure comes equipped with a criterion of validity stemming
from the normalisation constraint. This validity check comes from an ancillary inte-
gral equation that returns the area of the domain for which a third point in the triplet
becomes independent of the other two. This equation produces a single, non-trivial
root when the correlations predicted by the moment hierarchy are consistent with the
truncation assumptions, but fails to do so otherwise. The maximum entropy closure
relationship we found is given by

m3(&1, &) = | ma(§1) — IAOI/m3($1,Eﬁ) dé,

Ao

x | ma(§2) — IAOI/M3($2,$2 — &) d§
Ao
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x| maer — &) — |Ao|/m3(sz—s{,s{>ds{
Ao

exp (—mi|Aol)
X 3

(11 = 140l [y, &) ds] + 5 [y ma(&]. 83) ds di})

@)

where m1, my, m3 are the first, second and third order product densities (the densities
of the factorial moments of the underlying spatial point process), &1, and &, are vector
distances respectively linking the pairs of particles (x1, x2) and (x1, x3) forming a
triplet configuration. The set Ay is a circular domain of area |Ag| that establishes the
spatial scale within which triplet correlations are irreducible. The exponential term is
the avoidance function (i.e. the probability of observing no points in A) of an ancil-
lary Poisson point process on the window A with the same mean density m as the
correlated process that generates the hierarchy (Daley and Vere-Jones 1988, 2003).
For this specific window the avoidance function of the correlated process (in general
consisting of an infinite series in terms of product densities of all orders rather than
an exponential function) coincides with that of the ancillary Poisson point process,
which is exponential. This set is found as the domain of integration that solves the
normalisation condition

A 2
A’ 3 3

1
/mz@i)dsi—g / m3 (], &) d&| d&) = |Ac|my* —

Ac Acx Ac

where A¢ is a circular domain of radius € centered at the origin. The set Ag is found
by allowing the radius € to take positive real values until the equality in (3) holds.
This closure is applied if the three points in the triplet lie inside A, and outside this
region the classical Kirkwood closure applies. The largest correction by far is due to
the exponential term, since the integral correction terms in the numerator and denom-
inator tend to be of similar magnitude, in which case the maxent closure is simply
given by

maEr, £) ~ ng”’"“iﬁff 282280 epmil o), 4)

where the vector distances &1, & and &, — &; that connect the three points in the tripled
fall outside the domain Ay, the closure reduces to the classical Kirkwood superpo-
sition approximation or ‘power-3’ closure, which can be justified using probabilistic
independence arguments (Kirkwood and Boggs 1942; Singer 2004), given by

ma(&§1) ma(§2) ma(§2 — &1)
d . 5)

m3 (&1, 62) =

mi

The normalisation constraint (3) acts as a criterion of validity in the sense that it
will only find a single nontrivial domain Ag when the assumptions of the closure are
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met. A set of measure zero is always a solution for (3), thus failure to find a single
additional non-trivial solution can occur when:

1. The radius € grows without bound as one iterates (3) and (4) to find Ag. This
implies that higher order terms are required for an accurate representation of the
triplet density or that spatial correlations decay slowly.

2. There is a finite number of solutions to (3) which implies that there are multiple
scales of spatial pattern (i.e. segregated clusters).

We find that the correction terms in the maxent closure lead to substantial improve-
ments in the prediction of the equilibrium density for mildly aggregated patterns when
compared with heuristic closures. For highly clustered patterns that involve different
types of pattern over a range of scales, for instance a combination of aggregation at
short scales and segregation at intermediate ones, the method fails to find a non-trivial
root for the area A( involved in the correction terms, which indicates that the com-
bination of parameters that lead to this correlation regime is outside the domain of
validity. Somewhat surprisingly the Kirkwood closure behaves better than the maxent
closure 2 for segregated (or regular patterns). This occurs because in this regime short
range segregation at very short scales is compensated by clustering at intermediate
scales, and the ancillary equation for Ao detects only the aggregation scale, and not
the segregation one, which leads to over correction.

The paper is organized as follows. Section 2 discusses the locally regulated space—
time point process model originally developed by Law and Dieckmann (2000), and
includes a Gillespie-type simulation algorithm (Gillespie 1976; Renshaw 1991),
together with known definitions and estimators for the product densities and some
simulation results included for illustration purposes. Simulation results exploring a
broader range of parameters for this process can be found elsewhere (Bolker et al.
2000; Law et al. 2003; Murrell et al. 2004; Raghib Moreno 2006). Section 3 reframes
the spatial moment equations of Law et al. Law et al. (2003) in terms of product den-
sities. Section 4 discusses the moment closure for truncation at second order based on
constrained entropy maximisation. Section 5 discusses the numerical implementation
of the closure and compares its predictions against simulations of the point process
for mildly aggregated patterns. Finally, Sect. 6 presents a critique of the maximum
entropy method, and suggests further areas of development.

2 Spatio-temporal point process model

We consider a single population of identical individuals, each of which can occupy
arbitrary locations on a 2-dimensional torus A. The state of the population for each
fixed time ¢ is modeled as a realisation of a spatial point process, called the con-
figuration or point pattern (Daley and Vere-Jones 2003; Diggle 1983; Stoyan et al.
1995),

@ (A) = {x1, ..., xn, ] 6)
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where the x; are the spatial locations of all individuals found within A. Alternatively
we have

Ni(A) =#{x1,....xn,}

where N;(A) stands for the total population counts within A, and the cardinality oper-
ator # counts the number of elements in a set. Note that in (6) both the locations x; and
the total counts N, are random variables. The dynamics of the population is modeled
by introducing a time component, where the updating times are also random variables,
subject to local regulation (Cressie 1991; Daley and Vere-Jones 2003). Two versions
of this model have been introduced independently by Bolker and Pacala (1997) and
Dieckmann and Law (2000). Both share the key ingredients of non-uniform dispersal,
and a density-dependent mortality term that depends on the configuration surrounding
the focal individual which is the mechanism that introduces the local regulation. The
configuration (6) evolves in time by sampling from two exponential distributions of
waiting times that regulate the inter-event times between fecundity/dispersal and mor-
tality events at the individual level, where the latter is determined from both intrinsic
and density-dependent contributions.

2.1 Dispersal and fecundity

Per capita waiting times between births are assumed to be exponentially distributed
with constant parameter b, the birth (or fecundity) rate. If a birth occurs, the newborn
is displaced instantaneously from the location of its mother x; to a random new loca-
tion x;, sampled from the probability density, B(x; — x;; og) the dispersal kernel,
where op is a parameter that measures the characteristic dispersal length. The index i
of the mother is chosen uniformly from the list of indices J4 = {1,2,..., N;(A)} in
the configuration.

2.2 Mortality

The probability that a given individual i atlocation x; dies in the time interval (¢, t 4dt)
is also assumed to be exponentially distributed with parameter m(x;), the total per
capita mortality rate, given by

mi)=d+dy > W(x —xjl; ow), (7
JFIEIA

where d, is the intrinsic mortality rate, and dy is the density-dependent mortality
rate. In order to allow comparisons with the predictions of the logistic model (1) we
defined it as dy = (b — d)/K, where K is the non—spatial carrying capacity (the
expected value at equilibrium under complete spatial randomness). This second ‘mor-
tality clock’ is rescaled by a weighted average of the local configuration around the
focal individual, so that mortality due to competition is more likely to occur in locally
dense regions than in comparatively sparse ones. The contributions of neighbors to
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Table 1 Point process model

parameters Parameter Symbol Units

Fecundity b time ™!
Intrinsic mortality d time ™!
Density-dependent mortality dy time ™! indiv—!
Non-spatial carrying capacity K individuals
Dispersal scale op length
Competition scale ow length

Initial population size No individuals
Spatial arena A length2

the mortality of x; are assumed to decay monotonically with distance. This is modeled
by a normalized, radially symmetric weighting function W (|£|; ow), the mortality
kernel, that vanishes outside a finite interaction domain Dy, where o is a parameter
associated with the characteristic length scale of competitive interactions. This func-
tion is interpreted as an average effect that simplifies the details of the physiology of
mortality due to crowding. The parameters of the model are summarized in Table 1.

2.3 Simulation algorithm

A sample path for the space—time point process with rates described in Sects. 2.1 and
2.2 can be simulated by a variant of the Gillespie algorithm (Gillespie 1976; Renshaw
1991). The spatial arena can be identified with the unit square W = [0, 1] x [0, 1]
(after rescaling the parameters in the interaction kernels), with periodic boundary con-
ditions. The initial population consists of Ny individuals, and [0, Tmax] is the time
interval of interest.

1. Generate the configuration at time t = 0, @o = {(x1, y1);...; (Xny, YN,)}, from
two independent sets of Ny deviates from U (0, 1), Xo = {x1, ..., xn,} and Yy =
ooy

2. While the elapsed time 7 is less than Tmax do:

(a) Generate a birth waiting time 7} from the exponential density with parameter
b N,, where N; is the number of individuals that are alive at time ¢.

(b) Generate the set of mortality waiting times 7,, = {71, ..., Ty,} from a set
of N; exponential random variables, each with parameter m(x;) = d +
dy Z#i W(|x; — x;|), for each of the i =1, ... N; individuals in the con-
figuration at time ¢

(c) The time until the next event is given by 7, = min{7, U T, }.

i. A birth occurs if t,, = T}, in which case the location of the newborn
individual x;, is given by

xp=xp+§&

where the index of the parent p is drawn uniformly from the set of
indices I,(t) = (1, ..., N;) and the displacement & is drawn from the
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dispersal kernel B(&). The configuration is then updated to include the
newborn

Qi1 —> @ U {xp}.

ii. Ift, # T} then the next event is a death in which case the ith individual
in T, for which t; = 7, is removed from the configuration

Orvz, =~ @\ {xi}

(d) Update the elapsed time t — ¢ + T,.

2.4 Summary statistics

The specific configurations resulting from simulations of the algorithm in Sect. 2.3
are of limited interest. The fundamental question is understanding how spatial correla-
tions develop from an unstructured initial condition, and how the equilibrium density
departs from the logistic behavior when considering an ensemble of simulations for
various combinations ofthe spatial scales of competition and dispersal (Bolker and
Pacala 1997; Dieckmann and Law 2000; Law and Dieckmann 2000). This requires a
set of summary statistics capable of distinguishing various forms of spatial structure
for the same population size. This is illustrated in the upper three panels in Fig. 1)
that shows three types of point configurations with the same number of points. A use-
ful set for this task are the product densities (or densities of the factorial moments),
i.e. the densities of the expected configurations involving one, two or more distinct
points after removing self-configurations (Daley and Vere-Jones 2003; Diggle 1983;
Stoyan et al. 1995). For spatially stationary point processes, these are functions of
the inter-point distances between the points comprising an expected configuration of
a certain order k. The product densities are defined in terms of the population count
N;(B) observed through some window B at time ¢ defined as (Cressie 1991; Daley
and Vere-Jones 2003; Stoyan et al. 1995)

Ni(B) = D I (xi), ®)

Xi €@t
where Ip(x) is the indicator function of the set B defined by

1 ifx € B,
0 otherwise.

Ip(x) = [ ©))

The coarsest is the mean density (or intensity) which measures the expected number
of individuals per unit area at each time, defined as

o E{N(Se(x))
e = I s or "
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Fig. 1 The three upper panels show different types of point patterns sharing the same number of points
N(A) = 500, where the window A is the unit square. a Shows aggregation at short scales, but segregation
at intermediate ones. b Corresponds to complete spatial randomness and ¢ displays a segregated (or regu-
lar) pattern. In a, there is a tendency of points to occur near each other and form clusters, but the clusters
themselves tend to be segregated. It is difficult to distinguish b and ¢ visually but points tend to avoid each
other over short scales in ¢, whereas some clusters can be observed in b. The three lower panels show
estimates of the pair correlation function (15) for each of the point patterns above. The dashed lines in the
lower panels correspond to the 99% Monte Carlo envelopes

where S (x) is the open ball of radius € centered around x, and |A| is the area of the
window A. Since the mortality and fecundity rates do not depend specific locations
but on relative distances, and both the dispersal and competition kernels are symmetric
by definition, the spatial point process is spatially stationary and isotropic, in which
case the mean density is constant for each fixed time

my(x,t) =my(t).

A naive estimator for the mean density from a single realisation is (Diggle 1983;
Stoyan et al. 1995)

(11)

where N;(A) is as in (8). If an ensemble of €2 independent replicates of the process is
available, this estimate can be improved by averaging over the ensemble
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mi(t) = ——=. (12)

For a Poisson process, the mean density (10) is a sufficient statistic for the process.
More general cases require keeping track of spatial correlations. Higher order quan-
tities are required to distinguish between aggregated (or clustered), random and seg-
regated (or over-dispersed) point patterns with the same mean density (see Fig. 1).
For this purpose we need, at the very least, information about two-point correlations.
These are measured by the pair correlation function, defined as the ratio

ma(§, 1)

mi?(1)

¢ = (13)

which requires knowledge of the density of the expected number of pairs at spatial lag
&, measured by the second order product density m» (&, t).

o E(N(Se) [Ni(Se(0+£)) — 30(Sc 0+ £)) )
ma(§:8) = lim 5. O[S0+ 8)] (9

where S, (0) and S¢ (0 + &) are small windows of observation respectively centered at
the origin, and at distance & from the origin. The Dirac measure in the second factor
in the numerator removes the count at zero lag from the second window in order to
avoid self-configurations. In general, the definition (14) centers the count for each
specific location x, but given that in our case the process is stationary and isotropic
by construction, it can be translated to the origin without loss of generality, in which
case my depends only on the spatial lag &.

In the case of a spatially random configuration (a Poisson point process), the counts
on non-overlapping windows are independent of each other and thus the second order
density is simply the square of the mean density. Correlations of configurations involv-
ing k points are simply the kth powers of the mean density (Diggle 1983; Stoyan et al.
1995). The pair correlation function (13) is the lowest order product density that
allows detection of departures from complete spatial randomness. Thus, values of the
pair correlation function greater than one for some lag & indicate aggregation at that
scale, whereas values below one signal segregation. Estimation of the pair correlation
function requires an estimator of the squared density (Stoyan et al. 1995)

(N:(A) [N:i(A) = 1])a
A2 ’

my(1) =

together with a kernel density estimator for the second order product density (Scott
1992; Stoyan and Helga 1994),

—~(h) 1 kp(r — |lxi — x; )
m rt)=— 15
2 (1) anzi:; |Ax N Ay (15)

where r is the spatial lag, & is the bandwidth of the kernel density estimate kj, the
points x; belong to a configuration ¢;(A) sampled at time ¢, and ||x; — x;|| is the
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Euclidean distance between the points x; and x;. The denominator is an edge cor-
rector that rescales the count in the numerator by the area of the intersection of the
window of observation A,, shifted so that its centered around the point x;, with the
window A, : shifted around x; (Cressie 1991; Dale 1999; Stoyan et al. 1995)

Ay ={x+x :x €A}

If an ensemble of independent realisations is available, the single realisation estimator
(15) can be improved by means of an ensemble average

"0 = (" . 0)_.

As before, the angle brackets () represent an average of the estimates across a number
of independent sample paths 2. For the smoothing kernel k;, a common choice is the
Epanechnikov kernel (Stoyan et al. 1995)

) = = (1= 2 10
n(s) =7 2 ) L (),

where  is the indicator function (9). Although empirical methods for selection of the
bandwidth % are widely used, for instance the rule (Stoyan and Helga 1994)

h=c/\/mi(t), ce(0.1,0.2),

data-driven methods for optimal choices of 4 based on cross-validation have been
recently introduced (Guan 2007a,b). In general, the product density of order k is
defined as (Blaszczyszyn 1995)

[Me(S-0x) = 37 b, (5]
[Se (x)]

k
s, Xg, 1) =1im E , 16
my(xq Xk, 1) elf(} jli[l (16)

where Z{:—ll 8x; (Se(xj)) removes self j-tuples for j > i. In the case of spatial sta-
tionarity and isotropy, the specific locations xy, . .., xx can be replaced by the relative
distances &1, ..., &—1,

mi(&r, ... &1, 1),

and the kth correlation function becomes,

mk(glf .. ’Ek—l? t)
mf(t)

g1, ... &3 1) = a7

which is interpreted in a similar way to the pair correlation function, but considering
k-plets instead of pairs. The lower three panels in Fig. 1 show the application of second
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order summary statistics, particularly the pair correlation function (15) to three types
of spatial patterns. Figure 1d indicates at least two scales of pattern. There is short
scale aggregation where g>(r) exceeds one, but there is also intermediate scale seg-
regation (or regularity) that indicates that the clusters themselves tend to avoid each
other. This is measured in the region where g»(r) is below one. Figure le indicates
complete spatial randomness, since the pair correlation function is close to one for all
values of r. Figure 1¢ indicates segregation at short scales, since g»(r) falls between
0 and 1 for small values of r. In all the lower panels the dashed lines correspond to the
99% Montecarlo envelopes (Cressie 1991). The insets show that in Fig. le, the pair
correlation function is confined within the Montecarlo bounds, but in Fig. 1f falls out
of the envelopes at short scales.

2.5 Point process simulation results

For the convenience of the reader, simulation results for the point process are shown in
Fig. 2, with the same parameter values as in Law et al. (2003), but obtained from code
developed independently. The spatial arena is the unit square, and the kernels are both
radially symmetric Gaussians, but the mortality kernel is truncated (and renormalized)
at 3ow. The left panel shows estimates of the mean density versus time for various
values of the characteristic spatial scales of dispersal and mortality. The right panel
shows the pair correlation function at the end of the simulation for each of the four
spatial regimes for which the population persists. Both quantities were estimated from
an ensemble of 300 independent sample paths.

Case (a) shows results for a segregated (or regular) spatial pattern that arises
from very local competitive interactions, but long range scales of dispersal (cp =
0.12, oy = 0.02). In this situation local densities experienced by a focal indi-
vidual are lower in average than the random case (the pair correlation function is
below one), which results in equilibrium densities that equilibrate at higher values
than the non-spatial carrying capacity. This results from the ability of newborns to
escape locally crowded regions via the long range dispersal kernel. Case (b) in cor-
responds to dispersal and mortality kernels with large characteristic spatial scales
(op = 0.12, o = 0.12). In this situation there is enough mixing to destroy spa-
tial correlations—confirmed by its almost constant pair correlation function shown
in the right panel—and the mean density equilibrates at a value that is very close
to the non-spatial carrying capacity (K = 200). Case (c) is associated to a segre-
gated pattern of clusters, which is the converse situation of the segregated pattern
with very localized dispersal, and mild competition distributed over a longer range
(op = 0.02, ow = 0.12). The oscillations of the pair correlation function indicate
two scales of pattern. There is short scale aggregation, but the clusters themselves form
a segregated pattern with respect to each other, so the local crowding due to clustering
that should lead to high density-dependent mortality is compensated by the overdis-
persion. Overall, the local competitive neighborhood experienced by an individual in
this situation is more crowded than in a random distribution of points, which results in
a mean density that equilibrates at lower values than the non-spatial carrying capacity.
Case (d) corresponds to a mildly aggregated pattern (op = 0.04, oy = 0.04), where
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Fig. 2 The left panel shows estimates for the mean density 721 (f) from an ensemble of Q = 300 realisa-
tions, and various characteristic spatial scales of dispersal and density-dependent mortality that cover four
main types of spatial pattern. The dashed lines are the envelopes for one standard deviation. Kernel param-
eters are (a) op = 0.12, oy = 0.02, (b) op = 0.12, o = 0.12, (c) op = 0.02, oy = 0.12, (d) op =
0.04, oy = 0.04 and (e) op = 0.02, oy = 0.02. The other parameters, b = 0.4, d = 0.2, K = 200, are
fixed for all cases. The spatial arena is the unit square with periodic boundaries. The right panel shows the
corresponding estimates for the pair correlation function g; (r) at the end of the simulation averaged over
the ensemble of simulation runs

there is a single scale of aggregation. Even for small departures from complete spatial
randomness such as this one, the effect of the spatial pattern in the dynamics of the
mean density is substantial, since we see a reduction of about 30% in the equilib-
rium density in this case with respect to that of complete spatial randomness. Finally,
case (e) indicates an extreme case of aggregation, with very intense, local mortal-
ity and dispersal (cp = 0.02, oy = 0.02), where the population goes to extinction
(exponentially) after a short growth transient.

3 Moment equations and the closure problem

The central problem associated with the space—time point process described earlier in
Sect. 2.3 is to obtain a closed form expression for the finite dimensional distributions,

Py {Ay, ..., Ak, n1, .o s 1} (18)
that determine the probability of observing n1 points in the window A, n, points in the
window Aj, and so forth up to the nj points in Ay at time ¢, from the definition of the

space—time point process discussed in the previous section. Unfortunately, this seems
to be remarkably difficult, due to the presence of the non-linearity in the mortality rate
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in (7), and the localized nature of dispersal (Etheridge 2004). However, the question
of ecological interest is understanding the modifications that should be introduced to
the logistic equation (1) in order to account for the effects of spatial correlations in
the dynamics of the mean density. This can be accomplished by deriving evolution
equations for the product densities [which are the densities of the factorial moments
of (18)] from the transition rates of the point process discussed in the previous sec-
tion. Following a Master equation approach similar to that used by Bolker and Pacala
(1997) and Dieckmann and Law (2000), we derive the following hierarchy of product
density equations (see “Appendix”). The first member in this hierarchy corresponds
to the modified or ‘spatial’ logistic equation (Murray 1992),

d
Eml(t)=rm1(t)—dN/W(El)mz(éf,t)de- 19)
R2

where r = b —d,dy = (b — d)/Ks and W (&) is the mortality kernel in (7). K is
the spatial carrying capacity, or the number of individuals per unit area that can be
supported under random mixing

Equation (19) shows that the required modification of the logistic equation consists
of substituting the quadratic term with an average of the second order product density
my (&1, t) weighted by the mortality kernel W (&;). This term computes the effective
number of neighbors nq¢f that contribute to density-dependent mortality,

”eff(f)=/W(§1)mz($1’»t)d€{.
R2

Thus, the effect of mortality on the evolution of the mean density is tied to a weighted
average of the mortality kernel with the two-point spatial correlations in the process.
Equation (19) reduces to the logistic equation for the Poisson point process, in which
case my(£]) = m 2. In aggregated spatial patterns, m, exceeds m 2 for some domain.
If mortality is modeled by a kernel that penalizes close proximity over the same range
of scales where aggregation occurs, then the effect of mortality due to competition is
stronger in this case than that of the logistic equation, in which case the density equil-
ibrates below K [Fig. 2, cases (c)—(e)]. The opposite situation occurs in segregated
patterns, where m, is less than m 2 at the scales where the mortality kernel penalizes
aggregation. As a result, the effect of competition on mortality is milder than in a
random spatial pattern, in which case the mean density equilibrates at values greater
than K [Fig. 2, case (a)]. Equation (19) depends on the unknown second order density
my. A similar procedure to that used in the derivation of (19) one obtains the evolution
equation for this quantity
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Fig. 3 Schematic representation & — &
of a spatially stationary triplet
configuration. The pair densities

are evaluated at each inter-event Tt~ @ T3
(vectorial) distances &1, & and
§1—&
€2
[
Ty

1 d
3 Emz(él,t) = b/ B(&)ma(§1 — &, 1)dE + b BE)mi (1) —dma(&r, 1)
R2

—dNW(El)fnz(El,t)—dN/W(Sz)m3($1,%‘z,t)d$2- (20)
R2

Here the role of the dispersal and competition kernels as the main pattern drivers
can be clearly discerned (Bolker and Pacala 1997; Bolker et al. 2000; Dieckmann
and Law 2000; Law et al. 2003). The first two terms in (20), related to fecundity and
dispersal, are

b/B(Ez)mz(El —&50)ds + b B(E) mi(1).

RZ

Both are nonnegative by definition for all values of &1 and ¢. The rate of change of m,
increases due to their combined effect, and thus they drive aggregation at the scales
controlled by the characteristic spatial scale of the dispersal kernel. The convolution
measures the creation of pairs along & due to dispersal of offspring events generated
by the third member of the triplet along the & — &; edge (Fig. 3). The second term
measures the creation of pairs along the £; edge due to the dispersal events of offspring
generated by the individual at the origin of &;. The remaining terms, due to mortality
are,

—dmy(§1, 1) —dyW(E) ma(&1, 1) —dy / W (&) m3(&1, 2: 1) dés.
R2

All the three terms are negative, and thus contribute to the destruction of pairs along
the &1 edge, leading to segregated patterns. The first term measures intrinsic mortality
of both members of the pair and the remaining ones are related to density-dependent
mortality. The second measures mortality of the pairs due to competition at the scales
controlled by the mortality kernel. The last term measures the destruction of the pair
along the &1 edge due to the effect of competition with the additional member of the
triplet located along the &, edge.
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These terms for both dispersal and mortality are initially calculated by fixing the
count at the origin of £; and letting the count at the end of & vary according to the
fecundity, dispersal and mortality terms. Symmetry considerations require consider-
ation of the reverse situation, where the count at the end of &) is fixed, and the origin
is allowed to vary. Since these are symmetric, these additional terms lead to the factor
of 1/2 on the left hand side of the equation for the second order product density.

4 Moment closure by Shannon entropy maximisation

The product density equations (19) and (20) cannot be solved in that form because the
evolution equation for the second order density has a mortality term that depends on a
weighted average of the third order one. Although it is possible to derive an additional
evolution equation for this quantity, it will involve an unknown fourth order term,
leading to a system that is not closed. In general, the evolution equation for the density
of order k will depend on the density of order k + 1. This gives rise to two problems,
known together as ‘a moment closure’ (Bolker and Pacala 1997; Law and Dieckmann
2000). The first is choosing an appropriate order of truncation &, and the second is
finding an expression for the product density of order k + 1 in terms of the densities
of orders up to k (or k + 1 in the case of an implicit closure).

Ideally, the order of the truncation should be based on an understanding of the
convergence properties of the hierarchy in order to establish error bounds. In practice,
the order of the truncation is determined by the computational cost of the numerical
solution, which is determined by the size of the arrays that can be stored and operated
on efficiently. Explicit representation of third order terms already requires least 3.2 GB
of memory using double precision and a relatively coarse discretisation of 100 grid
points per dimension. If memory occupies 32 bits per grid point (as is the case in
MATLAB), and the two linearly independent vectors &; and &; in the triplet density
ms3 are 2—d, each requires a 100 x 100 array to store it. This situation pretty much
constrains to three the highest order density that can be represented explicitly.

From an applied perspective, the first and second order terms are of greatest interest,
since these respectively encode the dynamics of the average density and the spatial
covariance. The latter can be interpreted biologically as the average environment expe-
rienced by an individual as a function of spatial scale (Bolker and Pacala 1997, 1999;
Bolker et al. 2000; Law and Dieckmann 2000; Law et al. 2003). The shape of the sec-
ond order correlation function can be used to distinguish between aggregated, random
and segregated spatial patterns sharing the same average density (see Sect. 2.4).

Closure problems are pervasive in the statistical mechanics of fluids where ther-
modynamic quantities are derived from the statistical properties of the particle dis-
tributions (Grouba et al. 2004; Kirkwood and Boggs 1942; Meeron 1957; Salpeter
1958; Sese 2005; Singer 2004). Here our intent is somewhat similar in the sense that
a detailed individual-based model is used to inform a mean-field model that does
not neglect the role of spatial fluctuations in density due to endogenously generated
spatial structure (Bolker and Pacala 1997, 1999; Law et al. 2003). Within spatial ecol-
ogy, moment closures have been proposed with varying degrees of success, using a
suite of methods, among which we have:
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— Heuristic reasoning, where consistency arguments are used to construct closing
relationships (Bolker and Pacala 1997; Dieckmann and Law 2000; Law et al. 2003;
Murrell et al. 2004).

— Distributional properties, where closures are based on assuming a functional form
for the distribution of the process (Krishnarajah et al. 2005).

— Variational methods, where it is assumed that the unknown distribution optimizes
some meaningful functional, usually an entropy-like object (Hillen 2004; Singer
2004)

In order to make the paper reasonably self-contained, we shall briefly review closures
based on heuristic reasoning, which have dominated work in this problem. Additional
information can be found in a recent review by Murrell et al. (2004).

4.1 Heuristic methods of moment closure

Heuristic closures are usually based on self-consistency arguments. For instance, they
should be strictly positive and invariant under permutations of the arguments (Cressie
1991; Daley and Vere-Jones 2003; Diggle 1983). Also, if correlations are assumed
to decay monotonically with distance, then there is a distance d beyond which the
particles become uncorrelated and thus higher order densities become simple powers
of the mean density. Although a large number of functional forms can be chosen in
order to satisfy these minimum requirements, the simplest ones usually involve addi-
tive combinations of various powers of the second and first moments. For instance,
if one further assumes that central third moments vanish, the resulting expansion in
terms of product densities, leads to the power-1 closure, dubbed that way because the
highest occurring power of the second order density is one (Bolker and Pacala 1997,
1999; Bolker et al. 2000; Dieckmann and Law 2000),

m3(&1, &) = my ma (&) +myma(&) +myma(€) — &) —2my°. 21

This closure has the attractive property of preserving the linearity of the moment hier-
archy, which allows the derivation of analytical results at equilibrium (Bolker and
Pacala 1997, 1999). It is quite successful at low densities (m1* ~ 20) and 1-dimen-
sional systems. However, at intermediate to high densities (m1 ~> 100) in aggregated
patterns, this closure predicts extinction in situations where the point process persists
(see dashed-dotted line in Fig. 4a), even for mild correlation regimes. It is nonetheless
a useful benchmark result.

The power-2 closure is obtained as a continuous space analogue to the pair approx-
imation used in discrete spatial systems (Satd and Iwasa 2000),

ma(§1) ma(&2) n ma(§1) ma(§1 — &2) n ma(§1 — &) ma(52)

mi mi mi

m3(&1, &)= 2m;

(22)

this closure does predict a persisting population. However, it underestimates quite
strongly the second order density, which leads to overshooting the mean density
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Fig.4 Closure comparison. a Shows the mean density 721 (¢) of the point process versus time averaged over
300 sample paths (rugged black line). Parameters are og = 0.02, oy = 0.12,b =0.4,d = 0.2, K = 200
leading to a segregated pattern of clusters. The thick dotted black line shows the predicted mean density
from the moment equations with the power-3 or Kirkwood closure, the dashed black line corresponds to the
power-2 closure and the dashed-dotted line corresponds to the power-1 closure. The dotted grey lines are the
95 % confidence intervals for the simulation mean value. b Shows an estimate the pair correlation function
attime ¢t = 300 (thick continuous line) averaged over 300 independent sample paths, indicating aggregation
at short scales, but segregation at intermediate ones. The dotted thick line corresponds to the pair correlation
function predicted by the solution of the moment hierarchy with the power-3 closure, and the dashed line
corresponds to the power-2. The 95% confidence intervals for the estimate of the pair correlation function

fall within the line

(see Fig. 4b, dashed black line). It is non-linear and thus solutions have to be obtained
numerically. There are asymmetric versions of this closure that consist of rescaling
each additive term in (22) with a set of weighting constants (Law et al. 2003; Mur-
rell et al. 2004). Law and Dieckmann (2000) showed that a particular combination of
weighting constants provides a very good fit to simulations. However, this result is dif-
ficult to generalize as there is no theory informing how these constants are chosen, they
are likely to depend on the details of the model (Murrell et al. 2004; Ovaskainen and
Cornell 2006a), and can only be found by comparisons with simulations of the IBM.

Finally, the power-3 or Kirkwood closure (24) has a distinguished tradition in the
statistical mechanics of fluids (Kirkwood and Boggs 1942). Recently, Singer (2004)
showed that this closure can be obtained in the hydrodynamic limit after invoking a
maximum entropy principle to truncate the BBGKY hierarchy. Earlier motivations
for this closure were based on the assumption that each of the pair correlation func-
tions associated with the three edges of the triplet configuration (see Fig. 3) occurs
independently of each other at all spatial scales,

83(x1, x2, x3) = g2(x1, x2) g2(x1, x3) g2(x2, X3). (23)

Substituting the definition of the kth correlation function in terms of the product
densities (17) into (23) for k = 3 yields a version of the Kirkwood closure (23) that
can be used to close the equation at second order (20)
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ma(&1) ma(&2) ma(§1 — &2)

3

m3(&1, &) = (24)

mi

This closure also underestimates the second order density, but less dramatically so
than the power-2 closure, which results in a slightly better prediction of the mean
density (see Fig. 4b). Despite its appealing simplicity, the power-3 closure shares the
same limitations of the other heuristic closures, e.g. there is no criterion of valid-
ity, and it provides poor fit to the equilibrium density even for mildly aggregated
patterns (Dieckmann and Law 2000; Raghib Moreno 2006). Heuristic closures have
reasonably good performance in random and segregated spatial configurations, but
are significantly more limited in aggregated regimes, with the sole exception of the
asymmetric power-2. Their limitation arises from the assumption that there are no
irreducible triplet correlations at any scale, in the sense that after fixing a pair that
forms an edge, for instance the points x; and x» (see Fig. 3), the two other edges of
the triplet formed with the third point x3 occur independently of how the first edge
is chosen. This can only be true when the three points are sufficiently far apart, but
irreducible third order correlations are likely to occur when the three points are close
together in aggregated patterns (Fig. 6).

4.2 The Maxent closure

The concept of entropy from an information theoretic point of view, as opposed to the
thermodynamical definition of entropy, is tightly related to the uncertainty (or infor-
mation content) associated with an outcome of a random variable. It can be shown
(Khinchin 1957; Shannon and Weaver 1949) that the information content of a partic-
ular outcome (x” 4 dx’) of random variable x with probability density p(x), is given
by log[p(x")dx']. The entropy functional is constructed by taking the expected value
of the information content over all the possible outcomes of x (Jaynes 1957; Khinchin
1957; Shannon and Weaver 1949). To illustrate what this means, consider the uniform
distribution on an interval [a, b] € RT. It is not surprising that this distribution maxi-
mizes the entropy functional if no constraints are introduced, since all the values in its
domain of definition have the same probability weight, thus the uncertainty about a
specific outcome of a random variable with this distribution is maximal. The opposite
situation occurs for the Dirac delta distribution which is centered on one single value,
say x’. In this situation, a single value occurs with probability one, and all the others
have probability zero, therefore the uncertainty about an outcome of this (pathological)
random variable is null.

The principle of maximum entropy is a powerful method that allows the derivation
of probability distributions when only but a few average properties are all that is known
about a systems. Maximizing the entropy functional subject to the constraints provided
by these averages, leads to probability distributions that have the least bias with respect
to the known information (Jaynes 1957, 1982; Shannon and Weaver 1949; Khinchin
1957). For instance, maximisation of the entropy constrained to satisfy normalisation
and a given mean value leads to the exponential density. Likewise, maximizing the
entropy constrained to satisfy normalisation for a given mean and variance leads to
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the Gaussian density. For point processes (Daley and Vere-Jones 2004; McFadden
1965) the entropy is defined with respect to some spatial window of observation A,
and has two sources of uncertainty, the first is related to the counts within A, and the
second is related to the locations of the n points inside this window. Truncating the
hierarchy at order two assumes that only configurations involving up to three points
possess irreducible spatial information. We carry that assumption forward onto the
locational component of the full point process entropy functional, which we then max-
imise subject to the constraints of normalisation and product densities up to order two,
which are given by the truncated hierarchy. We exploit formal relationships between
the product densities and the probabilistic objects used to construct the entropy func-
tional of a point process—the Janossy densities—that allow the incorporation of the
product density constraints onto the entropy functional, and then translate the results
of the maximisation procedure in terms of product densities in order to obtain a closure
expression.

Our result differs from other maxent closures, like those of Singer (2004) and Hillen
(2004), in a number of ways. First, it is implicit, in the sense that the third order density
appears in both sides of the closing expression for truncation at second order. We do
so because the Kirkwood closure arises naturally from independence considerations
(Singer 2004) for spatial scales larger than the minimum distance for which the pair
correlation function is not constant, but it is not valid within the domain of irreducible
triplet correlations, i.e. the probability of observing a third point in the triplet depends
on how the first two are chosen. If improvements to the Kirkwood closure are to be
made, irreducible triplet correlations must appear in the closure. In the maxent method
we propose irreducible third order correlations are generated by iteration of the clo-
sure relationship, while the first and second order densities, generated by the hierarchy,
are held fixed. Second, we assume that these irreducible third order correlations are
confined to a finite window, or spatial scale Ag, which is found by comparison of the
normalisation condition for the correlated process with that of a Poisson process of
the same mean density. Third, in contrast to other existing approaches, we used all
the moments up to the order of the truncation (including the zeroth) to constrain the
entropy functional. This is critically important because the zeroth moment is associ-
ated with the normalisation constraint, which allows the determination of the domain
of triplet correlations.

The variational problem is formulated in terms of the locational entropy functional
of the marginal spatial point process. In order to introduce the product densities as con-
straints, we exploit known expansions of these in terms of the Janossy densities (Daley
and Vere-Jones 2003; Janossy 1950) that constitute the probabilistic objects (the like-
lihoods) required to construct the entropy functional. Whereas Singer (2004) used the
kth order product density to constrain an entropy functional, and Hillen (2004), used
an L%-norm of the moment hierarchy for this purpose, we used instead the classical
definition of the entropy functional for a point process, based on the full battery of
Janossy densities (Daley and Vere-Jones 2004; McFadden 1965).

The implicit, order two maxent closure (2) resembles the structure of the power-3
or Kirkwood closure (24), but is complemented by a number of correction terms that
depend on averages of the product densities over the spatial scale at which triplets
are irreducible. Outside this domain, these correction terms vanish and the closure
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becomes identical to the power-3. There are two scales of relevance in the closure,
one where irreducible triplet correlations are important, and another one where these
can be expressed in terms of second and first orders only.

For the sake of completeness, we first discuss known results related to the entropy
of spatial point processes in Sect. 4.3, and the key expansions of Janossy densities in
terms of product densities. This is followed by the derivation of the implicit maxent
closure for truncation at order two (41).

4.3 The entropy of a point process

The Shannon (or information) entropy H[Z?] of a stochastic process &, interpreted
as the average uncertainty (or information content) associated with a given outcome
of £, is defined as minus the expected value of the log-likelihood L (Daley and Vere-
Jones 2003, 2004; Jaynes 1957, 1982; Khinchin 1957; Shannon and Weaver 1949),

H[2] = —E {log(L)} . 25)

The specialisation of the entropy (25) to point processes requires a special form of the
likelihood, given that in a realisation of a point process of the form {x;, ..., x,} ina
window A there are two sources of uncertainty. The first comes from uncertainty about
the number of points n within A (the counts), which is controlled by an integer-valued
probability distribution p, = Pr{N(A) = n}. Conditionally on the value of n, the
other contribution comes from the uncertainty associated with the locations of the n
points, which is given by a symmetric (in the sense of invariance under permutations
of the indices) probability density s, (x1, ..., x,|A) on A™ _Thus, the likelihood of a
spatial point process is the probability of finding #n points within A, each in one of the
infinitesimal locations dxi, . .., dx, and nowhere else within A. This coincides with
the definition of the local Janossy density (Daley and Vere-Jones 2003, 2004; Janossy
1950)

La(xt, ..., xn) = pusSu(X1, ..., Xp|A) = ju(x1, ..., xp]A). (26)

Separating the contributions due to the counts and those due to spatial information,
we can represent the entropy of a point process .44 on a window A by Daley and
Vere-Jones (2003, 2004)

o0 o0
HIA== prlogrip) =3 pr/sr(xl, . x) loglsy(rn. - x)ldx . dxy.

r=0 r=1 A

27)

where the integrals calculate the contribution due to the locations, an the sums that of
the counts. If we fix the expected number of points in A, u = mj|A| = E[N(A)],
it can be shown that the first sum in (27) is maximized by the Poisson distribution
(Daley and Vere-Jones 2004; Khinchin 1957; McFadden 1965),
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r

W
pr= "7 exp(=p).
r!
Conditional on the counts r, the second sum is maximized by the uniform density on
A0

1
oA

Sr

Thus, the point process of maximum entropy is the homogeneous Poisson point process
with first order density m (Daley and Vere-Jones 2008, 2004). For closure purposes
we use the definition (25) written in terms of the local Janossy densities

o
H[A)] = —Z% / Jn(xt, ..o, xpA) logljn(x1, ... x| A) ] dxy - -dxy,,  (28)

n=0" <
where division by n! ensures normalisation with respect to the n! permutations of the
n indices. Our method of closure consists of maximizing (28) constrained to satisfy
the product densities up to the order of truncation. These can only be meaningfully
incorporated as constraints if they can be expressed in terms of integrals over A of the
Janossy densities. We do this by using the expansion (Daley and Vere-Jones 2003),

00
1 .
mn(xla-n’xn)zza/]q—i—n(xly--~»xq’yla-~-7yn)dyl--~dy;1v (29)
q=0

A@
where the inverse relationship,

o (—1?
jn(xla-~-7xn|A):ZT/mn+q(xl»~--’xn,yla---,)’q)d)’l--~dyqa

q=0 A@)

(30)

can be used to translate the results of the constrained optimisation procedure in terms
of product densities in order to yield a closure for the product density hierarchy.

4.4 Maximum entropy closure at order k = 2
In the case of the non-homogeneous Poisson point process, which maximizes the
entropy functional (28), all the points can in principle depend on the specific loca-

tions, but these are uncorrelated. For this special case the expansion of the likelihoods
in terms of the product densities (30) takes the simplified form,

n © 1y 4
juG 1) = [ S S [T moniar. 31)
p=1 q=0 q: 1=0
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radius r

Fig. 5 Estimated radial pair correlation functions at equilibrium §3‘ (r) from simulations of the point pro-
cess in Sect.2.3 with dispersal and mortality kernels given by symmetric bivariate Gaussians. Parameters
(op = 0.04, o = 0.04) lead to a mildly aggregated pattern (case b dashed-dotted line) and a segregated
pattern of clusters [case a continuous line, (o = 0.02, o = 0.12)]. In b we note that correlations decay
quickly and become constant at a spatial lag r > 0.2, whereas in a there are distinct patterns in at least two
spatial scales. Aggregation in the smaller ones, and segregation at intermediate ones. Case (c) (dotted line)
corresponds to a Poisson point process

If the process is a spatially stationary and homogeneous Poisson point process, then
all the product densities become simple powers of the mean density (Diggle 1983;
Daley and Vere-Jones 2003), which further simplifies (30) to,

Jn(xts .o xn [A) =my" exp(=my|A]). (32)

From (30) we have that the probability of observing n points within a window A is

1 .
Pr[N(A)=n]=ﬁ/Jn(X1,-..,xnIA)dX1~-~dxn, (33)
o)
which after substituting (32) into (33) leads to the Poisson distribution
_ (m1|AD" exp(—m |A])

Pr[N(A) = n] p

We assume somewhat crudely that the Janossy expansions of the point process
associated with the moment hierarchy have an intermediate structure between the two
extreme cases (30) where the spatial configurations of all orders are irreducible, and
the Poisson point process (32) where all the locations occur independently. This can
be justified from the truncation assumption, since truncating the hierarchy at order two
implicitly assumes that terms of order equal or higher than four do not contribute to
the formation of second and third order spatial correlations. Also we see in estimates
of the pair correlation functions for the point process discussed in Sect.2, shown in
Fig.5 that there is a region in the parameters for which the spatial correlations of sec-
ond order decay quickly. Case (a) corresponds to segregated clusters and thus the pair
correlation oscillates around one. There are two different scales with pattern there,
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the first is associated with the clusters (the region where go > 1) and another with
the separation between the clusters themselves (g» < 1). Case (b) on the other hand
corresponds to a simply aggregated pattern. In this latter case we see clearly that there
is a spatial scale for which the pair correlation function becomes constant and identical
to one, therefore

ma(r) =m?, > rg

for some spatial scale . This assumption is tantamount to requiring that the Janossy
expansions of the process to have the form,

k+1—n (_1)(1
Jn(X1, ..., xp]A) = Z ' /mn+q(x1,...,xn,y1,...,yq)dyl...dyq
q=0 v A
: N G
+[[mien D] —,/Hrm(yr)dyr, (34)
p=1 g>k+1-n q: Al =1

where the first term corresponds to the terms that make contributions due to spatial
correlations, and the second term is the (non-homogeneous) Poisson remainder. The
closure assumption implies that only the Janossy densities of order up to k + 1 make
contributions to the locational entropy, in which case the entropy functional (28)
becomes

3
(3 —n)!
HllAa) = =DM loglh()] =D 3.
n=11<ij<-<iy <3 )
X / Jnips o xi, |A) logljn (xiy s - oo X3, [A) ] iy - - - d i, (35)

A

where Jo(A) is the avoidance probability in A. The first constraint added to (36) is
that of normalisation,

1
1=ZQE/j”(xl""’xn)dxl"'dxn,
n

= A

which after simplification with the assumption (34) can be added to the entropy
functional

3
G- [ .
+ho- | oA +D D] 1 /]q(x,-l,...,xiq |A) dxi, ... dx;,

3!
g=11<ij<-<iy<3

A@
o n 0 (_1)1 l
+ 2 [[men >0 = /ml(yr)dyr—l
n>3i=1 [>3—n r:lA(r)
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where A is a (constant) Lagrange multiplier. The second constraint is that of the first
order product density m1(x;)

2
s %/m(xi.) >y (3;")!

1<i;<3 A q=01<i;<--<iy<3

x/j1+q(xi],...,x,-n,y,-l,...,yiq [A)dyi, ...dyi, —mi(xi) | dxi,. (36)
A@)

where A (x;,) is a vector of functional Lagrange multipliers, each associated with
the permutations in the locations xp, x and x3 comprising the triplet. Finally, the
constraint for the second order product density m2 (x;,, x;,) is

. ! B—q)!
" Z a/[n(xil,xiz) Z Z 3

1<i1<ip<3 AQ q=01<ij<--<iz<3
X /j2+q(x,-1, oy Xiys Vigs s Vig [A)dy, .. .dy,'q —ma(Xiy, Xip) | dxiy dxi,.
A@

(37

Likewise, the A>(x;,, x;,) are the Lagrange multipliers associated with each of the per-
mutations of the pairs in the triplet. The Euler—Lagrange equations of the functional
(35)—(37) are

SH®
= —1 —log[Jo(A)] + Ag = 0,
570 (A) og[Jo(A)] + Ag
on (1+1og ji[( )])+1A+1A( )=0, 1<ij<3
= —= (0] Xi =5 A Xip) =Y, =h=
8j1(x,~1) 3 g J1 i 3 0 3 1 (X, 1
SH (14 log [ ja( )])+1A +1A( )
—_— = o X, Xi - = X
82 x) 6 LM AR g R0 3 At
1
+8A2(Xi1,xi2) =0, 1<i1<ip<3 (38)
SH® 1 . 1 1
—— = —— (1 +log[j3(x1, x2, x3)]) + Ao + = [A1(x1) + A1(x2)
8j3(x1, X2, X3) 6 6 2

1
+ A(x3)] + 3 [Aa(x1, x2) + Az (x2, x3) + A2(x1,x3)] = 0.

It can be seen by inspection that each of the second variations is inversely proportional
to minus the Janossy density of order k. Since these are all probability densities, each
of the second variations is negative and thus the extrema given in the first variation (39)

@ Springer



Moment closure by entropy maximisation 633

are maxima. Solving the Euler-Lagrange equations (39) for the Lagrange multipliers
yields

Ao = 1 + log[Jo(A)]

Ar(x1) =log JJIO(()X;
A o [ ]
1(x2) = log To(A)
[Jj1(x3) ]
A1(x3) =log
Jo(A)
- . _ (39
Jo(A) j s
As(x1,x3) = log —0( jzjér)l )
i
[ Jo(A) jo(x1, x3) |
Ao (x2, x3) = log %
i
[ Jo(A) o (x2, x3) |
As(x1,x3) = log —0( jzj(zjfx)z x3) .
1 A3

Substituting the Lagrange multipliers in (39) into the equation for the first variation
with respect to j3 in (39) yields an expression that relates the Janossy density of third
order to the lower order ones under the assumption of maximum entropy constrained
by the moments, namely

. J2(x1, x2]A) ja(x2, x3|A) jo(x1, x3]A)
J3(x1, x2, x3|A) = - - - Jo(A), (40)
J1(x1[A) j1(x2]A) j1(x3]A)

Equation (40) is formally similar to the Kirkwood closure. However, there are a num-
ber of important differences. First, it varies with the choice of the window A, since it
depends on the local likelihoods (see Fig. 6) rather than the product densities used in
the Kirkwood closure, which are global properties that do not depend on the window
of observation. This domain A depends on the spatial scale for which the third particle
in the triplet becomes independent of the other two. Second, the closure is weighted
by the avoidance probability Jo(A). This term is conceptually similar to the exponen-
tial weight suggested by Meeron (1957) and Salpeter (1958), but now arises from a
maximum entropy consideration. The relationship (40) can be used as a closure of
the moment hierarchy after using the expansions (30) and (34) that allow the Janossy
densities to be expressed in terms of product densities.

Since the underlying point process is spatially stationary by construction, then the
mean density is constant, and the densities of higher orders depend on the relative
rather than absolute distances between points. After rescaling the product densities in
the expansion by the area of the window A (the product densities that come from the
hierarchy are defined in terms of the much larger spatial window used to observe the
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.1‘1

Fig. 6 The domain A represents the region beyond which a third particle becomes independent of the other
two. Shifting xé to x3, makes that third point independent of the other two. This corresponds to the spatial
scale for which the assumptions leading to the Kirkwood closure are valid

full process) we have that the maxent closure is given by if |£1] < rg and |£| < ro
and [§ — &1 < ro

myE &) = | ma() — |Ao|/m3(a,sﬁ> d;

Ao

« | maen) — |Ao|/m3<sz,sz ) de]
Ao

« | maer — 1) — |Ao|/m3(sz—s{,s{>ds{
Ao

o Jo(Ao) I

[mi=140l [y, ma(&)) ds{+255 [0 ms (&}, &) de] ds; |

else

ma(&1) ma(§2) ma(§2 — &1)

3

m3(&1, &) =

(42)
mi
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where the circular domain A of radius rg is determined from the normalisation con-
straint (described below). The avoidance function Jy(Ap) is given by

| Aol | Aol

Jo(Ap) =1 —mq]Ag| + - mp(&1)d&) — ra m3 (&1, &2)d&1dé

Ao A(()Z)

o0 _1 n
+> EV ol 3)

n!
n=4
and the summation term is equal to
[e¢)

—1)"
> ED A0l = exp (<1l Aol — 1+ my 4| —

n!
n=4

(m1]Ag))? N (m1]Ao|)*
2 6 ’

After simplifying we have

A A2
Jo(Ao) = exp (=m1|Aol) + % o (EDdE, — M
Ag
A n?
_'_60' m3 (&1, £2)dE1dEr + M | .
AP

In order to obtain the set Ag in the correction terms of the closure, we first need to
identify the spatial scale ro beyond which two points become independent. This is
equivalent to finding the smallest region Ag for which the correlated point process
has the same statistics of a Poisson process of the same mean density. This domain
is obtained by comparing the avoidance functions for each case, which must coincide
for this specific set. Since the avoidance probability for a homogeneous Poisson point
process of intensity m for some reference window B is equal (Daley and Vere-Jones
2003) to

J§(B) =exp (—m1|B)), (45)
Thus the set Ap must satisfy
Jo(Ao) = Jy(Ao). (46)
Substituting the RHS of (45) and (44) into (46) leads to the integral equation

milA

1
/ ma(E1)dE —mil A, - 5 / m3(Er, E2)dE dEs + 0. (7

Ay A£2)
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where A, = B(0, r) is the ball of radius » centered at the origin. Since all the prod-
uct densities are given by the hierarchy and the closure relationship (41), the only
unknown in (47) is the domain A that satisfies the equality (47). This can be found by
evaluating the RHS of (47) for an increasing family of domains A,. The values of for
r that satisfy the equality are the roots of interest. There are four possible scenarios
for these roots:

1. The trivial root, » = 0 is the only solution. This is always a solution by simple

inspection.
2. A single non-trivial root r*.
3. A finite number of n non trivial roots r{, r5, ..., 1.

4. An infinite number of roots.

A criterion of validity for the closure scheme can be built on the basis of the number
of roots. Case 1 indicates that there is not a scale within the observed range of r for
which correlations decay as powers of the mean density, and thus truncation should be
tried at a higher order. Case 2 indicates that there is a single Poisson domain A and
thus the closure assumptions are consistent with the predicted values of the hierarchy.
Case 3 indicates that there are several scales of spatial pattern, due to correlations that
oscillate as they decay, i.e. segregated clusters (see Fig.5). In this situation each scale
of pattern should be treated separately. An infinite number of roots (case 4) indicates
that the process is indistinguishable from a Poisson process at all scales.

Although the closure expression seems complicated, we note that the integral cor-
rection terms in the numerator and denominator are of similar magnitude, and relatively
small in comparison with the correction introduced by avoidance probability, which
by far dominates the closure. In this situation we have a much simpler approximation
to the exact closure, given by

(&1, &) ~ 1260 '"Z(iﬁ 212062 75D exp (Aol (48)

5 Numerical implementation

The numerical solution of the hierarchy with the maxent closure requires two separate
modules of code: one for the integration of the hierarchy itself, and the other for the
iterative procedure that computes the third order density. The first, which we call the
‘outer’ code, consists of a standard numerical integration scheme that predicts the first
and second order product densities at a time (¢ + &) using the first, second and third
order ones at time ¢ as input, where % is a small time step. The second module, or
‘inner code’, computes the third order density at time (¢ 4+ /) from the maxent closure.
The inner code starts by computing an initial value for the area of normalisation A(()”[d)
using the values of the first and second order densities at time (¢t + /), and the third
order density at time ¢ as an initial trial. This first value A(()ald) is then substituted in
the maxent closure expression (41) to produce an updated value for the third order
density. The area of normalisation is recalculated with the updated third order density

to produce a new value Ag’ew); if the relative difference between the old and the new
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radii associated with each normalisation area falls below some pre—specified tolerance,
then the iteration stops and the final value of the third order density at time (¢ + &) is
the one being used to calculate the last iteration of area of normalisation. If not, the
iterations continue until the tolerance is achieved. We now propose an algorithm for
the implementation the maxent closure, and subsequently show its performance for a
broad range of parameters of the spatial scales. Our numerical results are well behaved
and convergence of the iteration scheme occurs rapidly for a sufficiently small time
step (h = 0.1), where typically two or three iterations of the closure are sufficient
for a relative error tolerance within one percent. The problem consists of solving the
coupled system

Imi(t) = rmi(t) —dy [ WED maEr. 1) dé;
Ly, 0) = b [ BE) ma(Er — &2, 1) dE + b BE) my(0) — dma(Er, 1)

—dy W(ED ma(E1, 1) —dy [z W(E) m3 (61, &, 1) dé.
(49)

where
2 +
BCRs te[omiax]CRQ7
with initial condition

m1(0) = no, ma(&,0) =nd, ms(&1, &,0) =n}.

The window B should be large enough to approximate correctly the integral terms,
which are originally defined over all the plane. This hierarchy can be closed at order
2 with the maxent closure (41)

my(En E) = | maE) — |Ao|/m3<sl,sﬁ) dg

Ao

x| maer) - IAol/m3($2,§2 _&))aE]

« | maer — &) — |Ao|/m3<sz—s{,s{)ds{
Ap

Jo(Ao)
(1= 140l [y, & ds] + 55 [y ma(&]. 83) ds di})

X

’

(50)
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which is applied if each the three distance vectors (&1, & and & — &1, see Fig. 6) con-
necting the three points in the triple configuration fall within the normalisation domain
Ay. Outside of this region we apply the Kirkwood closure on the basis of probabilistic
independence of the third point in the triplet, as discussed in the previous section

ma(&§1) ma(§2) ma(§2 — &1)

3

m3 (&1, 62) =

(5D
mi

In the maxent closure (50) the avoidance function Jy(Ao) is given by
Jo(Ag) = exp (—m1|Aol) .

The circular domain A is computed from the comparison between the normalisation
constraint for the truncated hierarchy and that of a Poisson process of the same mean
intensity. It is calculated by finding the value of r that satisfies

3 2
my|Ay|
=0. 52
3 (52)

1
/ maEde] —milALl — 5 / m3 (], E)dE] dE; +

Ay AD

where A, is the 2-dimensional ball of radius r centred at the origin.

5.1 Algorithm for the numerical implementation

The coupled system of product density equations with the maxent closure can be
solved from the following algorithm:

1. From a sequence of radii r; = O, ..., ruqy, construct an increasing family of
domains A,,.

2. Attime ¢ = 0 the initial configuration is given by a homogeneous Poisson point
process, thus all the product densities are powers of the mean density No/|X|,
where X is the computational spatial arena, and Ny is the population size at time
t=0.

3. While the elapsed time ¢t < 7,4, do
(a) Integrate forward the densities m (¢ +h) and m2 (&1, t+h) from the hierarchy

using a standard numerical procedure.

(b) Use the value of the triplet density at the earlier time step m3©0d) (&1,&,1) as
the initial guess in the normalisation condition for the Poisson area Ap. Gen-
erate a sequence of values f(r;) by calculating the normalisation condition
(52) for each the domains previously constructed in Step 1 according to

1
f@ri) = /mg(f;‘l/, t+h) dél/ -3 / m3(uld)(€:1/’ gé’ ) dé;?]/ dSé
Ar; A%
2 1 3 2
—m1“(t + h)a, + §m1 (t+h)ay, (53)

where the a,, are the areas for each of the A,,.
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(c) Find the largest value r, that satisfies f(r,) = O by linear interpolation
between the consecutive r; where f(r;) changes sign.

(d) User, from Step 3c to generate the estimate of the Poisson domain Ag = A, .

(e) Loop the spatial arguments & and &, over the computational spatial arena.

(f) Compute the magnitudes dy, d» and d3 of the distance vectors &1, &> and &, —&

(g) ifd) <rpanddr <rgandds < ro apply the maxent closure

exp(—mj |Aogl)

m3 ") (&), &) = o 3
[m1 — Ao [y maED) dE+ 5[V my 0l (&), &) d] dsﬁ}

x| maer) — Ag / ms @D (¢ £5) e}

x [ ma(&) — Ao/m3(01d)(52,5§2 — &) dg

| maer — 1) — Ao/m3(”ld)(§2 _ ) del |

Ao

(h) else use the Kirkwood closure

ma(&1) ma(§2) ma (62 — &2)

m3") (&1, &) = : (54)

mi

(i) Recompute the Poisson domain A" and its radius r(()"ew) by inserting the
corrected triplet density m3"¢*) from Step 3e into the normalisation equation
into Step 3c and estimate a new root 7.

(G) If the difference between the old radius and the new one falls within the error
tolerance

To

(new) ‘
—
< tolerance
7o
then the third order density at time (¢ + /) is the one calculated at Step 3e
m3(E1, €1t +h) = m3" (&), &
else the old third order density becomes the new third order density

ms (new) — m3 (old)

and repeat Steps 3c through 3i until the error falls within the tolerance.
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Fig. 7 Comparison between the mean density (thick line) for a sample of 300 simulations of the point
process for the mildly aggregated case op = 0.05, o = 0.05 and the truncated product density hierarchy
using various closures. The the maximum entropy closure (maxent) (continuous black line), the power-3
(dashed), the symmetric power-2 (dotted) and power-1 (dashed-dotted). The maximum entropy closure
provides the best fit to the equilibrium values of the IBM. However the performance of all the closures is
poor during the transient regime

4. update the elapsed time

t—t+h.

5.2 Closure performance

We applied the simulation algorithm' introduced in the previous Sect.5.1 using a
spatial discretisation of 47 points per linear dimension, and the domain B was the
unit square [—1/2, 1/2] x [—1/2, 1/2]. The spatial integrals were computed using
the trapezoidal rule, and the convolution in (49) was calculated using the fast Fourier
transform. For the solution of the moment hierarchy we use a fourth-order Runge—
Kutta scheme (with a time step 7 = 0.1). Convergence was checked by halving
the time step and the spatial discretisation and no significant differences were found
(m} = 168.6, Ax = 1/47,h = 0.1 and m] = 168.9, Ax = 1/95,h = 0.05, for
oy = 0B = 005)

The maxent closure is expected to work well in situations where the spatial scales
of dispersal and mortality are similar, since this combination of parameters tends to
produce a single scale of spatial pattern of mild aggregation (see Fig.5), where higher
order terms are small. Figure 7 compares the dynamics of the mean density predicted

' Code available from first author on request.
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by the maxent closure in a mildly aggregated regime (o6p = ow = 0.05 ) against
averages of the point process model and the other closure methods used in the lit-
erature, power-1, power-2 and power-3 (but the asymmetric power-2 is not used in
the comparison). We see that the maxent closure outperforms the other closures. As
before, in all cases the transient is predicted poorly. This is to be expected of the max-
ent method, because the locational entropy can be assumed to be maximised only once
the stochastic process has reached its stationary distribution. For this reason, even with
the correction terms, the truncated hierarchy with the maxent closure fails at capturing
the transient behavior, which typically consists of long range spatial correlations that
decay only once the density—dependent mortality term is large enough to cause mixing
at longer scales, thus producing a shorter correlation scale.

The ability of the maxent closure to predict accurately the mean density changes dra-
matically when the two interaction kernels have very different characteristic scales.
This combination of parameters leads to several scales of pattern, that can consist
of short range aggregation compensated by long range segregation, or short scale
segregation compensated by long range clustering. This occurs because the total
number of pairs over sufficiently long ranges must be equal to the density squared.
Thus, extreme aggregation over short scales must be compensated by segregation
over the longer scales in order to preserve the total number of pairs. When dispersal
has a much shorter characteristic scale than that of density—dependent mortality, the
resulting pattern consists of segregated clusters. This situation violates the closure
assumptions (that require a single scale of pattern), and we expect the validity checks
in the maxent closure to be activated in this situation. This is illustrated for two types of
aggregated patterns in Fig. 8. The upper three panels correspond to segregated clusters
(op = 0.02, ow = 0.12), and the lower three to the mild aggregation case discussed
earlier (cp = ow = 0.04). The left column conformed by Figs.8a, b show typi-
cal point patterns obtained at the same time at which the numerical solution of the
hierarchy stopped, ¢+ = 1.56 in Fig. 8a, because of the validity check, and r = 80 in
Fig. 8b which was long enough to reach equilibrium. The center column, consisting
of Fig. 8c, d, displays kernel density estimates of the pair correlation function for the
point patterns shown to the left. We see in Fig. 8c a very high degree of aggregation at
short scales followed by long range segregation. Finally, Fig. 8e, f shows the dynamics
of the area of correlations A (#) for both regimes. We see failure of the maxent closure
to find a non-trivial root for A in Fig. 8e after a short transient, as should be expected
due to the presence of various scales of pattern detected in the pair correlation function
in Fig. 8c. In this situation, the extreme form of ‘checkerboard’ aggregation requires
truncation at a higher order. Since the pair correlation function is clearly not constant,
but yet the normalisation constraint only finds the trivial root zero, the validity check
is activated and the numerical solution of the hierarchy stops. By contrast, in the lower
panels when the degree of clustering is comparatively smaller, the method succeeds
in finding a single root Ag that eventually reaches a single equilibrium (see Fig. 8f).

We carried out a systematic exploration of the behavior of the maxent closure for a
wide range of combinations (441 in total) of the spatial parameters falling within the
range [0.02, 0.12] that correspond to those explored earlier by Law et al. (2003),
and compare the results with the predictions of the point process, and the prod-
uct density hierarchy with the power-3 closure. This allows the assessment of the
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Fig.8 Behavior of the area of corrections in the maxent closure for two types of aggregated spatial patterns.
The upper three panels correspond to a segregated pattern of clusters with op = 0.02, oy = 0.12, and
the lower panels to a mildly aggregated pattern with og = ow = 0.04. The left column shows a single
point pattern at the end of the simulation, the middle column shows a kernel density estimate of the pair
correlation function for the pattern displayed in the left and the right column shows the temporal behavior
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Fig. 9 Simulation results of the product density hierarchy with the maxent for various values of the char-
acteristic spatial scales of dispersal op (horizontal axis) and mortality oy (vertical axis). a Shows the
equilibrium mean density m . b Shows the value of the second order product density at equilibrium eval-
uated at the origin, normalized by the squared mean density. In this panel values higher than one indicate
clustering at short scales, and values below one indicate segregation. ¢ Shows the value at equilibrium of
the area of the domain used in the correction terms Aq

relative importance of the correction terms in the maxent closure. The upper limit in
the parameter domain was chosen because for that scale (o5 = ow = 0.12) there is
only a very small departure from complete spatial randomness. Figure 9 shows various
equilibrium values predicted by the product density hierarchy with the maxent closure.
Figure 9a corresponds to the mean density, Fig. 9b shows the equilibrium value of the
second moment at the origin, normalized by the mean density squared, and finally,
Fig. 9c shows the area of normalisation at equilibrium. The removed regions (white) in
Fig. 9a result from the application of the validity check of normalisation, since for this
parameter the area of correlations is zero (see Fig.9c), but the second order product
density indicates the existence of spatial pattern.
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Fig. 10 Comparison of the mean density m’lk at equilibrium predicted by an ensemble average of the point
process model (a), the maxent closure (b), and the power-3 or Kirkwood closure (¢). In b, the white region
no the upper left corner corresponds to the domain where the normalisation constraint returns a trivial root
for values of the second order product density that indicate the presence of spatial pattern, activating the
validity check (47)

In Fig. 10 we compare the mean equilibrium density predicted from an average of
the space—time point process (a), the maxent closure (b), and the power-3 closure (c).
The maxent closure is not a good predictor of the mean density for intermediate to low
ranges of mortality combined with long range dispersal; in this regime both the quali-
tative and quantitative behavior of the closure is poor. We see a sharp drop in the values
of the mean density, whereas in the point process model it grows monotonically before
reaching the plateau that occurs when both dispersal and mortality act over long scales.
This combination of parameters leads to segregation at short scales and long range
(albeit mild) aggregation. The maxent method detects only the scale of aggregation,
which produces comparatively larger values of the area of correlations (see Fig.9c).
This leads to over-correction in the maxent closure, which results in an equilibrium
density that falls well below that predicted by the point process model. In this regime,
the power-3 closure provides a much more precise prediction of the equilibrium den-
sity, both qualitatively and quantitatively. For sufficiently short ranges of dispersal
together with short to intermediate ranges of mortality the point process model pre-
dicts extinction, as already noted earlier by Law and Dieckmann (2000) and Law et al.
(2003). In this regime, neither the maxent closure nor the power-3 closure is capable
of predicting the persistance/extinction threshold, and the maxent validity check does
not seem to operate either. However, for intermediate ranges of aggregation close or
above the main diagonal (o = op), the maxent closure does provide an improved
prediction of the equilibrium density, with the added benefit of the criterion of validity
being activated when dispersal is short range with long range mortality, which leads
to different scales of pattern (Fig. 11).

We computed the relative error between the equilibrium density of the point pro-
cess, and that predicted by the moment equations with the two closures, shown in
Fig. 11. Figure 11a corresponds to the maxent closure and Fig. 11b to the power-3. We
see that the maxent closure has larger relative error than the power-3 for values located
below the diagonal (ow = o), which are associated with segregated spatial patterns
(see Fig.9b). In contrast, the power-3 closure performs quite well in this region. The
advantage of the maxent closure becomes more noticeable on, and above the diago-
nal, which is associated with aggregated patterns. The ability to predict correctly the
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Fig. 11 Relative error of the maxent closure (a) and the power-3 closure (b). We see that the maxent closure
performs better than the power-three closure for mildly aggregated patterns (lower left), but the Kirkwood
closure outperforms the maxent in segregated patterns (lower right)
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Fig. 12 Difference in relative error between the maxent and power-3 closures for various combinations of
dispersal and mortality spatial scales. Values higher than zero indicate that the maxent closure outperforms
the power-3 closure, whereas negative values are evidence of better precision of the power-3 closure

equilibrium density in this regime is nearly optimal; particularly when the two scales
have similar magnitudes, even when both dispersal and mortality act over short ranges.
The regions of the parameter space for which each of the two closures is relatively more
useful are shown in Fig. 12, which displays the difference in relative error between the
two closures AE = errp3 — errmaxen:. Positive values of AE indicate that the error
in the power-3 closure is larger than the maxent closure, and vice versa for negative
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values of AE. As discussed above the largest improvement of the maxent closure
around to the region where the two scales are of similar magnitude.

6 Discussion

The results of this research resonate with previous work (Bolker and Pacala 1997;
Law et al. 2003; Ovaskainen and Cornell 2006a) that demonstrates that the analysis
of stochastic, locally regulated, individual-based models of population dynamics in
continuous space is feasible (Ovaskainen and Cornell 2006a; Bolker and Pacala 1997,
Law et al. 2003). The numerical implementation of the maxent closure is computa-
tionally more expensive (about twice as much) than existing closure methods, but is
nonetheless faster than resorting to direct simulation of the point process; if one is
willing to approximate, the simplified closure based solely on the exponential cor-
rection (48) is substantially simpler to implement, and produces very small errors in
comparison with the full maxent closure. Although a number of moment closures have
been proposed in the literature, some using heuristic arguments, and others based on
constrained entropy maximisation, very few, if any have a criterion of validity, with
the exception of Ovaskainen and Cornell (2006a) who were able to derive a series
expansion for the mean density of a spatially explicit metapopulation problem, and
show rigorously that their approximation to the mean density is exact in the limit of
long range interactions. The principal benefit of the maxent method lies in the fact
that the normalisation constraint used to find the domain for the correction terms fails
to find a non-trivial root when the closure assumptions are not met. This situation
occurs when higher order terms are required in order to fully capture the dynamics, or
when correlations extend over a range that goes beyond the window of observation.
This property constitutes a validation check, not present in other proposed closure
schemes.

Although the power-3 or Kirkwood closure had previously been derived from max-
imum entropy arguments (Singer 2004) (but using a different set of constraints and
a different definition of the entropy functional), the correction terms presented here
are new, and extend the probabilistic interpretation of the Kirkwood closure to sit-
uations where there is a region of irreducible triplet correlations. These correction
terms introduce significant improvements in the agreement between the simulations
of the stochastic process (for mildly aggregated patterns) and its deterministic approx-
imation by the product density hierarchy. It remains to be seen how the maxent clo-
sure behaves for other functional forms of the interaction kernels, particularly for
those that have tails that decay algebraically (i.e. power laws) instead of exponen-
tial. Another area of further work would be related to changes in the value of the
non-spatial carrying capacity K. For higher densities, spatial effects become less
important.

Since the derivation of the method does not depend on the details of the model,
but only on that its equilibrium distribution is of maximum locational entropy with
moment constraints, the maxent closure may be useful beyond spatial ecology where
unclosed hierarchies for particle distribution functions are also commonly found, for
instance in the statistical mechanics of fluids where the Kirkwood closure was first
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introduced (Singer 2004), or in problems where the organisms move in space (Birch
and Young 2006; Flierl et al. 1999; Young et al. 2001), provided that the correla-
tion functions in those models are stationary in both space and time. A limitation of
the method is its poor ability to predict the transient. This is to be expected, since
maximum entropy is a meaningful property of the equilibrium distribution only when
detailed balance is satisfied (Van Kampen 2001; Gardiner 1985; Jaynes 1957) and the
transitions due to fecundity and dispersal events coincide with mortality. Other areas
of current and future work include the generalisation of the moment hierarchy and the
maxent closure to an arbitrary order of truncation, extensions to marked spatial point
processes for populations with both spatial and size structure.
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Appendix: Derivation of moment equations
In order to derive the equation for m1(¢), we start by fixing a small region of obser-
vation dx; (so that the count inside dxi, N(dx;) is either O or 1) and write a Master

equation for the probabilities of change in the count ANs;(dx) during a small time
interval 8¢, defined as

AN (dx1) = Nyyse(dxy) — Ni(dxy).

These come from the birth and death transitions. Births are given by the probability
that the count N (dx1) increases by one in §¢ due to a birth in dx;

N+ N+1,
This probability is controlled by the fecundity rate and the dispersal kernel,
f(x1]l¢;) = P{ one birth in (dx;) during (¢, t + 61) | ¢;(X)}.

= b Z B(x1 — x») Ny (dxp)e(dxy) | 81 + o(51), (55)

Xn €Qt
where b is the birth rate, B(£) is the dispersal kernel, ¢; is the configuration of points

at time ¢ and £(A) is the area of the 2-dimensional domain A. For the death of the
individual in dx;, we have the transition

N+ N—1,
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controlled by

w(x1]¢r) = P{ death of individual x| during (¢, r + 8t) | o1 (X)} .

= N, (dx) [d tdy D W —x) (Ni(da) — B, (dx,a)} 51+ 0(81),

Xn€Qt

(56)

where d and dy are positive constants defined in Sect. 2, the density-independent, and
density-dependent contributions to the mortality and W () is the mortality kernel).
This probability is conditional on there being an individual in dx. The change in the
count ANy, (x1) is then given by both contributions

ANsi(dx1) = f(x1lo) — p(x1ler)

SO

ANs(dxy) = |:b Z B(x1 — xp) Ny (dx,) £(dxy)

Xn €@t

— N¢(dxy) (d +dn Z W(x1 — xn) (Nt (dxp) — 5xl(dxn)):| ot.

Xn €@

(57)

Taking expectations (ensemble averaging) on both sides and dividing by the duration
of a small time interval 8¢ yields

E{ANs; (dx1)} _b

5 > Bxi — x,) E{N; (dx,)} £(dx1)

Xn €Qr

—E [Nz(dm)(d +dy z Wx1 — xp) (Ni (dxp) — by, (dxn)))].

Xn€Q;

after rearranging the second term, dividing both sides by £(dx1) and multiplying the
second sum by £(dx,)/£(dx,) we get

B{ANs(dx)) |, E(Ni(dxy)) B ENdx)
e i@ xﬂze;ptB(xl %a) bdxy) —d =7
E{Nt(dxl) (Nt(dxn)_(sxl(dxn))}
—dy XZE;{ W (x1—xn) TEERYIEER, 2(dx,).
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taking the limits as £(dx1) and £(dx,) go to zero, and using definition of the product
density (16)

Ami(xq,1t) —bm

5 1(x1,t)/B(x1 —Xxp)dx; —dmy(xy,1)

02
—dN/W(Xl — Xp) ma(x1, Xp, 1) dxp.

)2

since the process is spatially stationary by construction and exploiting the fact that the
dispersal kernel integrates to unity, yields

Am(t)
8t

— by (1) — dmy (1) dN/W(sl)mz(sl, ) déy,

Rn2

finally, after taking the limit as §+ — 0 we get,

d
Elm(t)=bm1(t)—dml(t)—dN/W(El)mz(&,t)dél- (58)

N2

On setting r = b — d, we get the generalisation of the logistic equation to the spa-
tial case obtained by Law and Dieckmann (2000) and Law et al. (2003), but derived
explicitly in terms of product densities,

d
Eml(t)=rm1(t)—dN/W(El)M2(§1,t)d$1~ (59)

N2

Since m is unknown, we need an additional evolution equation for this object. We fol-
low a similar procedure to that used for the mean density, but considering the expected
change of the product of the counts in two observation regions dxj and dx,. This
requires the consideration of how pairs of points are created and destroyed as individ-
uals disperse and die. There are three possible ways in which changes to occur. The
first if to fix the count N,(dx1) and allow only N,(dx>) to change. The second is the
reverse situation, fixing N;(dx») and allowing only N,(dx1) to change. The third is
when both N;(dx1) and N;(dx>) change in a small time interval. We have that

A[N;(dx1) (Ni(dx2) — by, (dx2))] = Ni(dx1) A(Ni(dx2) — 8y, (dx2))
+(Ni(dx2) — 8x, (dx2)) AN (dx)
+AN; (dx1)A(N;(dx2) — 8y, (dx2))  (60)

where the Dirac delta distribution is used to remove self-pairs. The following deriva-
tion for the second order product densities is based on the symmetry in the probabilities
of a birth or a death event occurring at both extremes of the distance vector linking x
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and xp. We also assume that a simultaneous change in both N;(dx;) and N;(dx1) is
negligible

P[AN(dx)) ANy (dx2) — 8y, (dx2))] = 0(81)
and thus the transitions of second order can be written as
A[N;(dx1) (Ni(dx2) — 8y, (dx2))] = 2AN; (dx1)(Ni(dx2) — 8x,(dx2)).  (61)
Since we already have an expression for A N;(dx1), given by (57), (61) becomes

A[N;(dx1) (Ni(dx2) — 8, (dx2))]

=2-(Ni(dx2) — by, (dx2)) [b > B(xi — x) Ni(dxy) £(dx))

Xn €t

— N;(dxy) (d +dn Z W(x1 — xn) (Nt (dxpn) — (le(dxn))] ot.

Xn €@t
Taking expectations, and dividing by both sides by &z gives

A[N;(dx1) (Ni(dx2) —
25t

ORI _ S By — ) BN (@) (N, (@)
Xn €Qt
— 81, (dx2)) } £(dx1)
—d E{N(dx1)(N;(dx2) — 8, (dx2))}
—dy D Wi = x)B (N;(dx1) (N; (dxn)
Xn€Qr

— 8, (dxn)) (N (dx2) — 8y, (dx2))} .

After dividing by £(dx;) and £(dx3), using the definition of product densities (16)
and taking the continuum limit in both space and time, one arrives at the evolution
equation for the second order product density

bl
3,m2EL 0 = b/ B(&) ma(51 — &, 1)dé + b B(E) my (1) — dma(&1, 1)

92

—dnW (D) ma(§1, 1) —dy / W) m3(&1, &2, 1) ds,  (62)

N2

| =

where we see the dependence on the hird order product density in the last integral.
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