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Abstract� The presented evolutionary algorithm is especially designed

to generate recurrent neural networks with non�trivial internal dynam�

ics� It is not based on genetic algorithms� and sets no constraints on the

number of neurons and the architecture of a network� Network topol�

ogy and parameters like synaptic weights and bias terms are developed

simultaneously� It is well suited for generating neuromodules acting in

sensorimotor loops� and therefore it can be used for evolution of neuro�

controllers solving also nonlinear control problems� We demonstrate this

capability by applying the algorithm successfully to the following task�

Stabilize a rotating pendulum � that is mounted on a cart � in an upright

position�

�� Introduction

The combined application of neural network techniques and evolutionary algo�
rithms turned out to be a very e�ective tool for solving an interesting class of
problems �for a review see e	g	 
��� 
��� 

��	 Especially� in situations where a
task involves dynamical features like generation of temporal sequences� recog�
nition� storage and reproduction of temporal patterns� or for control problems
requiring memory to compute derivatives or integrals� other learning strategies
are in general not available	

The ENS� �algorithm �evolution of neural systems by stochastic synthesis�
outlined in section � is inspired by a biological theory of coevolution	 It is
applied to networks of standard additive neurons with sigmoidal transfer func�
tions and sets no constraints on the number of neurons and the architecture of
a network	 It develops network topology and parameters like weights and bias
terms simultaneously	 In contrast to genetic algorithms it does not quantize
network parameters and it is not only used for optimizing a speci�c architec�
ture	 Based on a behavior�oriented approach to neural systems� the algorithm
originally was designed to study the appearance of complex dynamics and the
corresponding structure�function relationship in arti�cial sensorimotor systems
in the sense of �brains� for autonomous robots or software agents	 For the
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solution of extended problems �more complex environments or sensorimotor
systems� the synthesis of evolved neuromodules forming larger neural systems
can be achieved by evolving the coupling structure between modules	 This is
done in the spirit of coevolution of interacting species	 We suggest that this
kind of evolutionary computation is better suited for evolving neural networks
than genetic algorithms	

In 
��� 
�� we reported on �rst tests of the algorithm� applying it to the pole�
balancing problem that usually serves as a benchmark problem for trainable
controllers 
��	 Although the inverted pendulum is one of the simplest inher�
ently unstable systems� balancing it under benchmark conditions is mainly in
the domain of linear control theory	 Stabilizing a pendulum which is free to
rotate and initially may be pointing down is therefore a more challenging non�
linear control problem 
��	 In section � we will show that it is easily solved by
evolved neural network solutions	

Using continuous neurons for the controllers� di�erent from many other
applications� our approach does not make use of quantization� neither of the
physical phase space variables nor of internal network parameters� like synaptic
weights and bias terms� or output values of the neurons	 Section � gives a
discussion of the results	

�� The ENS � � algorithm

To start the algorithm one �rst has to decide which type of neurons to use
for the network	 We prefer to have additive neurons with sigmoidal transfer
functions for output and internal units� and use input units as bu�ers	 The
number of input and output units is chosen according to the de�nition of the
problem� that is� it depends on the pre�processing of input and post�processing
of output signals	 Nothing else is determined� neither the number of internal
units nor their connectivity� i	e	 self�connections and every kind of recurrences
are allowed� as well as excitatory and inhibitory connections	 Because input
units are only bu�ering data� no backward connections to these are allowed	

To evolve the desired neuromodule we consider a population p�t� of n�t�
neuromodules undergoing a variation�evaluation�selection loop� i	e	 p�t� �� �
S E V p�t�	 The variation operator V is realized as a stochastic operator� and
allows for the insertion and deletion of neurons and connections as well as for
alterations of bias and weight terms	 Its action is determined by �xed per�
neuron and per�connection probabilities	 The evaluation operator E is de�ned
problem�speci�c� and it is usually given in terms of a �tness function	 After
evaluating the performance of each individual network in the population the
number of network copies passed from the old to the new population depends
on the selection operator S	 It realizes the di�erential survival of the varied
members of the population according to evaluation results	 In consequence of
this selection process the average performance of the population will tend to
increase	 Thus� after repeated passes through the variation�evaluation�selection
loop populations with networks solving the problem can be expected to emerge	



�� Evolved neurocontrollers

The problem to solve is given here as follows� A rotating pendulum is mounted
on a cart that can move on a ��dimensional interval	 The controller has to
bring the pendulum into the upright position and then has to balance it as
long as possible	 At the same time� interval boundaries have to be avoided�
and the cart has to be centered	 The control signal is given by the force on
the cart	 Because we use neurons with sigmoidal transfer functions the force
applied to the cart varies continuously between ��� � F � �� 
N �	 The cart
is bound to move in the interval ���� � x � ��� 
m�	 The initial position �� of
the pendulum can be anywhere on the circle with initial velocity ��� � �	 The
cart starts from positions ���� � x� � ��� with zero velocity �x� � �	

The equations for the physical system under control are given by
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where g � ��
� denotes gravitational acceleration� mc � ���kg and m � ���kg
mass of cart and pendulum� respectively� l � ���m half length of pendulum�
and F denotes the force applied to the cart	 We use no friction terms because
we found these have no interesting e�ect on the evolution process or network
capabilities	 The dynamics of cart and pendulum are computed by using Euler
discretization of these equations with time step � � ����s	

For the neurocontroller we use the standard additive neuron model with sig�
moidal transfer function �	 A termination signal is given after a time t � tmax	
The �tness function f for the evaluation of an individual network takes into ac�
count costs for each neuron and for each connection �to select for parsimonious
network architectures�� the pendulum�s integrated deviation from the upright
position� and the cart�s integrated deviation from the zero position	 Further�
more� the applied force integrated over the last �� seconds of each trial can be
added as a diminishing contribution to the �tness function	 This will optimize
the applied force to balance the pendulum by minimizing oscillations of the
cart	

We distinguish between two classes of controllers	 One� called t�class� uses
additive units with anti�symmetric transfer function ��x� � tanh�x�� the other
one� the s�class� uses the strictly positive transfer function ��x� � ��� e�x���	
The �rst class of controllers needs only one output neuron providing a force

F � �� � tanh�ai�
N� � ���

where ai denotes the activity of the output unit i	 The s�class needs two output
units� i and i� �� giving a force

F � �� � ���ai�� ��ai����
N� � ���



���� A t�class controller

As sensor signals we choose the full set of state variables x� �� �x� �� of the
physical system	 The corresponding four input units then receive the signals�

in� �� x���� � in� �� ��� � in� �� �x���� � in� �� ���� � ���

The output unit � of a t�class controller provides the force F applied to the
cart according to equation ���	

Among a family of larger modules� the ENS��algorithm came up with the
following minimal solution� Its architecture is shown in �gure �a and its weights
are given as follows�
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where wi � �wi�� wi�� � � � � win� denotes the weight vector of neuron i with wi�

the bias term of unit i� here we have n � �	

a� b�

Figure �� a	� A minimal t�class solution and b	� its e�ective control� x�t�� ��t��
and F �t� starting from x� � ��� and �� � �	

Although this module has a very simple feedforward structure� tests revealed
that it solves the problem for all initial conditions ���� � x� � ��� and �� �
�� � � in less than �� seconds	 This is demonstrated for instance in �gure �b
where cart position x� angel � and the applied force F are given as functions
of time t	 Starting with initial conditions x� � ��� �cart close to boundary at
x � ����� �� � � �pendulum pointing down�� and �x� � ��� � � we observe that
the controller needs only three swings to get the pendulum into the upright
position� and then it balances the pendulum by centering the cart at the same
time	

���� An s�class controller

Sensor signals are again given by equation ���	 The force on the cart is applied
according to equation ��� for output units � and �	 Again several neurocon�



trollers emerged during the evolution process and one of the minimal examples
is shown in �gure �a with weights given by
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Figure �� a	� An s�class solution and b	� its e�ective control� x�t�� ��t�� and
F �t� starting from x� � ��� and �� � �	

Also this neurocontroller uses only one internal neuron and a no recurrent
connections to solve the problem	 The output neuron � gets a �lateral� con�
nection from output neuron �	 Figure �b reveals that it is even faster than
the t�class controller	 It needs only two swings to get the pendulum in upright
position� starting from x� � ��� and �� � �	 Stabilizing the pendulum and
centering the cart is done with an oscillating force signal	 The origin of these
oscillation is not given by an internal oscillator of the neural structure� but it
results from the feedback loop via the environment	

�� Conclusion

We have demonstrated that the ENS��algorithm can be applied successfully
to a challenging nonlinear control problem like balancing a rotating pendulum	
The evolved network solutions are remarkably small in size	 They solve the
problem very e�ectively by getting the pendulum in upright position� stabiliz�
ing it and centering the cart in less then �� seconds	 Because they have full
access to physical phase space variables� they do not need recurrences to com�
pute derivatives	 As for the pole�balancing problem discussed in 
��� it will be
interesting to study the evolved neuromodules for the harder problem where
controllers get only information about cart position and angle of the pendulum	
Because then velocities have to be computed internally recurrent connectivity
is expected to emerge	



That the ENS��algorithm is capable of generating networks for classical
problems � usually solved by feedforward networks � was reported in 
��	 In
terms of required computation time �which is large for evolutionary algorithms�
ENS� can not compete with learning algorithms like backpropagation	 In�
stead� it has the advantage of producing unconventional solutions which are
not strictly layered� and which may be worthwhile to study in their own right	

The algorithm still can be optimized	 For instance the evaluation operator
in the variation�evaluation�selection cycle may be substituted by an evaluation�
learning cycle� if an appropriate learning procedure is at hand	

References


�� Albrecht� R	 F	� Reeves� C	 R	� and Steele� N	 C	 �eds	� ������� Arti��
cial Neural Nets and Genetic Algorithms� Proceedings of the International
Conference in Innsbruck� Austria� ����� Springer�Verlag� Wien	


�� Anderson� C	 W	 and Miller W	 T	 ������	 Challenging Control Problems	
In W	 T	 Miller� R	 S	 Sutton� and P	 J	 Werbos� Neural Networks for
Control� MIT Press� Cambridge	


�� Dieckmann� U	 ������� Coevolution as an autonomous learning strategy
for neuromodules� in� Herrmann� H	� P�oppel� E	� and Wolf� D	 �eds	�� Su�
percomputing in Brain Research � From Tomography to Neural Networks�
World Scienti�c� Singapore� pp	 �������	


�� Geva� S	� and Sitte� J	 ������� A cartpole experiment benchmark for train�
able controllers� IEEE Control Systems Magazin� ��� �����	


�� Pasemann� F	 and Dieckmann� U	 ������� Evolved neurocontrollers for
pole�balancing� in� J	 Mira� R	 Moreno�Diaz� J	 Cabestany �Eds	�� Bi�
ological and Arti�cial Computation� From Neuroscience to Technology�
Proceedings IWANN���� Lanzarote� Canary Islands� Spain� June �����
Springer Verlag� Berlin� pp	 ���� � ��
�	


�� Pasemann� F	 ������� Pole�balancing with di�erent evolved neurocon�
trollers� in� Gerstner� W	� Germond� A	� Hasler� M	� and Nicoud� J	�D	
�eds	�� Arti�cial Neural Networks � ICANN���� October ����� Lausanne�
Switzerland� Proceedings� LNCS ����� Springer Verlag� Berlin� pp	 
�� �

��	


�� Scha�er� J	 D	� Whitley� D	� and Eshelman� L	 J	 ������	 Combination
of genetic algorithms and neural networks� A survey of the state of the
art	 In� Proceedings International Workshop on combinations of genetic
algorithms and neural networks �COGANN���	� Los Alamitos� CA� IEEE
Computer Society Press	



� Yao� X	 ������	 A review of evolutionary arti�cial neural networks	 Inter�
national Journal of Intelligent Systems� �� ��� � ���	


