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Abstract. Adaptive dynamics has been widely used to study the evolution of scalar-valued,
and occasionally vector-valued, strategies in ecologically realistic models. In many eco-
logical situations, however, evolving strategies are best described as function-valued, and
thus infinite-dimensional, traits. So far, such evolution has only been studied sporadically,
mostly based on quantitative genetics models with limited ecological realism. In this article
we show how to apply the calculus of variations to find evolutionarily singular strategies
of function-valued adaptive dynamics: such a strategy has to satisfy Euler’s equation with
environmental feedback. We also demonstrate how second-order derivatives can be used to
investigate whether or not a function-valued singular strategy is evolutionarily stable. We
illustrate our approach by presenting several worked examples.

1. Introduction

To date, research in theoretical evolutionary ecology has mainly focused on adap-
tations in traits that can be represented by a single number, or by a small collection
of numbers. For example, the rate at which a consumer harvests a resource is a one-
dimensional trait. While too low a harvesting rate will not provide the consumer
population with enough resources to maintain itself, too high a harvesting rate may
cause the resource population to go extinct. Models have thus been devised to pre-
dict the intermediate harvesting rates that are expected as evolutionary outcomes
in such a system. In nature, however, consumers may have opportunities for using
many different types of resource, and harvesting them all at an equal rate will usu-
ally not be efficient. When the number of resource types is large, it will often be
realistic to describe the harvesting rates of a consumer by a function defined on a
continuum of resource types. Such a harvesting strategy, traditionally referred to as
a resource utilization spectrum, will thus be infinite-dimensional. It is easy to think
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of many other ecological settings in which considering function-valued strategies
is advantageous.

The evolution of function-valued strategies has already been studied in quan-
titative genetics (Beder and Gomulkiewicz 1998; Gomulkiewicz and Beder 1996;
Gomulkiewicz and Kirkpatrick 1992; Jaffrézic and Pletcher 2000; Kingsolver et al.
2001). While these models are relatively realistic in terms of genetic detail, they give
little emphasis to ecological detail. In particular, environmental feedback, which
is generally essential for understanding all but the most simple effects of natural
selection, is not yet addressed by these earlier models. By contrast, adaptive dynam-
ics theory (Metz et al. 1992, 1996a; Dieckmann and Law 1996; Geritz et al. 1997,
1998) has been devised as a general framework for analyzing the phenotypic evo-
lutionary dynamics of populations under environmental feedback. It is only very
recently that adaptive dynamics theory has been extended to function-valued strat-
egies (Dieckmann et al. in prep), and applied to general reaction norms (Ernande
and Dieckmann 2004) and resource utilization strategies (Heino et al. in prep).

According to Dieckmann et al. (in prep), the following equation, referred to as
the canonical equation of function-valued adaptive dynamics, describes the rate of
expected evolutionary change, d

dt
s, in a function-valued strategy s,

d

dt
s(a) = 1

2
µsn̄s

∫
σ 2

s (a′, a)Gs(a
′)da′, (1)

where a is the argument of the function s, µs is the mutation probability of trait
s, n̄s is the trait-dependent equilibrium population size of the evolving population,
σ 2

s is the variance-covariance function of the mutation distribution, and Gs is the
selection gradient (see equation 63). Equilibria of the dynamics defined by equation
(1) are called evolutionarily singular strategies. These can be of different types, one
of which is an evolutionarily stable strategy (ESS; Maynard Smith 1976): a resident
population expressing such a strategy is evolutionarily unbeatable, in the sense that
no mutants can invade, such that evolution comes to a halt.

In this article we complement the analysis of equation (1) by applying the cal-
culus of variations. To explain the idea underlying this approach, let us assume that
a resident population has reached an evolutionarily stable strategy. While a mutant
with a strategy equal to that of the resident has zero fitness, any small variation in
the mutant strategy around the resident strategy will decrease fitness below zero.
In other words, the evolutionarily stable function-valued trait maximizes fitness,
which is given as a function of the trait. Such situations are commonly addressed
in the field of mathematical optimization known as the calculus of variations. Here
we investigate how the calculus of variations can be used to find evolutionarily
singular strategies, when strategies are real-valued functions defined on an interval
[amin, amax]. We demonstrate that a singular strategy has to satisfy Euler’s equation
with environmental feedback.

The methods introduced in this article have important advantages and disad-
vantages relative to the direct integration of equation (1):

– Evolutionary stability. A one-dimensional singular strategy is generally either
a local fitness minimum or a maximum. If a one-dimensional strategy is an
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evolutionarily attracting fitness minimum, evolutionary branching (Geritz et al.
1998) is expected, resulting in a population dimorphism. A vector-valued singu-
lar strategy, as well as a function-valued singular strategy, is not either a fitness
minimum or a maximum, but can be a saddle instead. The calculus of variations
often allows us to determine whether a singular strategy is a fitness maximum,
and thus an evolutionarily stable strategy.

– Convergence stability. In case of one-dimensional strategies, conditions for
whether a singular strategy is an evolutionary attractor are relatively easy to
analyze (Geritz et al. 1998). Already with two-dimensional strategies this anal-
ysis becomes more complicated (Marrow et al. 1996; Leimar 2001; Meszéna
et al. 2001). In the case of function-valued strategies, convergence stability is
best addressed by analyzing equation (1) and consequently is not covered here.

– Evolutionary constraints. A key advantage of using the calculus of variations
is that incorporation of some evolutionary constraints is particularly easy. The
appendix provides a detailed comparison of how one especially important type
of such constraints is handled by the two approaches.

The purpose of this paper is to illustrate in general how the calculus of variations
can be used to find and analyze evolutionarily singular function-valued strategies
of adaptive dynamics. After introducing our modeling framework in Section 2, we
continue with presenting a sequence of five worked examples in Sections 3 to 7.
These examples serve to highlight the approach’s utility and to explain in detail
how to cope with various typical complications modelers are bound to encounter
in applications. The article concludes with a summary and outlook in Section 8.

2. Modeling framework

Throughout this study we focus on function-valued strategies, or infinite-dimen-
sional traits of the form

s(a) ∈ R, a ∈ R, amin � a � amax. (2)

The variable a is referred to as the strategy’s determinant; [amin, amax] is thus called
the determinant space of the function-valued trait s. The function s is assumed to
be piecewise smooth, meaning that

1. The function s is continuous on [amin, amax].
2. The function s is differentiable on (amin, amax) except possibly for a finite num-

ber of points.
3. The derivative s′ is piecewise continuous on (amin, amax).

2.1. Resident equilibrium

Depending on the considered population dynamics, a population comprising indi-
viduals with one or more strategies s will reach a population-dynamical attractor.
We consider the environmental interaction variable E that contains all essential
information about the environment individuals experience on such an attractor. A
necessary condition for the attractor having been reached is that the population’s
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basic reproduction ratio, given by the expected number of offspring produced by
an individual, is equal to one (Diekmann et al. 1998, 2001),

R(sres, Eres) = 1. (3)

2.2. Invasion fitness of a mutant

We now consider a resident population at its population dynamical attractor, with
corresponding environmental interaction variable Eres. If a small mutant population
with a different strategy from that of the resident appears, this mutant population
will not initially affect the population dynamics of the resident, and the environ-
mental interaction variable will remain at Eres. The mutant population size will thus
initially increase or decrease exponentially. Specifically, the mutant population will
grow, if its basic reproduction ratio

R(smut, Eres) > 1. (4)

Equivalently, the mutant population will grow, if its long-term exponential growth
rate

r(smut, Eres) > 0. (5)

Either one of these quantities can be used as a measure of invasion fitness of a
mutant in an environment set by the resident.

Evolutionarily stable strategies (ESSs; Maynard Smith 1976) have been widely
studied in evolutionary ecology. A resident expressing such a strategy s∗ is evo-
lutionarily unbeatable, since no mutants can invade the resident. By contrast, a
strategy s∗ is convergence stable, and thus serves as an evolutionary attractor, if the
repeated invasion and replacement of resident strategies by nearby mutant strate-
gies lets the resultant sequence of resident strategies converge to s∗ (Christiansen
1991). If an evolutionary attractor is also evolutionarily stable, it is called a con-
tinuously stable strategy (CSS; Eshel 1983) and may be regarded as a possible
final outcome of the considered evolutionary process. If an evolutionary attractor is
not evolutionarily stable, disruptive selection may result in evolutionary branching
(Geritz et al. 1998): an initially monomorphic population will first converge to the
attractor and then divide into two phenotypic groups that subsequently will evolve
further away from each other.

When a resident population has reached an evolutionarily stable strategy, we
may consider the fitness of mutants in the environment set by such a resident. As
no mutant can invade, all mutants necessarily have lower fitness than the resident,
such that the resident strategy is a (local) fitness maximum. For finite-dimensional
strategies s = (s1, . . . , sn), the selection gradient, i.e., the derivative of invasion
fitness with respect to the components of the mutant’s strategy vector, vanishes at
such points,

∂

∂si,mut
r(smut, Eres)

∣∣∣∣
smut=sres

= 0 (6)
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for all i. More generally, strategies for which the selection gradient is zero, are
called evolutionarily singular strategies (Metz et al. 1996; Geritz et al. 1998). We
are aiming at an analogous criterion for infinite-dimensional strategies.

In simple models featuring an infinite-dimensional strategy, invasion fitness can
often be written as an integral of the following type,

r(smut, Eres) =
∫ amax

amin

F(a, smut(a), Eres)da, (7)

where Eres describes the environment set by the resident. We now consider a mutant
with strategy sres(a)+ε�s(a), where �s(a) is an arbitrary piecewise smooth func-
tion, and |ε| is small. When sres is evolutionarily singular, the mutant’s invasion
fitness r(sres + ε�s, Eres) possesses either a local minimum or a local maximum
at ε = 0. This connects the notion of evolutionarily singular function-valued traits
to a standard procedure in the calculus of variations: identifying the evolutionarily
singular strategies determined by a specific fitness function is equivalent to mini-
mizing or maximizing that function by variation of the underlying function-valued
strategy. As a next step we will therefore present some salient results from the gen-
eral theory of calculus of variations, including an explanation of how this method’s
central result, the so-called Euler’s equation, is derived. While the section below
provides a general introduction to the calculus of variations, we use the same nota-
tion as elsewhere in this article. An example of a textbook in which these results
are presented in greater detail is Wan (1993).

2.3. Calculus of variations and Euler’s equation

The general problem in the calculus of variations is to minimize a function J ,

J (s) =
∫ amax

amin

F(a, s(a), s′(a))da, (8)

through the variation of s, while respecting the boundary conditions s(amin) =
Amin and s(amax) = Amax. The function s is assumed to be piecewise smooth.
Compared to equation (7), the integrand function F is allowed to depend also on
s′(a) = d

da
s(a). We now retain this potential dependence in the equations, but we

will also explicitly show conditions for singular strategies in the absence of this
dependence. The function F is assumed to be differentiable with respect to s and s′.
Notice that in equation (7) there are no boundary conditions of the form described
above. How free values at boundaries are handled in the calculus of variations is
explained in Section 2.3.3.

A solution of the minimization problem (8) is called an extremal. Let us assume
that the function s minimizes (8). We can then study the value of the function J

for s + ε�s, assuming that the perturbation �s is an arbitrary piecewise smooth
function. We also assume that �s(amin) = �s(amax) = 0 to satisfy the boundary
conditions. For sufficiently small values of |ε|, we have

J (s) � J (s + ε�s). (9)
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The right-hand side thus has a local minimum at ε = 0. We therefore obtain, through
integration by parts, and using the definitions in (12) and (13),

d

dε
J (s + ε�s)

∣∣
ε=0 =

∫ amax

amin

d

dε
F (a, s(a) + ε�s, s′(a) + ε�s′)da

∣∣
ε=0

=
∫ amax

amin

Fs(a, s(a), s′(a))�s + Fs′(a, s(a), s′(a))�s′da

=
∫ amax

amin

[
Fs(a, s(a), s′(a)) − d

da
Fs′(a, s(a), s′(a))

]
�s da

+Fs′(amax, s(amax), s
′(amax))�s(amax)

−Fs′(amin, s(amin), s
′(amin))�s(amin)

=
∫ amax

amin

[
Fs(a, s(a), s′(a)) − d

da
Fs′(a, s(a), s′(a))

]

×�s da = 0 (10)

for all possible perturbations �s. This results in the so-called Euler’s equation,
which is a necessary condition for a function s to be a local minimum of (8),

d

da
Fs′(a, s(a), s′(a)) = Fs(a, s(a), s′(a)), (11)

where

Fs(a, s(a), s′(a)) = ∂

∂s(a)
F (a, s(a), s′(a)) (12)

and

Fs′(a, s(a), s′(a)) = ∂

∂s′(a)
F (a, s(a), s′(a)). (13)

Euler’s equation usually yields a differential equation for s, unless the quantity
F(a, s(a), s′(a)) does not depend on s′(a).

As the function s(a) is assumed to be piecewise smooth, there can be points
where the derivative s′(a) is discontinuous. Such points (a, s(a)) are called corners.
At corners, the so-called corner conditions of Erdmann have to be satisfied,

Fs′(a, s, s′
−) = Fs′(a, s, s′

+), (14)

F − s′Fs′ is continuous at corners, (15)

where s′− is the left-side derivative and s′+ is the right-side derivative.
Not all continuous functions are necessarily allowed as possible strategies. Nat-

ural constraints arise from the interpretations underlying the model in question. For
example, in the case of s(a) describing the harvesting time invested on different
resources a, s(a) cannot be negative at any a, and the total time spent on harvesting,∫ amax
amin

s(a)da, cannot exceed the maximal time available for harvesting. Below we
explain how such constraints are incorporated into the analysis of function-valued
traits using the calculus of variations.
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2.3.1. Local inequality constraints
Many ecological variables are necessarily non-negative. Population sizes, rates,
and probabilities are examples. Consequently, when such variables are considered
in connection with function-valued traits, certain inequality constraints have to be
satisfied.

Problems with inequality constraints for s(a) that are local in determinant space,
such as s(a) � g1(a) and s(a) � g2(a), have been widely studied in the general the-
ory of the calculus of variations. If an extremal satisfies these inequality constraints
with strict inequality, such as s(a) < g1(a) and s(a) > g2(a), the extremal is said
to be an interior solution. By contrast, if an extremal satisfies one or more inequality
constraints with equality, we say that the extremal is on the border. Euler’s equation
(11) need not be satisfied on the border. The extremal can be a combination of an
interior solution and borders. Points (a, s(a)) where the extremal changes from the
border to the interior are called switching points. At switching points, the following
equation must be satisfied

F(a, s(a), s′(a)) − F(a, g(a), g′(a))

−(y′(a) − g′(a))Fy′(a, s(a), s′(a)) = 0. (16)

If Fs′s′(a, g(a), z) > 0 or Fs′s′(a, g(a), z) < 0 for all z satisfying |z − s′(a)| �
|g′(a) − s′(a)|, then condition (16) reduces to s′(a) = g′(a).

2.3.2. Global equality and inequality constraints
In some models, functions s need to satisfy equality constraints of the type

Ci(s) =
∫ amax

amin

�i(a, s(a), s′(a))da = γi (17)

with i = 1, . . . , n, which involve integrals and thus apply globally in determinant
space. As in the method of Lagrange multipliers in ordinary constrained optimiza-
tion, conditions (17) result in a Lagrange function

L = F − (λ1, . . . , λn)
T (�1, . . . , �n), (18)

and Euler’s equation takes the form

d

da
Ls′(a, s(a), s′(a)) = Ls(a, s(a), s′(a)), (19)

known as the Euler-Lagrange equation. The extremal then has to satisfy equa-
tion (19), and the unknown Lagrange multipliers λi are solved from (17).

Inequality constraints of the form Ci(s) � γi require equations (18) and (19)
to be satisfied together with the so-called Karush-Kuhn-Tucker conditions,

{λi = 0 and Ci(s) < γi} or {λi � 0 and Ci(s) = γi}. (20)
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2.3.3. Local equality constraints and free boundary values
In the general problem of the calculus of variations, the boundary conditions
s(amin) = Amin and s(amax) = Amax have to be satisfied. Such conditions may
be referred to as local equality constraints and often occur in problems related to
physics, e.g., when determining the shape of a chain hanging from its two endpoints.

In other problems, however, the values s(amin) or s(amax) are free. This is
typically the case in ecological models. When boundary values are free, Euler’s
boundary condition has to be satisfied, which is obtained from equation (10),

Fs′(amin, s(amin), s
′(amin)) = 0, (21)

with an analogous condition for amax.

2.3.4. Conditions for minimality
Euler’s equation does not guarantee the minimality or maximality of an extremal.
A necessary condition for a minimum is

Fs′s′(a, s(a), s′(a)) � 0 for all a ∈ [amin, amax]. (22)

The condition Fs′s′(a, s(a), s′(a)) > 0 is called the strong Legendre condition. It
is not a sufficient condition for minimality. By contrast, a sufficient condition for a
global minimum is provided by the following theorem.

Theorem 1. If F(a, s, s′) is differentiable and convex with respect to s and s′, then
an extremal is a global minimum of (8).

2.3.5. No dependence on derivative
In many problems related to physics, the integrand of (8) depends on both s(a)

and s′(a), especially when s(a) describes the position and s′(a) the velocity of an
object. In many ecological models, however, the integrand does not depend on s′,
but instead is of the simpler form F(a, s(a)). In such cases, Euler’s equation (11)
takes the form

Fs(a, s(a)) = 0, (23)

from which s can be solved implicitly.
Euler’s equation (23) has to be satisfied also at the boundaries amin and amax. As

a result, no fixed boundary conditions of the form s(amin) = Amin, s(max) = Amax
can be satisfied in general. This is not a problem, because in ecological mod-
els the boundary values are typically free, and Euler’s boundary conditions (21)
Fs′(amin, s(amin), s

′(amin)) = 0 and the analogous condition for amax are automat-
ically satisfied, because Fs′ = 0.

When there are local inequality constraints for the function s(a), the extremal
consists of the corresponding borders together with an interior solution satisfying
(23). Since Fs′ = 0, the condition (16) becomes F(a, s(a)) = F(a, g(a)), which is
satisfied, because the function s is assumed to be continuous. The extremal is thus
a continuous curve, consisting of the interior solution together with the borders.

Concerning corners, the first corner condition (14) of Erdmann is automatically
satisfied, and the second corner condition (15) is satisfied since s is assumed to be
continuous.
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2.4. Applying the calculus of variations to ecological models

Based on the above considerations, we now assume that the invasion fitness of a
mutant in an environment set by the resident can be written as

r(smut, Eres) =
∫ amax

amin

F(a, smut(a), s′
mut(a), Eres)da. (24)

In most ecological models, finding a function-valued evolutionarily singular strat-
egy requires more than merely applying the calculus of variations. The reason is
that the integrand F usually depends also on the environment set by the resident.
We therefore have to analyze the following fixed-point problem: find a resident
strategy s with resulting environment E such that s solves the problem of calcu-
lus of variations given by (24) for E. In short, a singular strategy satisfies Euler’s
equation with environmental feedback,

{
r(s, E) = 0
d
da

Fs′(a, s(a), s′(a), E) = Fs(a, s(a), s′(a), E).
(25)

In contrast to the infinite-dimensional strategy s, the dimension of the envi-
ronmental variable E is usually finite, and frequently small. It is therefore often
easier to find evolutionarily singular strategies in the following way: find the envi-
ronmental variable E for which the resulting extremal strategy s begets the same
environmental variable E.

Only in very simple ecological models with frequency-independent selection,
environmental feedback is absent, such that finding evolutionarily singular strate-
gies is a direct optimization problem. Such a simple situation is addressed in the
example considered in the following section. After that we will present four other
examples of increasing ecological complexity, to illustrate the use of various tools
derived from the calculus of variations.

3. First example: Frequency-independent selection

As a first example, we will study a model in which finding the evolutionarily sin-
gular strategy reduces to a direct optimization problem. This simplification applies
whenever the strategy giving a mutant maximum fitness is the same in all environ-
ments potentially set by the resident.

For coherence’s sake, all examples in this article address the evolution of met-
abolic investment strategies, by extending a model introduced by Dieckmann et al.
(in prep).

3.1. Model description

We consider consumers that can feed on a variety of resources. In general, the utili-
zation of different resources requires prior physiological or morphological invest-
ments into handling and processing. Such investments are expected to be costly.
How should a consumer allocate these metabolic investments across the range of
different resources?
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Let 0 � a � 1 characterize the digestibility of the different types of resource,
with the value a = 0 corresponding to highest digestibility. Values s(a) of the func-
tion-valued trait s now describe the metabolic effort invested on different resource
types a. This investment is necessarily non-negative: s(a) � 0 for all a. With met-
abolic effort s(a), the gain obtained from consuming one resource unit of type a is
assumed to equal

e(a, s(a)) = s(a)

s(a) + a
. (26)

This quantity is called the metabolic efficiency, and ensures that there is diminish-
ing return of metabolic investment. If the density of resource type a is n(a), the
consumer’s total gain is

T (s, n) =
∫ 1

0
n(a)e(a, s(a))da. (27)

Without constraints, evolution of the function-valued strategy s would cause meta-
bolic effort s(a) to approach infinity for all types of resources a �= 0. However, as
investment is costly, the total investment

S(s) =
∫ 1

0
s(a)da (28)

must necessarily be limited. To reflect this, we assume that increasing total invest-
ment is costly, decreasing the consumer’s growth rate. Specifically, we assume that
consumers with trait s, experiencing resource densities n and a total consumer
population size of N , have a per capita growth rate of

r(s, N) = T (s, n) − cS(s) − N

K

=
∫ 1

0

[
n(a)

s(a)

s(a) + a
− cs(a) − N

K

]
da, (29)

where K is the consumer’s carrying capacity, and c is a constant measuring the
cost of metabolic investment. To keep this first example simple, we assume that the
availability of resource types, described by n, remains unaffected by the consumer,
even though this is not always realistic in nature.

3.2. Invasion fitness

For a given resident strategy sres, the equilibrium condition r(sres, Nres) = 0 results
in Nres = K(T (sres, n) − cS(sres)), if T (sres, n) − cS(sres) � 0, and in Nres = 0
otherwise. We can then consider a small mutant population with strategy smut. The
mutant’s invasion fitness is given by

r(smut, Nres) =
∫ 1

0
F(a, smut(a), Nres)da

=
∫ 1

0

[
n(a)

smut(a)

smut(a) + a
− csmut(a) − Nres

K

]
da, (30)
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where the environment set by the resident is characterized by the resident’s popu-
lation size, Eres = Nres.

3.3. Analysis based on the calculus of variations

We can use the calculus of variations to identify the models’ evolutionarily singular
strategies. According to (30), Euler’s equation (23) becomes

Fs(a, s(a), N) = n(a)a

(s(a) + a)2 − c = 0. (31)

In general, we would now have to find a strategy s, whose equilibrium popu-
lation size is N , and which satisfies Euler’s equation for N , Fs(a, s(a), N) = 0.
In this first example, however, we notice that equation (31) does not depend on
population size N . The problem of finding evolutionarily singular strategies is thus
a direct optimization problem. This does not come as a surprise, because the envi-
ronment that the mutant experiences depends only on the one-dimensional variable
N , the resident’s population size. In such a case, evolution proceeds according to
an optimization principle (Metz et al. 1996b; Heino et al. 1998), and selection is
said to be frequency-independent.

We can thus obtain the evolutionarily singular strategy directly from solving
equation (31). Any solution must, however, be non-negative. Wherever the strategy
satisfying (31) is negative, the correct solution follows the border s(a) = 0. The
sought evolutionarily singular strategy is therefore given by

s(a) =
{√

n(a)a
c

− a if n(a) � ac

0 otherwise,
(32)

recovering an earlier result obtained by Dieckmann et al. (in prep). Note that in this
case, according to equation (63), the selection gradient Gs(a) = Fs(a, s(a), N) =
0. Therefore the singular strategy given by (32) is an equilibrium of the canonical
equation (1).

The calculus of variations allows us to prove that the singular strategy (32) is
evolutionarily stable. The second derivative

Fss(a, s(a), N) = − 2n(a)a

(s(a) + a)3 � 0, (33)

is non-positive. Together with Fss′ = Fs′s′ = 0 this means that the function
F(a, s(a), N) is concave with respect to s(a) and s′(a). According to Theorem 1,
the evolutionarily singular strategy thus is a global maximum of r(s, N), and is
therefore evolutionarily stable.

3.4. Illustrations

Figure 1b shows an example of an evolutionarily stable investment strategy s∗. For
the purpose of this illustration, we have assumed that the resource densities are
given by
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Fig. 1. (a) Resource densities n(a) according to equation (34). (b) Evolutionarily stable met-
abolic investment strategy s∗ in the first example, according to equation (32). Parameters:
c = 0.5

n(a) = 4a(1 − a), (34)

shown in figure 1a. Figure 1b shows that, above the threshold value a = 1 − c/4 =
0.875, resources are too indigestible (large a) and rare (low n(a)) for any metabolic
effort to be invested.

4. Second example: Global inequality constraints

The second example illustrates how global inequality constraints on function-val-
ued traits are handled through the calculus of variations.

4.1. Model description and invasion fitness

As mentioned earlier, total investment S(s) in the metabolic investment model is
necessarily limited. In the first example above, this limitation was incorporated
by assuming a cost of total metabolic investment in terms of reduced population
growth rate. In our second example we proceed differently, by removing this cost
from the model’s invasion fitness,

r(smut, Nres) =
∫ 1

0
F(a, smut(a), Nres)da

=
∫ 1

0

[
n(a)

smut(a)

smut(a) + a
− Nres

K

]
da, (35)

while considering the global inequality constraint S(s) � C. The environment set
by the resident is again characterized by the resident’s population size, Eres = Nres.

4.2. Analysis based on the calculus of variations

As explained in Section 2.3.2, an inequality constraint can be reflected by con-
sidering a Lagrange function, L = n(a)

smut(a)
smut(a)+a

− Nres
K

− λsmut(a), in Euler’s
equation (19),

Ls(a, s(a), N) = n(a)a

(s(a) + a)2 − λ = 0. (36)
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In addition, the Karush-Kuhn-Tucker conditions (20) have to be satisfied. Again,
the equation (36) does not depend on the resident population size, and finding the
singular strategies is a direct optimization problem.

For λ = 0, equation (36) cannot be satisfied, unless there are no resources at
all, n(a) = 0 for all a �= 0. Since we are not interested in this trivial case, the
inequality constraint S(s) � C is always satisfied with equality S(s) = C. This
condition results in (32), where the model parameter c is replaced by the Lagrange
multiplier λ. The value of λ can be found numerically from S(s) = C.

As in the first example, the selection gradient Gs(a) = Fs(a, s(a), N). How-
ever, Gs(a) = 0 only if n(a)a = 0. We can include an equality constraint S(s) = C

into the canonical equation by using the variance-covariance function σ 2
s (a′, a) =

δ(a − a′) − 1 given by equation (68) with A(a) = 1. The equilibrium condition of
the canonical equation d

dt
s(a) = 0 results then in a similar condition as (36).

4.3. Illustrations

Some illustrations are shown in Figure 2a.

5. Third example: Dependence of fitness on a trait’s derivative

The third example shows how to address evolutionary problems in which invasion
fitness depends on a function-valued trait’s derivative s′(a) = d

da
s(a), in addition

to the dependence on the trait s(a) itself.

5.1. Model description and invasion fitness

In conjunction with assuming that metabolic investment itself is costly, it is inter-
esting to explore situations in which physiological mechanisms that accurately
separate the investment between two similar resource types are also costly. In other
words, in addition to the direct costs of metabolic investment, there may be a cost

Fig. 2. (a) Evolutionarily stable metabolic investment strategies s∗ in the second example,
with global inequality constraint S(s) � C, for different values of C. The value C = 0.1
corresponds to λ = 1.05617, C = 0.2 to λ = 0.681346, and C = 0.294351 to λ = 0.5.
The result for the latter case is thus identical to that in Figure 1b. (b) Evolutionarily stable
metabolic investment strategies s∗ in the third example, for different plasticity costs δ. The
dashed curve corresponds to the case without plasticity costs, δ = 0. Parameters: c = 0.5



14 K. Parvinen et al.

of plasticity. The derivative s′ describes how plastic a strategy s is. We assume
that the cost of plasticity increases with the absolute value of s′(a), and choose the
function (s′(a))2 to describe this dependence. Assuming that the cost of plasticity
reduces the growth rate r , we obtain the following invasion fitness,

r(smut, Nres) =
∫ 1

0
F(a, smut(a), s′

mut(a), Nres)da

=
∫ 1

0

[
n(a)

smut(a)

smut(a) + a
−csmut(a) − δ(s′

mut(a))2 − Nres

K

]
da, (37)

with δ � 0 scaling the cost of plasticity. For simplicity, we again use the assumption
that n remains constant. For δ = 0, the model above is identical to that in the first
example.

5.2. Analysis based on the calculus of variations

Since Fs′ = −2δs′(a), Euler’s equation (11) becomes

d

da
Fs′ = −2δs′′(a) = n(a)a

(s(a) + a)2 − c = Fs. (38)

Again, finding the singular strategies is a direct optimization problem. As the re-
source density n can be an arbitrary function, we are not able, in general, to solve
this differential equation analytically. Numerical solution is, however, possible.

Since the strategy’s boundary values s(0) and s(1) are not prescribed, we obtain
the two necessary conditions for determining the constants of the solution of (38)
from Euler’s boundary condition (21): Fs′(0, s(0), s′(0)) = −2δs′(0) = 0, result-
ing in s′(0) = 0 and, analogously, in s′(1) = 0. If the extremal consisted of an inte-
rior solution satisfying (38) together with a border solution s(a) = 0 = g(a), abut-
ting at a∗, the switching point condition (16) would reduce to s′(a∗) = g′(a∗) = 0,
because Fs′s′ = −2δ < 0. From equation (33) we obtain Fss � 0, and since
Fss′ = 0 and Fs′s′ = −2δ < 0, the function F is concave with respect to s and s′.
According to Theorem 1,any singular strategy is therefore evolutionarily stable.

In the third example, the fitness gradient Gs(a) = Fs(a, s(a), s′(a)) − d
da

Fs′
(a, s(a), s′(a)). The condition Gs(a) = 0 of the canonical equation approach thus
results in the same condition as the calculus of variations approach (38).

5.3. Illustrations

We have solved equation (38) for different values of δ, using numerical methods for
the solution of ordinary differential equations. The resulting evolutionarily stable
investment strategies s∗ are shown in figure 2b. These results demonstrate how,
starting from the cost-free case indicated by the dashed curve, increasing the cost
parameter δ causes the evolutionarily stable strategy s∗ to become more and more
uniform.
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6. Fourth example: Frequency-dependent selection

The previous examples were deliberately kept rather simplistic in that selection
remained frequency-independent. Our fourth example now shows how to analyze
function-valued traits exposed to frequency-dependent selection.

6.1. Model description

To enhance the ecological realism of our metabolic investment model, we assume
that the resource densities n respond to consumption according to the following
differential equation,

d

dt
n(a) =

(
1 − n(a)

k(a)

)
n(a) − γ n(a)Ne(a, s(a)), (39)

where k(a) is the density the resource of type a would attain in the absence of
consumers, and the parameter γ � 0 is the consumer’s per capita harvesting rate.
The intensity with which a consumer with strategy s harvests resources of type a is
assumed to be proportional to its metabolic efficiency e(a, s(a)). For simplicity, we
assume that the resource population grows much faster than the consumer popula-
tion, and is thus always at an equilibrium that can be determined from d

dt
n(a) = 0,

n∗(a, N, s(a)) =
{

k(a)(1 − γNe(a, s(a))) if 1 − γNe(a, s(a)) > 0
0 otherwise.

(40)

For γ → 0, corresponding to consumers that affect their resources only very
weakly, this results in n∗(a) = k(a), such that we recover the simpler model con-
sidered in the first example as a special case.

6.2. Invasion fitness

In this example, the environment mutants experience is characterized by both the
resident’s population size Nres and the resource density n∗(a, Nres, sres(a)). This
means that this environment is no longer one-dimensional, and selection therefore
is frequency-dependent.Analogously to equation (30), the mutant’s invasion fitness
is given by

r(smut, Nres, sres) =
∫ 1

0
F(a, smut(a), n∗(a, Nres, sres(a)), Nres)da

=
∫ 1

0

[
n∗(a, Nres, sres(a))

smut(a)

smut(a) + a
− csmut(a) − Nres

K

]
da. (41)
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6.3. Analysis based on the calculus of variations

Euler’s equation for this example has the same form as in the frequency-indepen-
dent case, equation (31), with the difference that the resource densities are not fixed,
but are now obtained from equation (40). In order to find the evolutionarily singu-
lar strategy for this example, we must find a strategy s, for which the consumer’s
equilibrium population size is N , and resource densities are n∗(a, N, s(a)). This
strategy s must satisfy Euler’s equation (31) in the environment N , n∗(a, N, s(a)).

In practice, however, it is much easier to (i) choose a particular population size
N , (ii) obtain the corresponding resource densities and extremal strategy from solv-
ing the equations (32) and (40), and (iii) vary N until r(s, N, s) = 0 is satisfied.
We used numerical methods to accomplish this task.

As in the frequency-independent case in the first example, we obtain for the
second derivative Fss � 0. Since Fss′ = Fs′s′ = 0, the function F is concave with
respect to ss′. According to Theorem 1, once an evolutionarily singular strategy is
identified, it is necessarily evolutionarily stable.

In the fourth example, the fitness gradient Gs(a) = Fs(a, s(a), n∗(a, N, s(a)),

N). Again, the condition Gs(a) = 0 of the canonical equation approach results in
the same conditions as the calculus of variations approach.

6.4. Illustrations

Figure 3 shows the different evolutionarily stable strategies resulting for different
values of the harvesting rate γ . We have again chosen k(a) = 4a(1 − a), so that
in the absence of consumers, or for γ → 0, the resource densities are identical
to those in the frequency-independent case. Our numerical results illustrate how
increasing γ causes metabolic investment to become less beneficial.

7. Fifth example: Complex fitness functions

In all previous examples, the fitness of a mutant could be written as a single integral
of the form shown in equation (7). This is not always the case. To illustrate how
to use the calculus of variations for analyzing models with more complex fitness
functions, our fifth example extends the metabolic investment model to a meta-
population setting. The resultant selection is frequency-dependent. We have thus

Fig. 3. Evolutionarily stable metabolic investment strategies s∗ in the fourth example, for
γ = 0, γ = 0.5, and γ = 1. For γ = 0, selection becomes frequency-independent, and
the evolutionarily singular strategy coincides with that in figure 1b. Parameters: c = 0.5,
K = 10.
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frequency-independent selection in the first three examples, and frequency-depen-
dent selection in the last two.

7.1. Model description

A metapopulation consists of local populations living in different habitat patches
(Levins 1969, 1970). Here we consider M such patches. In patch i = 1, . . . , M ,
the density of resources of type a is ni(a). For simplicity, we again assume that the
resource densities ni(a) are unaffected by the consumer.

In each patch, consumer populations grow according to the same birth and death
processes considered in the first example. In addition, dispersal between patches
occurs with per capita emigration rate m, so that population dynamics in the differ-
ent patches are coupled. Emigrants survive dispersal with probability p. Survived
emigrants choose the patch into which they immigrate randomly, independently
of the patch properties. Therefore, the probability to immigrate into patch i is 1

M
.

It is thus possible that an emigrant immigrates into the same patch it left from.
As a result, the population size Ni in patch i changes according to the following
differential equation,

dNi

dt
= gi(s, Ni)Ni − mNi + pNm, (42)

where N = 1
M

∑M
i=1 Ni is the average population size across patches. The local

population growth rate in patch i is given by

gi(s, Ni) =
∫ 1

0
F i(a, s(a), Ni)da

=
∫ 1

0

[
ni(a)

s(a)

s(a) + a
− cs(a) − Ni

Ki

]
da. (43)

7.2. Invasion fitness

The differential equation (42) can be written in matrix form,

d

dt
N = A(s, N)N,

Aii = gi(s, Ni) − m + p
m

M
,

Aij = p
m

M
, if i �= j. (44)

We now assume that a resident population with strategy sres has reached its popula-
tion-dynamical equilibrium Nres = (N1,res, N2,res, . . . , NM,res). Therefore, a small
mutant population with strategy smut will initially grow or decrease according to
the linear differential equation d

dt
Nmut = A(smut, Nres)Nmut. The mutant’s invasion

fitness is given by the dominant eigenvalue of the matrix A(smut, Nres), which is
the long-term exponential growth rate of the mutant in the environment set by the
resident.
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However, in this example it is more practical to use, instead, the basic reproduc-
tion ratio R as a measure of invasion fitness. This quantity describes the expected
number of offspring produced by an individual during its entire life. In a meta-
population setting, the basic reproduction ratio can be determined as the expected
number of immigrant mutants produced by an immigrating mutant during its entire
life (Gyllenberg and Metz 2001; Metz and Gyllenberg 2001).

When a mutant arrives in patch i, it encounters a resident population of size
Ni,res. Initially, the mutant population is rare, and therefore does not affect the pop-
ulation dynamics of the resident. Consequently, the mutant population will grow
according to the differential equation

d

dt
Ni,mut = Ni,mut

[
gi(smut, Ni,res) − m

]
. (45)

This means that the mutant’s population size at time τ after arrival of the initial
mutant population of size Ni,mut(0) will equal

Ni,mut(τ ) = Ni,mut(0)e[gi(smut,Ni,res)−m]τ . (46)

This mutant population will produce mutant emigrants at rate mNi,mut(τ ). There-
fore, the expected number of immigrants produced by a mutant with strategy smut
that has immigrated into habitat patch i is

Ri,mut(smut, Ni,res) = p

∫ ∞

0
m

Ni,mut(τ )

Ni,mut(0)
dτ = p

∫ ∞

0
me[gi(smut,Ni,res)−m]τ dτ

=
{ pm

m−gi(smut,Ni,res)
if m − gi(smut, Ni,res) > 0

∞ otherwise.
(47)

An immigrating mutant has a probability of 1/M to immigrate into patch i. Analo-
gously to Parvinen (2002), we obtain the expected number of immigrants produced
by an immigrating mutant as

Rmut(smut, Nres) = 1

M

M∑
i=1

Ri,mut(smut, Ni,res). (48)

Notice that the environment set by the resident is now M-dimensional, Eres = Nres,
and selection is therefore frequency-dependent for M > 1.

At population-dynamical equilibrium, the resident populations are stationary in
all patches, dNi

dt
= 0 for all i = 1, . . . , M . From equation (42) we obtain

m − gi(sres, Ni,res) = pmN res

Ni,res
> 0, (49)

and therefore

Rmut(sres, Nres) = 1

M

M∑
i=1

pm

m − gi(sres, Ni,res)
= 1

M

M∑
i=1

Ni,res

N res
= 1. (50)

This confirms that, at population-dynamical equilibrium, each resident individual
exactly replaces itself, as consistency requires.
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7.3. Analysis based on the calculus of variations

In the previous examples, we could use the calculus of variations directly to find
evolutionarily singular strategies. In the metapopulation model the situation is more
complex. In equation (43), the local growth rates gi in patches i are expressed as
integrals of the form shown in equation (7).Yet, the fitness measure in equation (48)
is a function of these growth rates gi , and cannot be expressed as one integral of
the form shown in equation (7). This means that we cannot apply the calculus of
variations in its usual form. However, we can find candidate singular strategies by
a method that is similar to that for deriving Euler’s equation (11).

We assume that a given resident strategy sres is an evolutionarily singular strat-
egy, which means that it is a local minimum or maximum of the fitness measure
Rmut(smut, Nres). Therefore, the fitness of a mutant with function-valued strategy
smut = sres+ε�s, Rmut(sres+ε�s, Nres), will be at a local maximum or a minimum
for ε = 0. This implies

d

dε
Rmut(sres + ε�s, Nres)

∣∣
ε=0 = 0 (51)

for all possible perturbation functions �s. We can calculate this derivative by first
obtaining the corresponding derivative of d

dε
Ri,mut,

d

dε
Ri,mut(sres + ε�s, Ni,res) = pm d

dε
gi(sres + ε�s, Ni,res)

[m − gi(sres + ε�s, Ni,res)]2 , (52)

for which we need the derivative d
dε

gi according to equation (43),

d

dε
gi(sres + ε�s, Ni,res) =

∫ 1

0
F i

s (a, sres(a) + ε�s(a), Ni,res)�s(a)da, (53)

so that we obtain, by combining equations (49), (52), and (53),

d

dε
Ri,mut(sres + ε�s, Ni,res)

∣∣
ε=0 = 1

pm

(
Ni,res

N res

)2 ∫ 1

0
F i

s (a, sres(a))�s(a)da.

(54)

Using equation (48), we thus obtain

d

dε
Rmut(sres + ε�s, Nres)

∣∣
ε=0 = 1

Mpm

∫ 1

0

(
M∑
i=1

(
Ni,res

N res

)2

F i
s (a, sres(a))

)

×�s(a)da. (55)

According to (51), this derivative has to be zero for all possible perturbation func-
tions �s, which implies

M∑
i=1

(
Ni,res

N res

)2

F i
s (a, sres(a), Ni,res) = 0. (56)
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This means that an evolutionarily singular strategy sres in the metapopulation model
has to satisfy

M∑
i=1

(
Ni,res

N res

)2 (
ni(a)a

(sres(a) + a)2 − c

)
= 0, (57)

from which we obtain the solutions s∗,

s∗(a) =
{√

ñ(a, Nres)
a
c

− a, if ñ(a, Nres) � ac

0 otherwise,
(58)

with

ñ(a, Nres) =
∑M

i=1

(
Ni,res/N res

)2
ni(a)∑M

i=1

(
Ni,res/N res

)2 . (59)

The remaining unknowns Nres = (N1,res, N2,res, . . . , NM,res) in (58) are deter-
mined from setting d

dt
Ni,res = 0 in equation (42).As a result, we have Rmut(s

∗, Nres)

= 1.
If the second derivative of invasion fitness with respect to the mutant’s strategy

is negative for all perturbation functions �s,

d2

dε2 Rmut(sres + ε�s, Nres)
∣∣
ε=0 < 0, (60)

the evolutionarily singular strategy sres is a local fitness maximum, and thus evolu-
tionarily stable. Using the same technique as above, we obtain

d2

dε2 Rmut(sres + ε�s, Nres)
∣∣
ε=0 = 1

Mp2m2

M∑
i=1

(
Ni,res

N res

)3

[∫ 1

0

pmN res

Ni,res
F i

ss(a, sres(a))(�s(a))2da

+2

(∫ 1

0
F i

s (a, sres(a))�s(a)da

)2
]

. (61)

The first term in the square brackets is negative because, according to equation (33),
we have F i

ss(a, sres(a)) � 0. Since the second term is positive, it is difficult to deter-
mine the second derivative’s sign in general. Yet we can conclude that for small
dispersal rates m the second term dominates relative to the first, which means that
the second derivative is positive. By contrast, for large values of m the first term
dominates. Therefore, for small dispersal rates, evolutionary branching may be
possible, whereas for large dispersal rates, the singular strategy is expected to be
evolutionarily stable.

In the fifth example, the left-hand side of equation (55) is the fitness gradient
Gs(a) when we choose �s = δa . The condition Gs(a) = 0 of the canonical equa-
tion approach thus results in the same condition (56) as the calculus of variations
approach.
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Fig. 4. Resource densities ni(a) according to equation (62)

7.4. Illustrations

To illustrate evolutionarily singular strategies in the fifth example, we use the fol-
lowing functions for describing the resource densities in patch i,

ni(a) = 4a(1 − a)

1 + 2(a − âi )2 , i = 1, 2, with â1 = 0.1 and â2 = 0.9, (62)

which result in skewed resource density distributions as illustrated in figure 4.
Numerical solutions for the resulting evolutionarily singular strategies s∗ are

shown in figure 5, which depicts different evolutionarily stable monomorphic and
dimorphic solutions for a two-patch metapopulation, M = 2. For comparison, we
also display the locally optimal metabolic investment strategies in the two patches
as dashed curves. For sufficiently small values of the dispersal rate m, the mono-
morphic singular strategy is not evolutionarily stable, and a protected dimorphism
of two strategies is possible (Figure 5a-c). For very small values of m, the two
coexisting strategies essentially are complete specialists, each adapted to one of
the two patches (Figure 5a). When the dispersal rate m is increased, these strategies
converge (Figure 5bc). When the dispersal rate is increased further, coexistence of
the two strategies is no longer possible: instead a monomorphic generalist strategy
becomes evolutionarily stable (Figure 5d). Notice that the stable coexistence of
three or more strategies is excluded, since the number of patches serves as an upper
limit to the number of stably coexisting strategies (Parvinen, in prep.).

Figure 6 illustrates how parameters in the metapopulation model affect the
potential for the emergence of an evolutionarily stable dimorphism of metabolic
investment strategies. The figure demonstrates that the evolutionary effect of in-
creased dispersal rate m shown in figure 5 applies more generally. For small values
of m, the two specialist strategies can always coexist. When m is increased, dimor-
phic coexistence becomes impossible, and instead a monomorphically singular
strategy becomes evolutionarily stable. The critical value of m at which this change
from dimorphism to monomorphism occurs, varies with the carrying capacity K2.
For intermediate values of K2, the two patches are more balanced, and coexis-
tence remains possible for higher dispersal rates m. For smaller or larger values of
K2, either one of the two patches dominates, and coexistence is possible only for
lower dispersal rates. Note that patch 1 has better resource distribution than patch
2, and therefore the value of K2 for which patches are most balanced is larger than
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Fig. 5. Evolutionary outcomes for the metapopulation model considered in the fifth exam-
ple. (a-c) For low dispersal rates, the monomorphically evolutionarily singular strategy is
not evolutionarily stable, enabling coexistence of two dimorphically singular strategies. (d)
For high dispersal rates, the monomorphically singular strategy is evolutionarily stable, and
a dimorphism does not evolve. Optimal investment strategies in the two patches are shown
as dashed curves. Parameters: p = 0.95, c = 0.5, K1 = 10, K2 = 16

Fig. 6. Dependence of evolutionary outcomes in the fifth example on carrying capacity K2

and dispersal rate m. Parameter combinations enabling the evolutionarily stable coexistence
of two strategies are shown in dark grey, while combinations resulting in a monomorphic
evolutionarily stable strategy are shown in light grey. Parameters: p = 0.95, c = 0.5,
K1 = 10

K1 = 10. Balanced patches have been shown before to support the coexistence of
scalar-valued strategies in metapopulation models (Parvinen 2002).

8. Discussion

In this article we have introduced a general approach to using the calculus of varia-
tions for finding and analyzing evolutionarily singular function-valued strategies of
adaptive dynamics. While previous work focused on the canonical equation of func-
tion-valued adaptive dynamics (Dieckmann et al. in prep; Ernande and Dieckmann
2004; Ernande et al. 2004; Heino et al. in prep), the general result derived here
shows that an evolutionarily singular strategy has to satisfy Euler’s equation with
environmental feedback. The resultant two alternative approaches to function-val-
ued adaptive dynamics constructively complement each other:
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– As demonstrated by equations (10) and (63), Euler’s equation is satisfied if and
only if a function-valued strategy causes the corresponding selection gradient
to vanish. Therefore, analyses based, alternatively, on the calculus of variations
or the canonical equation of adaptive dynamics result in the same predictions
for evolutionarily singular strategies, provided there are no constraints on which
strategies can be realized. This is the case in our first, third and fourth example.
Also in our fifth example with complex fitness functions we obtain the same
conditions for singular strategies.

– In the canonical equation, evolutionary constraints are expressed via the var-
iance-covariance function of a strategy’s mutation distribution. Although this
perspective is essential for correctly describing the expected transient dynamics
of a function-valued trait, it makes it relatively difficult to derive evolutionary
outcomes. By contrast, as we have showed above and in the appendix, incor-
porating several standard types of evolutionary constraints into the calculus of
variations is easy.Also in our second example, which included a global inequality
constraint, the same singular strategies are obtained from the two approaches.

– The calculus of variations also helps in evaluating the second-order conditions
that determine the evolutionary stability of singular strategies.

– The canonical equation, on the other hand, can be used in situations in which the
calculus of variations is not applicable, especially since the canonical equation
allows considering variance-covariance constraints of arbitrary form.

– The calculus of variations cannot be used to evaluate the convergence stability of
an evolutionarily singular strategy, which determines whether or not such a strat-
egy serves as an evolutionary attractor. Also for describing transient evolutionary
dynamics, the canonical equation is needed.

We have presented several worked examples to illustrate the various meth-
ods presented in this article. All examples addressed the evolution of a metabolic
investment strategy, in a variety of different ecological settings. In the first example
(Section 3), ecological conditions were so simple that no environmental variables
appeared in Euler’s equation. This is characteristic of models without frequency-
dependent selection: finding evolutionarily singular strategies in such models thus
is a direct optimization problem, without the need to consider environmental feed-
back. The second example (Section 4) served to illustrate the treatment of global
inequality constraints, which may be used to reflect costs involved in the expres-
sion of function-valued traits. The third example (Section 5) explained how to
address problems in which fitness depends not only on strategy values s(a) but
also on a strategy’s derivative s′(a) = d

da
s(a). Whereas in the first three examples

selection was frequency-independent, the fourth example (Section 6) illustrated the
treatment of frequency-dependent selection, which naturally occurs in virtually all
ecological models with realistic environmental feedback. Also in the fifth example
(Section 7) selection was frequency-dependent: the analysis of a metapopulation
model showed how to deal with models in which fitness cannot be expressed as a
single integral. This example also featured an evolutionarily stable dimorphism in
a function-valued strategy.
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Together with Dieckmann et al. (in prep), this article provides a systematic
framework for studying the adaptive dynamics of function-valued traits. Concrete
applications of this framework are presented by Ernande and Dieckmann (2004);
Ernande et al. (2004) and Heino et al. (in prep). We hope that the new tools intro-
duced here will help to raise the profile of function-valued traits in theoretical
evolutionary ecology, and result in interesting applications in the future.
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Appendix: Calculus of variations and the canonical equation

According to Dieckmann et al. (in prep), the expected dynamics of a function-val-
ued trait can be described by the so-called canonical equation of function-valued
adaptive dynamics, equation (1). For evolutionarily singular strategies, the selection
gradient Gs(a) = d

dε
J (s + εδa)

∣∣
ε=0 is zero for all a. Below we consider functions

J of type J (s) = ∫ amax
amin

F(a, s(a), s′(a))da as in equation (8).
When we compare the selection gradient with equation (10), we see that the

latter gives the selection gradient at a if we choose the considered perturbance
function to equal a Dirac delta function peaked at a, �s = δa . Equation (10) then
reduces to

Gs(a) = d

dε
J (s + εδa)

∣∣
ε=0 = Fs(a, s(a), s′(a)) − d

da
Fs′(a, s(a), s′(a)).(63)

This implies that the selection gradient vanishes if and only if Euler’s equation
(11) is satisfied. In this sense, the alternative methods for identifying evolutionarily
singular strategies, by using the calculus of variations or the canonical equation,
are equivalent.

However, some differences between these two methods arise for constrained
evolution. Sections 2.3.1 to 2.3.3 described how to reflect several standard evo-
lutionary constraints in the calculus of variations. Yet, the mutation structure of
a function-valued strategy might impose constraints that cannot be represented in
terms of local or global constraints of the form considered in these sections. In
the approach of Dieckmann et al. (in prep), such restrictions are incorporated into
the canonical equation via a function-valued trait’s mutational variance-covariance
function.

A global equality constraint of the form

C(s) =
∫ amax

amin

�(a, s(a))da = γ. (64)
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is readily transformed into a mutational variance-covariance function that, when
applied in the canonical equation of function-valued adaptive dynamics (1), ensures
that the constraint remains respected. From equation (64) it follows that

d

dt

∫ amax

amin

�(a, s(a))da =
∫ amax

amin

�s(a, s(a))
d

dt
s(a)da = 0, (65)

where �s(a, s(a)) = ∂
∂s

�(a, s(a)). Using equation (1) and swapping the order of
integration, we obtain

1

2
µsn̄s

∫ amax

amin

[
Gs(a

′)
∫ amax

amin

�s(a, s(a))σ 2
s (a′, a)da

]
da′ = 0. (66)

This condition is satisfied, if for all a′ we have
∫ amax

amin

�s(a, s(a))σ 2
s (a′, a)da = 0. (67)

There are infinitely many variance-covariance functions that satisfy this condition.
One of them is

σ 2
s (a′, a) = A(a)δ(a − a′) − 1, (68)

with A(a) = (�s(a, s(a)))−1 ∫ amax
amin

�s(a
′′, s(a′′))da′′.

We have thus shown that all global equality constraints of type (64) can be
expressed through a variance-covariance function according to equation (68). Many
variance-covariance functions, however, do not correspond to a constraint of the
simple form indicated in equation (64). When analyzing evolutionary outcomes
under such non-standard constraints, the canonical equation (1) has to be used.
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