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H I G H L I G H T S

� It is unclear what shape evolutionarily stable dispersal kernels have.
� The evolution of dispersal kernels is examined in an individual-based simulation.
� We model distance-dependent competition, dispersal costs, and maternal investment.
� Competition and dispersal costs lead to unimodal kernels.
� Maternal investment selects for bimodal kernels and long-distance dispersal.
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a b s t r a c t

Since dispersal research has mainly focused on the evolutionary dynamics of dispersal rates, it remains
unclear what shape evolutionarily stable dispersal kernels have. Yet, detailed knowledge about dispersal
kernels, quantifying the statistical distribution of dispersal distances, is of pivotal importance for
understanding biogeographic diversity, predicting species invasions, and explaining range shifts. We
therefore examine the evolution of dispersal kernels in an individual-based model of a population of
sessile organisms, such as trees or corals. Specifically, we analyze the influence of three potentially
important factors on the shape of dispersal kernels: distance-dependent competition, distance-
dependent dispersal costs, and maternal investment reducing an offspring's dispersal costs through a
trade-off with maternal fecundity. We find that without maternal investment, competition and dispersal
costs lead to unimodal kernels, with increasing dispersal costs reducing the kernel's width and tail
weight. Unexpectedly, maternal investment inverts this effect: kernels become bimodal at high dispersal
costs. This increases a kernel's width and tail weight, and thus the fraction of long-distance dispersers, at
the expense of simultaneously increasing the fraction of non-dispersers. We demonstrate the qualitative
robustness of our results against variations in the tested parameter combinations.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Within the boundaries of local adaptation a species' range
is mainly influenced by its dispersal abilities (Kokko and López-
Sepulcre, 2006; Kubisch et al., 2014). Consequently there are
numerous empirical and even more theoretical studies on dis-
persal of plants and animals (Clobert et al., 2012). Yet, so far,
particularly theoretical studies on dispersal have mainly focused
on the emigration propensity of individuals, while the dispersal

process itself and the question how far to disperse has been mostly
ignored or tackled with rather arbitrary assumptions like nearest
neighbor (e.g. Travis et al., 1999; Gros et al., 2006) or global
dispersal (e.g. Poethke and Hovestadt, 2002). However, the grow-
ing awareness of the enormous influence of dispersal distances on
colonization and range expansion particularly in plants (Nichols
and Hewitt, 1994; Bohrer et al., 2005; Nathan, 2006) has inspired a
more thorough analysis of so-called dispersal kernels — the
statistical distribution of propagules in terms of distances travelled
from their origin (Cousens et al., 2008; Hovestadt et al., 2012).
The specific form of such kernels defines not only the mean
dispersal distance, but also the occurrence of potentially important
but rare long-distance dispersal events (LDD; Kot et al., 1996;
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Muller-Landau et al., 2003). ‘Fat-tailed’ distributions, which imply
a relatively large proportion of LDD, increase the velocity of
species invasions (Kot et al., 1996; Caswell et al., 2003), their
ability to cope with habitat fragmentation (Dewhirst and Lutscher,
2009), and may influence biogeographic patterns of species
diversity (Chave et al., 2002; Nathan, 2006).

An additional challenge arises from the term ‘dispersal kernel’
not always being clearly defined. A kernel may be described by
two distinctly different probability-density functions (pdfs): (i) the
density pdf, which describes the density of propagules to be
expected at a certain distance, and (ii) the distance pdf, which
describes the distribution of distances the propagules are dis-
persed to (Cousens et al., 2008; Hovestadt et al., 2012). While both
definitions are correct and kernels can be expressed either way,
their shapes will differ systematically. For example, if one con-
siders a uniform distribution of propagules per area up to a certain
maximal dispersal distance, the density pdf will resemble a
cylinder, while the distance pdf will be a linearly increasing
function of distance up to the maximal dispersal distance. This is
simply due to the fact that in two dimensions the area of a circle
increases quadratically with its radius, so the area of a thin ring at
the circle's perimeter increases linearly with its radius. Thus, if the
propagule density is to be constant within each ring independent
of its radius, proportionally more propagules have to be dispersed
to larger distances, so as to yield the same propagule density for
larger rings. Throughout this article, we express dispersal kernels
in terms of their distance pdf.

In spite of the relevance of the specific form of the dispersal
kernel for determining the distribution of propagules in space, it is
still unclear what an evolutionarily stable kernel should look like.
This question was first addressed by Hovestadt et al. (2001), who
found that fat-tailed dispersal kernels evolve in autocorrelated
landscapes (and at sufficiently fine scales, all landscapes are
autocorrelated). While a certain fraction of propagules will dis-
perse to the immediate surroundings of the parent, a significant
fraction of propagules will exhibit long-distance dispersal: the
latter propagules disperse more or less uniformly over the land-
scape, which minimizes kin competition (Hamilton and May, 1977;
Rousset and Gandon, 2002). The shape of the dispersal kernel can
thus be understood as the result of two opposing selection
pressures: kin competition would be minimized by a completely
uniform distribution of propagules, while distance-dependent
dispersal costs (for a recent review see Bonte et al., 2012) select
against long-distance dispersal. While not considered here, other
mechanisms, such as inbreeding avoidance, that have been ana-
lyzed in the context of dispersal rate evolution (Clobert et al.,
2012) may also influence dispersal distances (but see Bitume et al.,
2013).

While Hovestadt et al. (2001) include dispersal costs only
implicitly, via an assumption of increasingly unsuitable habitat
Rousset and Gandon (2002) explicitly analyzed the effect of
distance-dependent dispersal costs. Like most studies on dispersal
evolution Rousset and Gandon (2002) assume that dispersal is
under the control of the dispersing individual. Yet, this assumption
is rather unlikely to be completely true for passively dispersing
propagules like seeds. Thus, Starrfelt and Kokko (2010) studied the
evolution of dispersal distance and kernel shapes in the context of
parent–offspring conflict. They could show that maternal control
of dispersal generally leads to longer dispersal distances and even
to fat-tailed kernels.

While all these earlier studies represent important steps
towards a better understanding of the evolution of the shape of
dispersal kernels, two fundamental issues known to heavily
influence dispersal evolution have only rarely been taken into
account: (i) effects of the overall strength, and gradual attenuation
with distance, of competitive interactions are understudied (see

Bolker, 2010, for a study that does take these effects into account),
and (ii) effects of trade-offs in parental investment into offspring
dispersal have not been investigated. Firstly, as Berger et al. (2008)
point out, competition is a process that fundamentally shapes the
spatial patterns found in plant communities and that needs to be
modelled at the individual level (Law et al., 2003; Travis et al.,
2010; North et al., 2011), and not only at the population level.
A large number of models in dispersal ecology are grid-based
(Murrell et al., 2002; Gros et al., 2006; Bonte et al., 2010), which
implies either that competition acts at the local population level,
or — if only one individual is allowed per grid cell — that the
assumed competition kernel has a quadratic base, which is a
somewhat artificial assumption. Secondly, if one concedes that in
passive dispersers the dispersal process, more specifically the
dispersal distance, is centrally influenced by the parent organism
(‘maternal control’ as in Starrfelt and Kokko, 2010) it is also very
likely that parents will invest in the dispersal abilities of their
offspring (Wheelwright and Logan, 2004). It has been shown
theoretically and empirically (Roff, 1994; Fronhofer et al., 2011;
Burton et al., 2010; Travis et al., 2010, 2012) that life-history trade-
offs, e.g., between reproduction and dispersal ability, may deeply
influence the evolution of dispersal, in a way that may lead, for
example, to polymorphisms in which low-dispersal and high-
dispersal morphs coexist. In the context of sessile organisms with
passive dispersal, such trade-offs are inter-generational and are
more appropriately described in terms of maternal investments
that may offset an offspring's dispersal costs. Especially in plants,
in which seeds are surrounded by maternal tissue and may
depend on these structures for dispersal, it is sensible to include
this aspect and to analyze the consequences of such maternal
investment.

Therefore, we here present an individual-based model of a
population of sessile organisms, such as trees or corals, and
investigate the evolution of the shape of dispersal kernels. In
contrast to the great majority of existing models (e.g. Murrell et al.,
2002; Gros et al., 2006; Bonte et al., 2010; Bolker, 2010; North et
al., 2011), we do not a priori assume any specific kernel shape.
Assuming that the kernel belongs to a certain family of distance
functions can lead to erroneous evolutionary attractors (for a
discussion see Dieckmann and Metz, 2006). Instead, we derive
evolutionarily stable kernel shapes under the assumption that
long-term evolution can find ways to realize them. We explicitly
account for three different selection pressures of potential rele-
vance for the evolution of the shape of dispersal kernels: distance-
dependent competition (Roughgarden, 1974; Law et al., 2003;
Travis et al., 2010; North et al., 2011), distance-dependent dis-
persal costs (Bonte et al., 2012), and maternal investment reducing
the dispersal costs experienced by dispersing offspring (Herrera,
1995; Travis et al., 2010).

2. The model

In our model, each individual (i¼ 1;…;N) is characterized by its
location ðxi; yiÞ and its dispersal kernel (Pi). Individuals are located
in a two-dimensional spatially continuous and homogeneous
habitat, with 0rxi; yir100 and periodic boundary conditions.
Time is discrete and generations are overlapping.

2.1. Dispersal kernels

We define dispersal kernels as probability distributions (P(d))
of reaching a distance (d) after a dispersal event, i.e., we use a
distance pdf. Since we do not a priori restrict attention to a specific
functional relationship between P and d, the dispersal kernels in
our model are implemented as function-valued traits (Dieckmann
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et al., 2006). As is common in studies of function-valued traits,
we approximate the theoretically infinite-dimensional trait by a
sufficiently large, but finite, number of values. Specifically, we use
n¼21 values to describe the probabilities of reaching a distance
class (dk, k¼ 1;…;n, with d1 corresponding to d¼0, d2 correspond-
ing to 0odr1, d3 corresponding to 1odr2, …, and with d21
corresponding to 19odr20). All values PðdkÞ are positive and are
normalized so as to sum up to 1, ∑n

k ¼ 1PðdkÞ ¼ 1 (for similar models
see Hovestadt et al., 2001; Starrfelt and Kokko, 2010; Fronhofer et
al., 2014).

To ensure that the chosen trait discretization does not unduly
influence our results, we carried out additional numerical analyses
with up to n¼31 distance classes. We also analyzed the effect of
increasing the extent of the first distance class (with d1 corre-
sponding, instead of to d¼0, to 0rdr0:1 or to 0rdr0:2). These
robustness checks are discussed in detail below; here we only
mention that our results remained essentially unchanged.

2.2. Reproduction

Once per time step, all individuals reproduce sexually. They
produce a stochastic number of offspring, drawn from a Poisson
distribution with mean λ. As our model is applicable, for example,
to trees, we assume that individuals are simultaneously mono-
ecious, i.e., they have male and female reproductive organs. Selfing
is excluded, and for simplicity we assume that an individual mates
with its nearest neighbor as in Starrfelt and Kokko (2010).

We have tested the robustness of our results in scenarios with
global random mating. Note that kin structure, which is known to
be highly relevant for dispersal evolution and especially in the
context of dispersal distances (Hamilton and May, 1977; Rousset
and Gandon, 2002), is significantly reduced by such a mating
strategy. Results are reported in the supporting information figure
S1. Even in this extreme scenario the effect of maternal investment
is still visible. Clearly, as one would expect due to the altered kin
structure, the magnitude of the effects are reduced.

2.3. Inheritance

As our model is phenotypic, offspring inherit for each distance
class of their dispersal kernel the mid-parental value of their two
parents, altered by a segregation kernel (Roughgarden, 1979).
The latter is given by a normal distribution with the mid-parental
value as mean and σs ¼ 0:1 as standard deviation. This allows us to
include the effects resulting from the processes of segregation and
recombination during meiosis.

We additionally assume rare mutation events. The per locus
mutation rate is constant (m¼0.001). To optimize computing time,
the root-mean-square size of mutational steps, i.e., the average
amount by which a value PiðdkÞ is changed by mutation decreases
with time (Poethke et al., 2010): σm ¼ e�5t=tmax , with t denoting
time and tmax the maximal time considered in a model run. To
guarantee that segregation, recombination and mutations result in
positive numbers for the kernel the values are log-transformed
before the mid-parent values are altered by the segregation kernel
and mutations. Mutations are applied after segregation, with
mutational increments being drawn from a normal distribution
with zero mean and standard deviation σm.

2.4. Dispersal

As we investigate the evolution of the dispersal kernel of sessile
organisms with passive dispersal, we assume maternal control of
dispersal (see e.g. North et al., 2011). This means that the mother's
genotype defines the dispersal distance of the offspring. As
Hamilton and May (1977) note, optimal dispersal strategies may

be different depending on whether one maximizes the inclusive
fitness of the mother or of the offspring. Due to costs of dispersal
applying directly to the offspring, dispersal under offspring control
is often reduced. This has been analyzed in detail by Starrfelt and
Kokko (2010). We have run additional numerical analyses with
offspring control and found that the results corresponded well to
their results.

The dispersal distance of an offspring is determined by ran-
domly drawing a distance class (dk) according to the maternal
dispersal kernel (PðdkÞ). The realized dispersal distance is drawn
randomly with a uniform distribution from this interval, i.e., if d1 is
drawn the dispersal distance (d) is always zero, if d2 is drawn the
dispersal distance is between 0 and 1 (0odr1) and so forth.

2.5. Dispersal costs and maternal investment

As we assume a constant per step mortality (μd
0) the probability

of dying while dispersing over a given distance (δ) follows an
exponential function (Fig. 1; see also Fronhofer et al., 2014):

μd ¼ 1�e�μ0
dδ: ð1Þ

Of course, the experienced dispersal costs will not depend on the
net distance travelled, but on the realization of the dispersal event.
Logically, Eq. (1) holds for a straight line walk. For any other
realization the cost function will follow the general form
μd ¼ 1�e�μ0

dδ
v=c . If the realization is a (correlated) random walk,

i.e. follows a Lévy process, we find that vo1 (results not shown).
This does not change the shape of the dispersal cost function
qualitatively: vo1 increases the slope of the function for small
distances while it saturates later. Additional numerical analyses
show that our results are not influenced qualitatively by this
assumption. For a detailed analysis of the influence of different
dispersal cost functions see Rousset and Gandon (2002).
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Fig. 1. The components of mortality. Dispersal costs (μd, dashed line) increase
asymptotically with distance (Eq. (1), function shown for ‘offspring pay’ scenario).
In addition we assume a distance- and density-independent, constant baseline
mortality (μ0, dotted line). The shape of the competition kernel, is very flexible and
can vary from leptokurtic to platykurtic (γ, see Eq. (4) and text for details, thick
black line). Competition with other individuals than the focal individual (e.g. a
mother tree) shows a minimum at the location of the focal individual (thin black
line; data taken from numerical analyses; smooth spline regression over the mean
of 100 focal individuals of age a¼3 for each of 20 replicate simulation runs;
smoothing parameter: λ ¼ 0.3). The resulting total mortality a dispersing propagule
experiences is depicted in grey. Note that mortality is a probability and the
components therefore cannot be summed up directly. Parameters: γ ¼ 2, σ ¼ 1,
a¼3, Ha ¼ 3, μ0d ¼ 0:1, λ0 ¼ 4 (for the numerical analyses).
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Dispersal costs may be offset by maternal investment which
increases the dispersal ability of propagules (see also Travis et al.,
2010). More specifically our model assumes that an increase in
dispersal ability is correlated with a decrease in fertility (Zera and
Denno, 1997; Tanaka and Suzuki, 1998; Roff, 2002; Roff et al.,
2002). For simplicity we will assume two extreme scenarios:
(i) either the offspring carry all costs as described above (Eq. (1);
scenario ‘offspring pay’) or (ii) the costs are completely covered by
maternal investment (scenario ‘mother pays’). To keep both
scenarios comparable we determine the maternally covered, ker-
nel-dependent, costs by summing up the distance-dependent costs
over the entire kernel (PðdkÞ) for all possible distance classes (dk):

τ¼ ∑
n

k ¼ 1
μdðdkÞPðdkÞ: ð2Þ

Costs trade-off with fecundity (Burton et al., 2010; Fronhofer et al.,
2011) and the mean number of offspring is then calculated as

λ¼ λ0ð1�τÞ; ð3Þ

with λ0 ¼ 4 as our default choice (see supporting information S2
for a sensitivity analysis).

Note that in order to analyze the influence of relaxing this
strong assumption of either ‘mother pays’ or ‘offspring pay’ we ran
two classes of additional numerical analyses. Firstly, we show that
if both, mother and offspring, have to pay dispersal costs our
results hold in principle although effects are reduced due to shared
costs (supporting information S3). Secondly, we allowed the
allocation of costs to be itself an evolvable trait: depending on
this trait a proportion of the distance dependent dispersal costs
(μ0

d) is paid by the mother according to Eq. (2) and the remaining
costs are paid by the offspring (Eq. (1)). For all tested parameter
combinations (Table 1) no intermediate cost allocation strategy
evolved and the evolutionarily stable strategy was full maternal
investment, i.e. ‘mother pays’ (see supporting information S4).

2.6. Competition and mortality

We assume that the strength of competitive interactions (e.g.,
for space, light, or nutrients) depends on inter-individual dis-
tances. In addition and in contrast to previous models that assume
annual organisms with non-overlapping generations (Travis et al.,
2010; North et al., 2011) we include age-dependence since
competition will be asymmetric between established trees and
seedlings, for example. In our model, competition acts by increas-
ing mortality, and not by decreasing fertility (Fig. 1). This allows us
to derive a density-dependent individual mortality term, i.e. the
probability of dying in the present time step (μi). For the form of
this competition kernel — often termed zone or sphere of
influence (Berger et al., 2008) — we assume a general and very
flexible functional relationship (Roughgarden, 1974). This
approach is similar to the sphere of influence model presented
by Schiffers et al. (2011). The effect of an individual j on the focal

individual i is calculated as

μij ¼ e� Δij=fð Þγ aj
ajþHa

; ð4Þ

with f ¼ σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γð1=γÞ

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γð3=γÞ

p
, where Γ is the gamma function. The

first term of the function reflects distance- and the second term
age-dependence. Δij is the Euclidean distance between individuals
i and j. σ is the standard deviation of the competition kernel and
γ determines its kurtosis: γ ¼ 2 yields a normal (mesokurtic)
distribution, γo2 a leptokurtic distribution (narrow peak and
fat tails), and γ42 a platykurtic distribution (wide peak and
thin tails). The kurtosis parameter (with γ ¼ 2 as our default
choice) thus determines the balance between localized competi-
tion and long-range competition, while the standard deviation
(with σ ¼ 1 as our default choice) scales the width of the
competition kernel.

Age-dependence is a simple asymptotic function with a as the
age of individual j and Ha as the half-saturation constant, i.e. the
age at which an individual reaches half of its maximal competitive
ability (with Ha ¼ 3 as our default choice). Note that the age-
dependent term is important since without it competition
between adults and young offspring is symmetric.

The total competition related mortality (μi) of individual i may
additionally include a baseline mortality (μ0 ¼ 0:1 as a standard
value) which is density independent:

μi ¼ 1�ð1�μ0Þ∏
ia j

ð1�μijÞ: ð5Þ

See Fig. 1 for a summary of all mortality components. This figure
includes the effects of all individuals in a landscape as in Eq. (5)
and additionally illustrates the dominant effect of the focal
individual.

2.7. Numerical analyses

Depending on parameter combinations population sizes varied
roughly between 400 and over 7000 individuals. The dispersal
kernels were initialized as uniform distributions with some
additional random variation (random number drawn from a uni-
form distribution between �0.1 and 0.1 before normalization).
Computing time was set to tmax ¼ 10;000 time steps, a time span
that allowed all model runs to reach equilibrium (this was usually
the case after approx. 5000 time steps). The results shown below
are means over 25 replicates. See Table 1 for a summary of
relevant parameters and tested values.

3. Results

3.1. Evolution of dispersal kernels

In all scenarios without maternal investment, i.e. when the
offspring pay distance-dependent dispersal costs according to Eq.
(1), we find that the evolutionarily stable dispersal kernel is
unimodal (Fig. 2A). This results from the interaction between the
competition kernel, competition with related dispersers and

Table 1
Important model parameters, their meaning and tested values.

Parameter Values Meaning

λ0 2, 4, 8 Fecundity
μ0 0.05, 0.1, 0.2 Baseline mortality (density independent)
σ 0.5, 1, 2 Width of the competition kernel (standard deviation)
γ 1, 2, 4 Kurtosis of competition kernel
Ha 1.5, 3, 6 Age-dependence of competition (half-saturation constant)
μd
0 0.05, 0.1, 0.15,… , 0.4 Dispersal costs (per distance unit)
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dispersal costs (see Fig. 1). Increasing dispersal costs lead to
narrower, more peaked and less fat-tailed kernels (Fig. 2B). This
is due to an increase in the slope of the dispersal cost function
(Fig. 1).

3.2. Maternal investment leads to bimodal kernels

In general, maternal investment increases the occurrence
of LDD, i.e. the weight of the kernel's tail (Fig. 2). Interestingly,
maternal investment inverts the effect of dispersal costs on long-
distance dispersal: here increasing dispersal costs lead to an
increase in tail weight (Fig. 2D). In addition, the evolutionarily
stable dispersal kernel for high dispersal costs is bimodal (Fig. 2D)
with an important proportion of propagules remaining very close
to the maternal individual and a mass of offspring showing LDD.
The inset in Fig. 2D shows the same numerical analysis for an
increased resolution of the dispersal kernel (distance class extent
of 0.5 instead of the default of 1). Note that the bimodality we
describe here occurs at the individual level and is not the result of
a mixed strategy with coexisting short- and long-distance dis-
persers (supporting information S5).

3.3. Dispersal costs

A more detailed analysis of the influence of dispersal costs shows
that, as one would assume, the mean dispersal distance decreases
with costs in the ‘offspring pay’ scenario (Fig. 3A). Yet, with maternal
investment (‘mother pays’) the relationship becomes u-shaped, i.e.
higher dispersal costs favor higher mean dispersal distances (Fig. 3A).

Clearly, this is due to the asymmetry and tail weight of the kernels
(Fig. 2) since the median dispersal distance decreases monotonically
with dispersal costs (Fig. 3B). The median reaches a steady value
which is defined by the width of the competition kernel (see also
Fig. 4). The scenario assumed, i.e. distance costs paid by the offspring
(‘offspring pay’) vs. kernel costs paid by the mother (‘mother pays’),
does not influence the median dispersal distance.

As mentioned above, increasing dispersal costs lead to narrower
kernels if the offspring pay distance dependent dispersal costs
(Fig. 3C). However, in the case of maternal investment this tendency
is reversed for sufficiently high dispersal costs (Fig. 3C; here μ0

d40:2)
which is due to the above described bimodality (Fig. 2D).

A similar pattern can be observed for tail weight (Fig. 3D). In the
‘offspring pay’ scenario increasing dispersal costs reduce tail weight,
here measured as the 95th percentile of the kernel. Maternal invest-
ment inverts this pattern: as soon as the kernel becomes bimodal its
tail weight increases with dispersal costs (Fig. 3D).

3.4. Shape of the competition kernel

The qualitative results presented above, i.e. the emergence of
relatively more fat-tailed and bimodal kernels in scenarios with
maternal investment, are robust against variation in all model
parameters (Fig. 4 and supporting information S2). Not surpris-
ingly, the width of the competition kernel influences the mean and
the median of the dispersal kernel, i.e. the location of the peak
(Fig. 4A,B). Wider competition kernels, i.e., higher values of the
standard deviation (σ), lead to bimodal dispersal kernels at lower
dispersal costs in the ‘mother pays’ scenario (Fig. 4C,D). The
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pattern is not lost for narrower competition kernels, yet requires
higher dispersal costs to emerge (μ0

d40:5; not shown).
The kurtosis of the competition kernel (γ) has only very slight

effects. More leptokurtic shapes lead to slightly smaller dispersal
distances (Fig. 4E,F) because the costs inflicted by competition
decrease at a faster rate at small distances. As a consequence more
platykurtic competition kernels lead to bimodality in ‘mother pays’
scenarios at lower dispersal costs (Fig. 4G) and to more LDD (Fig. 4H).

The shape, especially the height of the competition kernel, also
depends on the focal individual's age (Eq. (4)). We find that the
slower an individual's competitive ability increases (‘slow growth’
in Fig. 4; larger values of the half-saturation constant Ha) the
smaller dispersal distances become (Fig. 4I,J). Under such condi-
tions the usual pattern of higher dispersal distances in scenarios
with maternal investment is inverted (Fig. 4J) which is due to a
more pronounced bimodality (Fig. 4K) with a higher peak at
distance zero. This is primarily due to the lower competitive
ability of a focal maternal individual. In turn, this pattern interacts

with increasing dispersal costs and allows the emergence of a
heavier tail (Fig. 4L; black and grey solid lines intersect). Maternal
investment allows to increase the amount of LDD, i.e. tail weight,
by increasing the height of the peak at distance zero, i.e. the
number of non-dispersers (see also Eq. (2)).

4. Discussion

It has been recognized that in sessile organisms dispersal distance
is mainly controlled by the maternal individual (for an analysis of
parent–offspring conflict see Starrfelt and Kokko, 2010). It is less well
appreciated that the mother may also invest in the dispersal ability of
its offspring (Wheelwright and Logan, 2004). Such an investment will
necessarily come at a cost, i.e. it will trade off with fertility or survival.
It has been shown in other contexts that trade-offs may shape the
evolution of dispersal considerably (Roff, 1994; Burton et al., 2010;
Travis et al., 2010; Fronhofer et al., 2011; Travis et al., 2012). We here
demonstrate for sessile organisms that trading fecundity for an
increased survival of dispersing offspring, i.e. maternal investment,
characteristically influences the form of the dispersal kernel. Particu-
larly for high dispersal costs bimodal kernels emerge and, at the same
time, the kernels become relatively more fat-tailed. These results
prove to be robust against variation in all tested model parameters
(Fig. 4 and supporting information). They even hold if the offspring
were to pay a part of dispersal costs themselves (supporting
information S3).

By relaxing the somewhat arbitrary assumption of a world with
discrete habitat patches and modelling inter-individual competition
explicitly at the individual level in continuous space through a
competition kernel, our results represent an important step towards
a better understanding of dispersal in sessile organisms such as plants.
Our results from scenarios in which offspring pay distance-dependent
dispersal costs (Fig. 2A, B) are in good accordance with findings from
Rousset and Gandon (2002). Yet, they show some distinct differences
as our model assumes distance-dependent competition (competition
kernels), maternal control of dispersal and overlapping generations.
Due to decreasing kin competition and increasing (saturating) dis-
persal costs Rousset and Gandon (2002) also predict unimodal
dispersal kernels in two-dimensional landscapes. By explicitly intro-
ducing competition for space we can show that the width of the
competition kernel (σ) will determine the location of the kernel's
peak. Depending on their specific shape competition kernels may even
increase tail weight since competitive interactions are not limited to
the size of an arbitrarily defined grid-cell. As described by Starrfelt and
Kokko (2010) our kernels are by default more fat-tailed since we
assume maternal control of dispersal in comparison to Rousset and
Gandon (2002). Finally, when offspring pay dispersal costs our model
predicts that all offspring will disperse (Fig. 2A,B; the first distance
class has a zero value) because the competition kernel drives all seeds
away from the maternal individual. This will not necessarily hold for
grid based models, especially if one grid cell may contain more than
one individual. Rousset and Gandon (2002) for example, do predict a
certain amount of non-dispersers. This effect is especially strong, as
the modelled organisms are assumed to be annual in contrast to our
model. For the same reasons Starrfelt and Kokko (2010) do not find
unimodal kernels.

In scenarios with maternal investment bimodality of the
dispersal kernel emerges mainly because of two mechanisms:
(i) as the mother pays dispersal costs defined by the dispersal
kernel (Eq. (2)) increasing the variance of the kernel through a
bimodal distribution with a peak at zero (or at very small
distances) allows the mother to decrease the costs while keeping
the mean dispersal distance constant or even increasing it through
more LDD. Thus, by reducing the dispersal distances of some
offspring the mother may achieve LDD for other propagules.
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Fig. 3. Maternal investment and dispersal costs. The graphs represent a systematic
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evolutionarily stable dispersal kernels. Here and in the following figures the solid
line represents results for scenarios with maternal investment (‘mother pays’) and
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the median does not (A, B). The interquartile range (C) captures the emerging
bimodality in ‘mother pays’ scenarios. The 95th percentile is a good indicator for fat
tails (D). Parameter values: λ0 ¼ 4, μ0 ¼ 0:1, γ ¼ 2, σ ¼ 1, Ha¼3. The grey crosses
represent data points and the lines are smooth spline regressions (smoothing
parameter: λ ¼ 0.3).
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Higher dispersal distances are evolutionarily advantageous
because they minimize kin competition (Rousset and Gandon,
2002) an effect known to be especially pronounced for maternal
control of dispersal (Hamilton and May, 1977; Starrfelt and Kokko,
2010). (ii) Furthermore, the maternal location has an interesting
attribute that makes it attractive for seed deposition. In case of the
mother's death it characteristically implies a minimal influence of
the nearest neighbors' competition kernels (see Fig. 1, thin black
line). Locally this maximizes an individual's survival and non-
dispersers will be able to inherit this locally optimal location
(‘territorial inheritance’) after the mother's death (see also Kokko
and Ekman, 2002).

It is immediately clear that the latter mechanism will be
critically dependent on the assumed width of the first distance
class. We therefore tested the impact of increasing the extent of
this first class. Our tests show that the bimodality reported here
does indeed vanish for coarse grids but is stable for a width of the
first distance class (d1) of up to 0rdr0:2 (see also Fig. 2). This
result underlines the possible artifacts resulting from grid-based
models in general (see also Chipperfield et al., 2011).

The two mechanisms discussed above also explain the influence of
the age-specific component of the competition kernel (Fig. 4) and of
fecundity (see supporting information S2). Increased local competition
through fast growth leads to a reduction of kernel bimodality in
scenarios with maternal investment. Although there is an advantage
for mothers keeping a fraction of offspring close by for territorial
inheritance fast growth leads to an important increase in local
competition between the mother and her non-dispersing offspring
and between these. This leads to a reduction of the peak at distance
zero, i.e. the number of non-dispersers. The same effect will emerge
from increased numbers of offspring. As the kernel costs resulting
from the formation of a relatively fat tail are offset by the production of
‘cheaper’ non-dispersers, reducing the latter will lead to a reduction of
tail weight.

Due to asymmetric competition between the mother and
the offspring a majority of non-dispersers may actually die. This
of course begs the question why mothers produce these offspring
in the first place. If this was just a strategy to spare resources for
the production of more expensive long-distance dispersers and
these ‘cheap’ propagules were thus only produced to reduce the
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costs of offspring production, mothers could as well simply reduce
the number of offspring produced and put all resources into long-
distance dispersers. In order to explore this question we ran
additional numerical analyses including evolvable fecundities
and a trade-off between fecundity and baseline mortality (sup-
porting information S6 and S7). In all these model runs, the
bimodality was evolutionarily stable (supporting information S6)
which highlights the value of ‘territorial inheritance’ (see Dytham
and Travis, 2006, for an analysis of the concurrent evolution of
longevity and dispersal distance).

Interestingly the occurrence of a bimodal kernel that generates
non-dispersers and long-distance dispersers parallels the co-
occurrence of philopatrics and dispersers found in models of actively
moving organisms that include a trade-off between fertility and
dispersal ability (Roff, 1994; Fronhofer et al., 2011). Yet, as these
models assume offspring control of dispersal and consider emigration
rates only, the underlying mechanisms are different (see also below).
In recent work that incorporates such a trade-off into an explicit
movement model Travis et al. (2012) show that emigration rates
increase for high levels of investment in movement. Although we also
find more LDD in our model, emigration rates actually decrease which
is due to the kernel's bimodality.

In general, maternal investment, i.e. trading fecundity for an
increased survival of dispersing offspring, is highly advantageous. It
allows the persistence of stable populations despite low fecundities,
high mortalities and high competition, conditions that otherwise
lead to global extinctions. This can be seen, e.g., in the supporting
information figure S2 A–D: for low fecundities and if the offspring pay
distance dependent dispersal costs populations are not viable for
dispersal costs μ0

d40:3. This is not the case in scenarios with maternal
investment. Additional numerical analyses show that maternal invest-
ment allows populations to survive dispersal costs over 0.8 (not
shown). Simulation experiments also show that the ‘mother pays’
strategy is evolutionarily stable (supporting information S4).

To summarize so far and put our results in a broader context, if
the offspring control dispersal previous work has shown that the
evolutionarily stable kernel must guarantee equal fitness expecta-
tions for all offspring (Rousset and Gandon, 2002). This logic does
not apply if dispersal is controlled maternally as we assume in this
study: the parent-offspring conflict (discussed in the context of
dispersal distances in Starrfelt and Kokko, 2010) leads to larger
dispersal distances, as the mother maximizes its own inclusive
fitness expectations by reducing kin competition. If the offspring
pay dispersal costs, these costs are the only mechanism that
restrain dispersal distance and counteract the effect of (kin)
competition which drives seeds away from the mother. This
cost–benefit calculation is fundamentally changed if the mother
also pays dispersal costs. Increasing dispersal costs lead to selec-
tion for non-dispersers in spite of strong competition with the
maternal individual, as this allows the mother to reduce its
investment in propagule dispersal ability, which in turn allows
for more LDD. Simultaneously, selection seems to favor a reduction
in longevity for an increase in fecundity. Ultimately, this may lead
to highly fertile, short lived organisms with strongly bimodal
dispersal kernels (see supporting information S6 and S7). Note
that our results are robust with regard to the position of the
paternal individual (see supporting information figure S1 for
global random mating).

4.1. Examples

Our model is applicable to sessile organisms such as plants. Most
plants will show maternal investment, at least to some degree, since
fruit and seed production is obviously maternally regulated. The
bimodal dispersal kernel which we predict can be realized for example
by seed polymorphisms, a phenomenon that has been frequently

observed (Imbert, 2002). The Asteraceae Heterotheca latifolia, for
example, shows a dimorphism in achene structure: while disc
achenes, which have a pappus, are wind dispersed and responsible
for LDD ray achenes are not (Venable and Levin, 1985). This poly-
morphic seed structure will lead to bimodality in the dispersal kernel
and increased tail weight (van Mölken et al., 2005; Brändel, 2007). The
same effect can be achieved by polychory, i.e. the use of more than one
seed dispersal agent (Berg, 1966; Jordano et al., 2007; Russo et al.,
2006). For example in Prunus mahaleb small birds are responsible for
short distance dispersal while fruits eaten by mammals and larger
birds are dispersed over long distances (Jordano et al., 2007). Similar
‘kernel mixing’ strategies have also been reported in passively disper-
sing animals (e.g. Fronhofer et al., 2013). In addition, our results are in
good accordance with the increasing evidence that multiple seed size
strategies, directly leading to different dispersal distances, may gen-
erally be due to life-history trade-offs (competition-colonization or
stress tolerance-fecundity trade-offs, see e.g. Jakobsson and Eriksson,
2003; Lönnberg and Eriksson, 2013). Of course, in purely wind-
dispersed plants with monomorphic seeds such as modelled by
Travis et al. (2010) trade-offs may also occur between plant height
which influences dispersal distance and seed production. Such trade-
offs may then lead to the evolution of different plant heights
depending on habitat availability or local extinctions, for example
(for the effect of local extinctions on the evolution of dispersal kernels
see Fronhofer et al., 2014).

4.2. Simplifications

As in any tractable model we include some simplifying
assumptions, a number of which we have already dealt with
throughout this paper. A central simplification we have made is
that dispersal strategies, i.e., the dispersal kernel, are not age-
dependent, although we assume overlapping generations. Mater-
nal age-dependent dispersal has been analyzed by Ronce et al.
(1998) who provide theoretical and empirical evidence that such a
strategy is evolutionarily advantageous, for both maternal and
offspring control of dispersal. As we have discussed above the
emerging bimodal dispersal kernel is a result of cost optimization
in order to allow LDD and at the same time insures territorial
inheritance. Yet, these two aspects are advantageous respectively
early and late in the life of an individual. We hypothesize that age-
dependent kernels would be fat-tailed in early life stages and more
biased towards short-distance dispersal and the production of
non-dispersing offspring later on in order to reduce (kin) competi-
tion but still allow territorial inheritance.

Obviously, the uniformity and stability of the landscape we assume
here is a further simplification. Although space is continuous in our
model, it is homogeneous and shows no habitat structure or turnover.
As Hovestadt et al. (2001) predict fat-tailed dispersal kernels to
emerge in autocorrelated landscapes, we are confident that the
introduction of spatial structure would not alter our results funda-
mentally (for a detailed treatment of the influence of habitat structure
on dispersal distance, see North et al., 2011). Of course, patch size
would interact with the competition kernel and influence the evolving
mean dispersal distance and the location of the dispersal kernel's
maximum or second peak for bimodal kernels. Yet, as the introduction
of suitable and non-suitable habitat basically leads to an increase in
dispersal costs we hypothesize that spatial structure would only
underline our results for both scenarios. Especially in scenarios with
maternal investment the bimodality of the dispersal kernel should be
more pronounced, provided that patches are large enough to support
more than one individual. A bimodal kernel is highly advantageous in
fragmented landscapes with patch turnover as well, since the fat tail
and resulting LDD allows individuals to colonize distant and empty
patches. At the same time the non- and short distance-dispersers
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emerging from the same kernel in the next generation guarantee a
successful and sustained establishment (North et al., 2011).

4.3. Conclusions

Although the concept of a dispersal kernel is not new, only little
work has been done on the evolution of the shape of dispersal
kernels. In contrast to previous work (Hovestadt et al., 2001;
Rousset and Gandon, 2002; Starrfelt and Kokko, 2010) we have
concentrated on two important aspects that have received little
attention in this context up to now: (i) the effects of individual
competition kernels in continuous space and (ii) maternal invest-
ment. We predict the emergence of long-distance dispersal and
bimodal dispersal kernels for sessile organism with overlapping
generations in environments with costly dispersal.

Acknowledgments

The authors thank two referees who greatly helped to improve the
quality of our manuscript, as well as Thomas Hovestadt and Alex
Kubisch for inspiring discussions and Andreas Gros for exploratory
numerical work. E.A.F. was supported by a grant of the German
Excellence Initiative of the Graduate School of Life Sciences, University
of Würzburg. U.D. gratefully acknowledges financial support by the
European Commission, the European Science Foundation, the Austrian
Science Fund, the Austrian Ministry for Science and Research, and the
Vienna Science and Technology Fund.

Appendix A. Supplementary data

Supplementary data associated with this article can be found in
the online version at http://dx.doi.org/10.1016/j.jtbi.2014.10.024.

References

Berg, R.Y., 1966. Seed dispersal of Dendromecon — its ecologic evolutionary and
taxonomic significance. Am. J. Bot. 53, 61–73.

Berger, U., Piou, C., Schiffers, K., Grimm, V., 2008. Competition among plants:
concepts, individual-based modelling approaches, and a proposal for a future
research strategy. Perspect. Plant Ecol. Evol. Syst. 9, 121–135.

Bitume, E.V., Bonte, D., Ronce, O., Bach, F., Flaven, E., Olivieri, I., Nieberding, C.M.,
2013. Density and genetic relatedness increase dispersal distance in a subsocial
organism. Ecol. Lett. 16, 430–437.

Bohrer, G., Nathan, R., Volis, S., 2005. Effects of long-distance dispersal for
metapopulation survival and genetic structure at ecological time and spatial
scales. J. Ecol. 93, 1029–1040.

Bolker, B., 2010. Evolution of dispersal scale and shape in heterogeneous environ-
ments: a correlation equation approach. In: Cantrell, R., Cosner, C., Ruan, S.
(Eds.), In Spatial Ecology. Chapman & Hall, London, UK, pp. 231–249.

Bonte, D., Hovestadt, T., Poethke, H.J., 2010. Evolution of dispersal polymorphism
and local adaptation of dispersal distance in spatially structured landscapes.
Oikos 119, 560–566.

Bonte, D., Van Dyck, H., Bullock, J.M., Coulon, A., Delgado, M., Gibbs, M., Lehouck, V.,
Matthysen, E., Mustin, K., Saastamoinen, M., Schtickzelle, N., Stevens, V.M.,
Vandewoestijne, S., Baguette, M., Bartoń, K., Benton, T.G., Chaput-Bardy, A.,
Clobert, J., Dytham, C., Hovestadt, T., Meier, C.M., Palmer, S.C.F., Turlure, C.,
Travis, J.M.J., 2012. Costs of dispersal. Biol. Rev. 87, 290–312.

Brändel, M., 2007. Ecology of achene dimorphism in Leontodon saxatilis. Ann. Bot.
100, 1189–1197.

Burton, O.J., Pillips, B.L., Travis, J.M.J., 2010. Trade-offs and the evolution of life-
histories during range expansion. Ecol. Lett. 13, 1210–1220.

Caswell, H., Lensink, R., Neubert, M.G., 2003. Demography and dispersal: life table
response experiments for invasion speed. Ecology 84, 1968–1978.

Chave, J., Muller-Landau, H.C., Levin, S.A., 2002. Comparing classical community
models: theoretical consequences for patterns of diversity. Am. Nat. 159, 1–23.

Chipperfield, J.D., Holland, E.P., Dytham, C., Thomas, C.D., Hovestadt, T., 2011. On the
approximation of continuous dispersal kernels in discrete-space models.
Methods Ecol. Evol. 2, 668–681.

Clobert, J., Baguette, M., Benton, T.G., Bullock, J.M., 2012. Dispersal Ecology and
Evolution. Oxford University Press, Oxford, UK.

Cousens, R., Dytham, C., Law, R., 2008. Dispersal in Plants—A Population Perspec-
tive. Oxford University Press, Oxford, UK.

Dewhirst, S., Lutscher, F., 2009. Dispersal in heterogeneous habitats: thresholds,
spatial scales, and approximate rates of spread. Ecology 90, 1338–1345.

Dieckmann, U., Heino, M., Parvinen, K., 2006. The adaptive dynamics of function-
valued traits. J. Theor. Biol. 241, 370–389.

Dieckmann, U., Metz, J.A.J., 2006. Surprising evolutionary predictions from
enhanced ecological realism. Theor. Popul. Biol. 69, 263–281.

Dytham, C., Travis, J.M.J., 2006. Evolving dispersal and age at death. Oikos 113,
530–538.

Fronhofer, E.A., Kubisch, A., Hovestadt, T., Poethke, H.J., 2011. Assortative mating
counteracts the evolution of dispersal polymorphisms. Evolution 65,
2461–2469.

Fronhofer, E.A., Sperr, E.B., Kreis, A., Ayasse, M., Poethke, H.J., Tschapka, M., 2013.
Picky hitch-hikers: vector choice leads to directed dispersal and fat-tailed
kernels in a passively dispersing mite. Oikos 122, 1254–1264.

Fronhofer, E.A., Stelz, J.M., Lutz, E., Poethke, H.J., Bonte, D., 2014. Spatially correlated
extinctions select for less emigration but larger dispersal distances in the spider
mite Tetranychus urticae. Evolution 68, 1838–1844.

Gros, A., Poethke, H.J., Hovestadt, T., 2006. Evolution of local adaptations in
dispersal strategies. Oikos 114, 544–552.

Hamilton, W.D., May, R.M., 1977. Dispersal in stable habitats. Nature 269,
578–581.

Herrera, C.M., 1995. Plant-vertebrate seed dispersal systems in the mediterranean:
ecological, evolutionary, and historical determinants. Annu. Rev. Ecol. Syst. 26,
705–727.

Hovestadt, T., Bonte, D., Dytham, C., Poethke, H.J., 2012. Evolution and emergence of
dispersal kernels—a brief theoretical evaluation. In: Clobert, J., Baguette, M.,
Benton, T.G. (Eds.), Dispersal Ecology and Evolution. Oxford University Press,
pp. 211–221.

Hovestadt, T., Messner, S., Poethke, H.J., 2001. Evolution of reduced dispersal
mortality and ‘fat-tailed’ dispersal kernels in autocorrelated landscapes. Proc.
R. Soc. B—Biol. Sci. 268, 385–391.

Imbert, E., 2002. Ecological consequences and ontogeny of seed heteromorphism.
Perspect. Plant Ecol. Evol. Syst. 5, 13–36.

Jakobsson, A., Eriksson, O., 2003. Trade-offs between dispersal and competitive
ability: a comparative study of wind-dispersed Asteraceae forbs. Evol. Ecol. 17,
233–246.

Jordano, P., Garcia, C., Godoy, J.A., Garcia-Castano, J.L., 2007. Differential contribu-
tion of frugivores to complex seed dispersal patterns. Proc. Natl. Acad. Sci. U. S.
A. 104, 3278–3282.

Kokko, H., Ekman, J., 2002. Delayed dispersal as a route to breeding: territorial
inheritance, safe havens, and ecological constraints. Am. Nat. 160, 468–484.

Kokko, H., López-Sepulcre, A., 2006. From individual dispersal to species ranges:
perspectives for a changing world. Science 313, 789–791.

Kot, M., Lewis, M.A., van den Driessche, P., 1996. Dispersal data and the spread of
invading organisms. Ecology 77, 2027–2042.

Kubisch, A., Holt, R.D., Poethke, H.J., Fronhofer, E.A., 2014. Where am I and why?
Synthesising range biology and the eco-evolutionary dynamics of dispersal.
Oikos 123, 5–22.

Law, R., Murrell, D.J., Dieckmann, U., 2003. Population growth in space and time:
spatial logistic equations. Ecology 84, 252–262.

Lönnberg, K., Eriksson, O., 2013. Rules of the seed size game: contests between
large-seeded and small-seeded species. Oikos 122, 1080–1084.

Muller-Landau, H.C., Levin, S.A., Keymer, J.E., 2003. Theoretical perspectives on
evolution of long-distance dispersal and the example of specialized pests.
Ecology 84, 1957–1967.

Murrell, D.J., Travis, J.M.J., Dytham, C., 2002. The evolution of dispersal distance in
spatially-structured populations. Oikos 97, 229–236.

Nathan, R., 2006. Long-distance dispersal of plants. Science 313, 786–788.
Nichols, R.A., Hewitt, G.M., 1994. The genetic consequences of long-distance

dispersal during colonization. Heredity 72, 312–317.
North, A., Cornell, S., Ovaskainen, O., 2011. Evolutionary responses of dispersal

distance to landscape structure and habitat loss. Evolution 65, 1739–1751.
Poethke, H.J., Hovestadt, T., 2002. Evolution of density- and patch-size-dependent

dispersal rates. Proc. R. Soc. B—Biol. Sci. 269, 637–645.
Poethke, H.J., Weisser, W.W., Hovestadt, T., 2010. Predator-induced dispersal and

the evolution of conditional dispersal in correlated environments. Am. Nat. 175,
577–586.

Roff, D.A., 1994. Habitat persistence and the evolution of wing dimorphism in
insects. Am. Nat. 144, 772–798.

Roff, D.A., 2002. Life History Evolution. Sinauer Associates, Sunderland, MA.
Roff, D.A., Mostowy, S., Fairbairn, D.J., 2002. The evolution of trade-offs: testing

predictions on response to selection and environmental variation. Evolution 56,
84–95.

Ronce, O., Clobert, J., Massot, M., 1998. Natal dispersal and senescence. Proc. Natl.
Acad. Sci. U. S. A. 95, 600–605.

Roughgarden, J., 1974. Species packing and competition function with illustrations
from coral-reef fish. Theor. Popul. Biol. 5, 163–186.

Roughgarden, J., 1979. Theory of Population Genetics and Evolutionary Ecology: An
Introduction. Macmillan Publishing Co., Inc.

Rousset, F., Gandon, S., 2002. Evolution of the distribution of dispersal distance
under distance-dependent cost of dispersal. J. Evol. Biol. 15, 515–523.

Russo, S.E., Portnoy, S., Augspurger, C.K., 2006. Incorporating animal behavior into
seed dispersal models: implications for seed shadows. Ecology 87, 3160–3174.

Schiffers, K., Tielbörger, K., Tietjen, B., Jeltsch, F., 2011. Root plasticity buffers
competition among plants: theory meets experimental data. Ecology 92,
610–620.

E.A. Fronhofer et al. / Journal of Theoretical Biology 365 (2015) 270–279278

http://dx.doi.org/10.1016/j.jtbi.2014.10.024
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref1
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref1
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref2
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref2
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref2
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref3
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref3
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref3
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref4
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref4
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref4
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref5
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref5
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref5
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref5
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref6
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref6
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref6
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref7
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref7
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref7
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref7
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref7
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref8
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref8
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref9
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref9
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref10
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref10
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref11
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref11
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref12
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref12
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref12
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref13
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref13
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref14
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref14
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref15
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref15
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref16
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref16
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref17
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref17
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref18
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref18
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref19
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref19
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref19
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref20
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref20
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref20
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref21
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref21
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref21
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref22
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref22
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref23
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref23
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref24
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref24
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref24
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref25
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref25
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref25
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref25
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref26
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref26
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref26
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref27
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref27
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref28
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref28
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref28
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref29
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref29
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref29
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref30
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref30
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref31
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref31
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref32
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref32
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref33
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref33
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref33
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref34
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref34
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref35
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref35
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref36
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref36
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref36
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref37
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref37
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref38
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref39
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref39
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref40
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref40
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref41
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref41
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref42
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref42
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref42
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref43
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref43
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref44
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref45
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref45
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref45
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref46
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref46
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref47
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref47
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref48
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref48
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref49
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref49
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref50
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref50
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref51
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref51
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref51


Starrfelt, J., Kokko, H., 2010. Parent-offspring conflict and the evolution of dispersal
distance. Am. Nat. 175, 38–49.

Tanaka, S., Suzuki, Y., 1998. Physiological trade-offs between reproduction, flight
capability and longevity in a wing-dimorphic cricket,Modicogryllus confirmatus.
J. Insect Physiol. 44, 121–129.

Travis, J.M.J., Murrell, D.J., Dytham, C., 1999. The evolution of density-dependent
dispersal. Proc. R. Soc. B—Biol. Sci. 266 (September), 1837–1842.

Travis, J.M.J., Mustin, K., Bartoń, K.A., Benton, T.G., Clobert, J., Delgado, M.M.,
Dytham, C., Hovestadt, T., Palmer, S.C.F., Van Dyck, H., Bonte, D., 2012.
Modelling dispersal: an eco-evolutionary framework incorporating emigration,
movement, settlement behaviour and the multiple costs involved. Methods
Ecol. Evol. 3, 628–641.

Travis, J.M.J., Smith, H.S., Ranwala, S.M.W., 2010. Towards a mechanistic understanding of
dispersal evolution in plants: conservation implications. Divers. Distrib. 16, 690–702.

van Mölken, T., Jorritsma-Wienk, L.D., Van Hoek, P.H.W., De Kroon, H., 2005. Only
seed size matters for germination in different populations of the dimorphic
Tragopogon pratensis subsp. pratensis (Asteraceae). Am. J. Bot. 92, 432–437.

Venable, D.L., Levin, D.A., 1985. Ecology of achene dimorphism in Heterotheca
latifolia. 1. Achene structure, germination and dispersal. J. Ecol. 73, 133–145.

Wheelwright, N.T., Logan, B.A., 2004. Previous-year reproduction reduces photo-
synthetic capacity and slows lifetime growth in females of a neotropical tree.
Proc. Natl. Acad. Sci. U. S. A. 101, 8051–8055.

Zera, A.J., Denno, R.F., 1997. Physiology and ecology of dispersal polymorphism in
insects. Annu. Rev. Entomol. 42, 207–230.

E.A. Fronhofer et al. / Journal of Theoretical Biology 365 (2015) 270–279 279

http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref52
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref52
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref53
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref53
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref53
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref54
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref54
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref55
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref55
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref55
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref55
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref55
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref56
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref56
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref57
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref57
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref57
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref58
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref58
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref59
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref59
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref59
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref60
http://refhub.elsevier.com/S0022-5193(14)00614-6/sbref60


Supporting Information1

Fronhofer, E.A., Poethke, H.J. and Dieckmann, U.: Evolution of dispersal distance: ma-2

ternal investment leads to bimodal dispersal kernels3

0

0.25

0.5

0.75

1 A B

0

0.25

0.5

0.75

1 C

0 5 10 15 20

D

0 5 10 15 20

Distance

R
el

at
iv

e 
fr

eq
ue

nc
y

M
ot

he
r 

pa
ys

O
ffs

pr
in

g 
pa

y

Low dispersal costs High dispersal costs

Figure S1: Maternal investment and the evolution of dispersal kernels under global random mating.
All four panels show evolutionarily stable dispersal kernels (distance pdfs). These results are analogous
to figure 2, except that mating occurs with a randomly chosen partner independently of distance and
not with the nearest neighbour. The upper row (A, B) depicts the influence of dispersal costs without
maternal investment, i.e. when offspring pay distance-dependent dispersal costs according to equation 1.
The lower row (C, D) shows kernels for scenarios with maternal investment, i.e. the mother pays kernel-
dependent dispersal costs (equation 2) and reduces her fecundity in order to maximize offspring survival
during dispersal (equation 3). Parameters: λ0 = 4, µ0 = 0.1, γ = 2, σ = 1, Ha = 3, and µ0

d = 0.1 (left
panels; A, C) or µ0

d = 0.4 (right panels; B, D).
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Figure S2: Influence of fecundity and mortality. Solid lines show results for scenarios with maternal
investment (‘mother pays’) and dashed lines without (‘offspring pay’). Black curves always indicate
scenarios in which the focal parameter value was halved and grey curves scenarios in which the value
was doubled. Low fecundities (λ0) underline the effects described above (A–D), but higher fecundities
do not destroy the patterns, i.e., relatively fat tails and bimodality for maternal investment still arise
at sufficiently high dispersal costs. Density independent baseline mortality (µ0; E–H) does not influence
our results in a quantitatively relevant way. Parameters: γ = 2, σ = 1, Ha = 3, λ0 = 2 (low fecundity)
or λ0 = 8 (high fecundity), and µ0 = 0.05 (low mortality) or µ0 = 0.2 (high mortality). The lines are
smooth spline regressions (smoothing parameter: λ = 0.3).
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Figure S3: Allocation of dispersal costs to mother vs. offspring and the evolution of dispersal kernels. All
four panels show evolutionarily stable dispersal kernels (distance pdfs) for scenarios in which dispersal
costs are allocated proportionally to both, mothers and offspring. Depending on the allocation parameter
a proportion of the total distance dependent dispersal costs (µ0

d) is paid by the mother and the remaining
costs are paid by the offspring. These results show that if both, mother and offspring, have to pay
dispersal costs our results hold up in principle. Of course, the pattern is sensitive as total costs are
divided. Parameters: λ0 = 4, µ0 = 0.1, γ = 2, σ = 1, Ha = 3, and µ0

d = 0.4.
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Figure S4: Evolutionarily stable allocation of dispersal costs to mother vs. offspring. We here allowed
the allocation of costs to be itself an evolvable trait: depending on this trait a proportion of the distance
dependent dispersal costs (µ0

d) is paid by the mother and the remaining costs are paid by the offspring.
For all tested parameter combinations (table 1) no intermediate cost allocation strategy evolved and the
evolutionarily stable strategy was full maternal investment, i.e. ‘mother pays’. Note the scale of the
y-axis. The line corresponds to the our standard parameter combination.
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Figure S5: Evolutionarily stable dispersal kernel as a 2D histogram. This figure corresponds to figure 2 D
and shows the strategies of all individuals across all 25 replicate simulation runs. Clearly, the bimodality
occurs at the individual kernel level and is not a result of a mixed strategy at population level. Parameters:
λ0 = 4, µ0 = 0.1, γ = 2, σ = 1, Ha = 3, and µ0

d = 0.4.
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Figure S6: Maternal investment, baseline mortality - fertility trade-off, and the evolution of dispersal
kernels. All four panels show evolutionarily stable dispersal kernels (distance pdfs) for scenarios with
maternal investment, a trade-off between baseline mortality and fecundity and evolving fecundities. The
trade-off function is saturating and follows the general form µ0 = λ0/(λ0 + hsc) (see figure S6). Clearly,
bimodality is not affected by the inclusion of this additional trade-off. Parameters: λ0 = evolving,
µ0 = 0.1, γ = 2, σ = 1, Ha = 3, and µ0

d = 0.4.
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Figure S7: Maternal investment, baseline mortality - fertility trade-off, and the evolution of dispersal
kernels. The figure shows the evolutionarily stable fertility (mean and standard deviation) and the
corresponding baseline mortality for scenarios with maternal investment and a trade-off between baseline
mortality and fecundity. The grey lines depict a sample of tested trade-off functions (from top to bottom:
hsc = 8, 10, 12, 14). Here, the trade-off function is saturating and follows the general form µ0 = λ0/(λ0+
hsc). Similar results were obtained for linear and concave functions. Such trade-offs lead to highly
fertile annual organisms with strongly bimodal dispersal kernels (figure S5). Parameters: λ0 = evolving,
µ0 = 0.1, γ = 2, σ = 1, Ha = 3, and µ0

d = 0.4.
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Figure S8: Maternal investment and the evolution of dispersal kernels. This figure shows the same results
as figure 2, yet kernels are represented as density pdfs. As non-zero relative frequencies of dispersal to
the zero distance class (first bar; see figure 2) lead to infinite values in the density pdf we omitted these
values here. The bimodality and relative increase in tail weight due to maternal investment described in
figure 2 can also be observed in the density pdf (inset in panel D; distance class extent of 0.5 instead of
the default of 1). Parameters: λ0 = 4, µ0 = 0.1, γ = 2, σ = 1, Ha = 3, and µ0

d = 0.1 (left panels; A, C)
or µ0

d = 0.4 (right panels; B, D).
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