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Abstract

A focus on the eco-evolutionary feedback continually operating between a population’s evolution and its environment helps to

appreciate the generality of ESS theory. Here we illustrate, through a sequence of four examples, how respecting such feedback in the

evolutionary dynamics of quantitative traits may result in qualitatively unexpected outcomes. Reviewing existing insights and

complementing these with new results, we show (1) that evolutionary matrix games are fundamentally degenerate and allow a natural

unfolding, (2) that selection-driven extinction may not be rare in nature, (3) that evolutionary epidemiology should not rely on R0

maximization, and (4) why the occurrence of Hardy–Weinberg proportions generically requires an evolutionary explanation.

r 2005 Elsevier Inc. All rights reserved.
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1. Introduction

ESS theory provides the link between evolutionary
mechanisms and natural history. Its strength lies in asking
and answering deep questions about readily observable
biological phenomena, be they ecological, behavioral,
physiological, or morphological. ESS theory does so by
concentrating on the phenotype and its role in the
interaction among organisms, while neglecting genetic
detail. It is through this simplification and focus that ESS
theory facilitates a fruitful interplay between evolutionary
modeling and experimental and observational biology.

ESS theory originally arose from attempts to understand
the evolutionary underpinnings of behavioral phenotypes.
In such contexts, the need to account for the phenotypes of
other individuals that a focal individual will interact with
was particularly evident (Maynard Smith and Price, 1973;
Maynard Smith, 1982). In this way, ESS theory helped
emphasize the importance of frequency-dependent selec-
e front matter r 2005 Elsevier Inc. All rights reserved.
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tion for understanding natural evolutionary change: in
models for the evolution of behavior, the fitness of
individuals is bound to depend on a population’s
phenotypic composition.
Approaching the feedback between a population’s

composition and the underlying selection pressures from
a more population dynamical angle, research in the 1970s
also made important progress in the analysis of evolu-
tionary outcomes under density-dependent selection
(Roughgarden, 1971, 1979). As it turned out, the method
of predicting evolutionary outcomes by optimizing a
suitably chosen fitness function could be extended from
problems with density- and frequency-independent selec-
tion to those with purely density-dependent selection. In
the former case, all fitness values are constant over time,
while in the latter case they vary with (and only with) a
population’s density.
For almost two decades, these alternative approaches

remained curiously disparate. Students of evolution could
either rely on optimization methods, if they felt they could
safely ignore frequency-dependent selection, or on methods
broadly referred to as ‘‘game theoretical,’’ if they had a
hunch that frequency dependence was germane to the
evolutionary question at hand. This state of affairs,
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however, was rather unsatisfactory: not only did it prevent
the transparent and accurate analysis of evolutionary
problems in which density- and frequency-dependent
selection both played a role, but it also fostered the
hopeful belief that most problems in life-history evolution
could be solved through optimization methods, if only
suitable fitness functions could be identified (e.g., Stearns,
1992; Roff, 1992; for a counterexample, see Heino et al.,
1997).

The impasse in bringing together models of evolution
under density- and frequency-dependent selection was
overcome gradually. Two key ideas played a role in this
process. The first idea, already foreshadowed in the context
of game theoretical and optimization methods, is to
envisage fitness always as a function of both phenotype
and environment. To fully appreciate this point and make
it operational, a suitable formal definition of ‘environment’
had to be established. Since the environment experienced
by an individual is bound to depend on the current state of
its population, this environment may be affected, first, by
the population’s phenotypic composition, and second, for
an unstructured population, by the population’s total
abundance. The first dependence applies whenever selec-
tion is frequency-dependent, and the second one whenever
selection is density-dependent. (In structured populations,
the neat divide between the two types of selection becomes
blurred whenever densities of life stages affect phenotypes
differentially. For further elaborations of the concept of
frequency-dependent selection in the spirit of the present
article, see Heino et al., 1998.) In general, the evolutionary
environment of an individual is to be described such that
all outside influences impinging on any individuals
contributing to the dynamics of the focal population,
now and in the future, are covered. The evolutionary
environment thus defined differs from the instantaneous
environment familiar from describing population dy-
namics. For the latter, only the current influences on the
individuals in the focal population are considered. Both
formal notions of environment have been inspired by the
theory of physiologically structured populations (Metz and
de Roos, 1992; Metz and Diekmann, 1986; Diekmann et
al., 2001, 2003). The second idea facilitating a merger of
game theoretical and optimization methods is to derive the
fitness functions to be analyzed from an individual-based
view of the underlying population dynamics—in earlier
work, such functions had often been instead assumed a
priori. Taken together, these ideas motivated the introduc-
tion of the so-called invasion fitness of a given phenotype
in a given environment, defined and derived—analytically,
numerically, or empirically—as the phenotype’s asymptotic
exponential growth rate in the considered environment
(Metz et al., 1992; Rand et al., 1994).

The characteristic idea of ESS theory is that the
phenotypes currently present in a community are con-
tinually challenged by variants appearing in such small
numbers that they do not perceivably perturb the commu-
nity’s attractor. An ESS is a phenotype, or set thereof, that
cannot be invaded by any such rare variants. Invasion
fitness helps to predict the dynamics of invasion attempts.
In an ecologically stationary community, the invasion
fitness of all present phenotypes equals zero by definition
(otherwise, the community would not be stationary). By
contrast, rare phenotypes with positive invasion fitness
may invade (usually after many unsuccessful trials, owing
to demographic stochasticity in the invader population),
while those with negative invasion fitness cannot invade
(unless the invaded population as a whole is so small that it
is subject to considerable demographic stochasticity). In
principle, the fate of variants with zero invasion fitness
would have to be determined from higher-order terms—
however, as we shall argue in Section 2, the case of variants
that possess zero invasion fitness and are not equal to a
present phenotype is so non-generic that it can safely be
neglected for most intents and purposes.
Nothing said so far is overly new. Not only that, there

are many earlier studies that have implicitly shared these
ideas and have contributed to their practical development.
Yet it seems that the unifying potential resulting from the
perspective established above remains underexploited. The
key notion here is that of the eco-evolutionary feedback
loop, continually operating between a population’s evolu-
tion and its environment: while the environment deter-
mines current selection pressures, these pressures change a
community’s phenotypic composition, which in turn alters
its environment. Under such feedback, fitness landscapes
are varying in shape as evolutionary changes unfold. By
explicitly introducing this feedback loop, based on a
suitable formal notion of environment, many disparate
evolutionary investigations and phenomena can be brought
under one heading, thus unifying the analysis of large
classes of model families. Perhaps even more importantly,
the evolutionary properties of realistically complicated
models are often becoming more accessible through this
natural conceptual decomposition of the ecological theatre.
ESS theory today has clearly moved beyond earlier

models based on ad hoc payoff matrices or unproven
optimization principles. In this article we tout the idea that
the full generality of ESS theory can best be brought out by
concepts and tools designed to analyze eco-evolutionary
feedback. By firmly rooting evolutionary predictions in the
underlying population dynamics, fairly realistic ecological
scenarios can be tackled. Below, we will highlight a range
of evolutionary surprises resulting from such enhanced
levels of ecological realism. The examples presented in the
following four sections are also meant to illustrate some of
the technical principles that, in our opinion, underlie the
generalization of ESS theory.
2. The fundamental degeneracy of matrix games can be

unfolded

The straightforward tractability of matrix games and ESS
conditions has enabled game theory to become an important
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and popular framework for modeling phenotypic evolution.
This success, however, has come at a price, for two reasons:
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First, beyond stylized games of behavior, continuous
strategies usually offer a more convincing rendering of
real evolving traits than discrete strategies. By contrast,
in game theoretical models of biological evolution,
continuous strategies are typically introduced and
analyzed merely as mixtures of pure strategies.
Resident trait, p Resident trait, p(a) (b)
�
Fig. 1. Pairwise invasibility plots for (a) the original hawk–dove game and

for (b) an ecological embedding with fluctuating rewards. The non-

diagonal zero-contour curve is strictly straight and vertical in (a), whereas

this curve is tilted counter-clockwise and concave from the right in (b).

Even though both effects are only slight, they do imply a qualitative

change in evolutionary behavior. Parameters: V ¼ 0.5, C ¼ 1, R ¼ 2, and

c ¼ 0 (a), c ¼ 1 (b).
Second, for many questions in evolutionary ecology it is
necessary to consider the full population dynamical
effects of strategies. In models based on matrix games,
an attempt is made, instead, to infer the effects of
strategies on fitness directly from payoff matrices. Such
an approach also complicates the integration of realistic
types of density regulation into models based on matrix
games.

Whenever applications of evolutionary game theory
consider mixed strategies in matrix games, a peculiar
degeneracy raises its ugly head. This degeneracy directly
follows from how matrix-game payoffs of mixed strategies
are determined. Let us consider a resident population with
mixed strategy x. Here, the components of the vector x

describe the probabilities xi with which the resident players
follow any one of k pure strategies i ¼ 1; . . . ; k, withPk

i¼1xi ¼ 1. The components Wij of the payoff matrix W

describe the payoff received by a player adopting the pure
strategy i against a player using the pure strategy j. The
average payoff of players with a rare variant strategy xv is
xT
v Wx (where T denotes transposition), so that their excess

payoff relative to a resident player is f ðxv;xÞ ¼ xT
v Wx�

xT Wx. Since it is assumed that variants with f40 can
invade, while those with fo0 cannot, the sign of f carries
the same information as that of invasion fitness in models
with explicit population dynamics. It is already clear from
this observation that the game-theoretical case is rather
special: whereas invasion fitness functions may be (and
usually are) nonlinear, mixed strategies in matrix games
inevitably lead to functions f that are linear in both x and
xv.

It is instructive to explore the consequences of this
degeneracy by considering games with just two pure
strategies. For k ¼ 2, a single adaptive trait suffices, x ¼

ðp; 1� pÞ and xv ¼ ðpv; 1� pvÞ,

f ðpv; pÞ ¼ ½pvpW 11 þ pvð1� pÞW 12

þ ð1� pvÞpW 21 þ ð1� pvÞð1� pÞW 22�

� ½p2W 11 þ pð1� pÞW 12 þ ð1� pÞpW 21

þ ð1� pÞ2W 22� ¼ ðpv � pÞ½pðW 11 �W 21Þ

þ ð1� pÞðW 12 �W 22Þ�. ð1Þ

From this we can see that f ðpv; pÞ ¼ 0 for pv ¼ p and
for p ¼ p� with p� ¼ ðW 22 �W 12Þ=ðW 11 �W 12 þW 22�

W 21Þ. Fig. 1a illustrates the resultant pairwise invasibility
plot for 0op*o1. This plot highlights two geometric
consequences of the linearity of f: the non-diagonal zero-
contour curve of f at p ¼ p� is both straight and vertical. In
other words, in a population of players following the mixed
strategy p�, all variant strategies are strictly neutral,
f ðpv; p

�Þ ¼ 0 for all pv. This neutrality extends to the effect
that all mixtures of mixed and/or pure strategies resulting
in a population with strategy p� are evolutionarily neutral
as well. These observations reflect a general result of game
theory, widely known as the Bishop–Cannings theorem
(Bishop and Cannings, 1978). It is thus immediately clear
that, when viewed in a broader context, the treatment of
mixed strategies in matrix games is structurally unstable:
the slightest variation in model structure is likely to destroy
the degenerate geometry depicted in Fig. 1a, by bending
and/or tilting the non-diagonal zero-contour curve away
from a straight and vertical line. At the same time, these
variations remove the evolutionary neutrality of mixtures
with population strategy p�.
Below we show how the described degeneracy is readily

overcome when invasion fitness is derived from population
dynamics into which realistic aspects of ecological interac-
tions are incorporated. To keep these discussions as
concrete as possible, we focus on the classical hawk–dove
game for illustration (Maynard Smith, 1982). In this game,
players adopt interaction strategies that are either selfish
(hawk) or cooperative (dove). When a hawk plays against a
dove, the hawk gains a reward of value VX0, while the
dove gains nothing. When two doves play against one
another, they share the reward, each gaining 1

2
V . By

contrast, when two hawks interact, both of them gain
1
2
ðV � CÞ on average, where CX0 measures the cost of
hawkish encounters. With p and pv denoting the prob-
abilities with which the hawk strategy is used by resident
and variant players, respectively, the rare variant’s excess
payoff is given by

f ðpv; pÞ ¼
1
2
ðpv � pÞðV � pCÞ, (2)

implying p� ¼ V=C. Thus, whenever the cost C exceeds the
reward V, evolution is expected to converge on the mixed
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strategy p� (for CpV , evolution will instead increase p up
to p ¼ 1). Again, once p� is resident, all variants are
neutral.

We now examine three slight variations of the classical
hawk–dove game. First, we consider a simple population
dynamical embedding of the game; second, we relax the
assumption that rewards are fixed; and third, we relax the
assumption of fixed interaction rates. For simplicity, we
consider discrete-time models with non-overlapping gen-
erations. We assume that each individual has an intrinsic
reproduction ratio RX0, which is enhanced by payoffs
from the hawk–dove game and diminished by density
regulation. For a rare variant strategy pv in a resident
population with strategy p at population dynamical
equilibrium, this results in a reproduction ratio of
fRþ 1

2
r½V ð1� pþ pvÞ � Cppv�g=F ðpÞ, where rX0 is the

per generation rate at which individuals interact by
engaging in the hawk–dove game. The density-regulating
factor F is obtained from observing that the resident’s own
reproduction ratio equals 1 at population dynamical
equilibrium, which gives F ðpÞ ¼ Rþ 1

2
r½V � Cp2�. Notice

that the density dependence thus considered is selectively
neutral, in that it affects all phenotypes alike. Conse-
quently, the hawk–dove game’s degeneracy is preserved in
this simple population dynamical embedding. Based on
these assumptions, we obtain the model’s invasion fitness
as the logarithm of the variant’s reproduction ratio,

f ðpv; pÞ ¼ ln
Rþ 1

2
r½V ð1� pþ pvÞ � Cppv�

Rþ 1
2
r½V � Cp2�

. (3)

It is straightforward to verify that (3) is sign-equivalent
to (2).

As a further variation, we now relax the assumption that
rewards in the hawk–dove game are strictly fixed. In
realistic ecological settings, it is likely that such rewards are
fluctuating between generations, reflecting, for example,
variations in environmental conditions between years. To
keep the treatment transparent, we consider the simplest
such fluctuation by assuming that the reward can switch
between just two values, V 1 ¼ ð1þ cÞV and
V2 ¼ ð1þ cÞ�1V , where cX0 measures the contrast be-
tween these two rewards. In each generation, values V1 and
V2 are attained with equal probability. Whereas this
perturbation of the original model thus leaves the
geometric mean of the reward invariant, the model’s
invasion fitness, obtained from the geometric mean of the
reproduction ratio resulting for the two reward values, is
changed to

f ðpv; pÞ ¼
1

2
ln
Y2
i¼1

Rþ 1
2
r½V ið1� pþ pvÞ � Cppv�

Rþ 1
2
r½V i � Cp2�

. (4)

Fig. 1b illustrates a resultant pairwise invasibility plot. It
turns out that the slightest reward contrast removes the
formerly observed degeneracy. Specifically, for any c40,
the slope of the non-diagonal zero-contour curve of f is
negative (i.e., the curve is tilted counter-clockwise), while
its curvature is positive (i.e., the curve is concave from the
right). Accordingly, the previously existing plethora of
evolutionarily neutral mixtures has collapsed to a unique
monomorphic attractor. This delicate sensitivity under-
scores the structural instability of the original model.
So far, we have assumed that the rate r at which

individuals interact through the hawk–dove game is strictly
identical for all players. However, in ecologically realistic
circumstances, it is quite likely that players are subtly or
significantly more or less likely to engage in such
interactions, depending on their strategy. Doves may avoid
interactions and hawks may seek out engagements, or vice
versa. To explore the consequences of such variation with
some generality, we expand the interaction rates for
strategies p up to second order around p�,

rðpÞ ¼ r0 þ ðp� p�Þr1 þ ðp� p�Þ2r2 (5a)

with r0X0, and update the model’s invasion fitness
accordingly,

f ðpv; pÞ ¼ ln
Rþ 1

2
~rðpv; pÞ½V ð1� pþ pvÞ � Cppv�

Rþ 1
2
rðpÞ½V � Cp2�

. (5b)

Here the choice of ~rðpv; pÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðpvÞrðpÞ

p
reflects the

assumption that engagements are initiated bilaterally and
symmetrically. Fig. 2 illustrates the resultant pairwise
invasibility plots. As can be seen, the slightest departure
from uniform interaction rates removes the game-theore-
tical degeneracy. Notice that in this third variant of the
model the non-diagonal zero-contour curve of f can have
either positive or negative slope, and also its curvature can
either be positive or negative.
More in general, the third model variant shows how the

degenerate game-theoretical case serves as the organizing
center (Golubitsky and Schaeffer, 1985) of a rich bifurca-
tion structure. Since the signs of both slope and curvature
of the non-diagonal zero-contour curve of invasion fitness
qualitatively affect evolutionary predictions, the local
unfolding of the game-theoretical degeneracy always
requires variation of at least two model parameters. Using
the non-diagonal zero-contour curve’s slope and curvature
at p ¼ p� as generic local unfolding parameters, the
degeneracy’s unfolding can be depicted as shown in Fig.
3. Notice that, in this unfolding, transitions from negative
to positive slopes are of particular relevance, since these
correspond to the transformation of an evolutionarily
stable strategy into an evolutionary branching point (Metz
et al., 1996a; Geritz et al., 1997). Consequently, expected
evolutionary outcomes fundamentally differ on either side
of such a transition: for an evolutionarily stable strategy, a
monomorphic mixed strategy is expected to evolve,
whereas evolutionary branching points may give rise to
population-level dimorphisms of strategies.
Interestingly, the members of the dimorphisms even-

tually emerging after evolutionary branching may both be
either pure or mixed strategies. A full analysis distinguish-
ing the various cases then enables a much more conclusive
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Fig. 3. General unfolding of mixed ESS in evolutionary matrix games.
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Fig. 2. Pairwise invasibility plots and unfolding for an ecological embedding of the hawk–dove game with variable interaction rates. The classical game-

theoretical case (Fig. 1a) is located at r1 ¼ r2 ¼ 0; it is thus straddling three bifurcation curves, reflecting its structural instability. In the top-left panel, the

non-diagonal zero-contour curve is tilted clockwise and is concave from the right; in the top-right panel, the curve is titled clockwise and is concave from

the left; in the bottom-left panel, the curve is tilted counter-clockwise and is concave from the left; and in the bottom-right panel, the curve is tilted counter-

clockwise and is concave from the right. Evolutionary branching is predicted to occur for parameters in the white and light gray regions of the central

panel, as can be seen from the top-left and top-right pairwise invasibility plots. Parameters: V ¼ 0.5, C ¼ 1, R ¼ 2, and r0 ¼ 1.
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prediction of the eventual evolutionary outcomes than is
possible based on matrix games. Unfolding the degeneracy
of mixed strategies in matrix games thus results not only in
the removal of a perilous structural instability, but also
offers an additional conceptual benefit: whereas, in matrix
games, mixed strategies realized probabilistically at the
level of individuals or polymorphically at the level of
populations are indistinguishable, instructive insights into
the interplay between these biologically rather different
realizations of diversity can be gained once the game-
theoretical degeneracy is overcome.
In this section we have shown how a more extensive

population dynamical embedding and the addition of
salient elements of ecological realism help to unfold a
fundamental degeneracy of evolutionary matrix games. We
suggest that the only features of an evolutionary game
likely to be biologically relevant are those that stay intact
under such an unfolding.

3. Selection-driven extinctions need not be rare

For a long period during the 19th and 20th centuries,
evolution was thought to operate so as to benefit the
affected species. Accordingly, it was widely expected that,
for example, life-history evolution would always enhance a
population’s viability. Such was Darwin’s confidence in
this prowess of adaptive evolution that he suggested ‘‘we
may feel sure that any variation in the least degree injurious
would be rigidly destroyed’’ (Darwin, 1859, p. 130) and
‘‘Natural selection will never produce in a being anything
injurious to itself, for natural selection acts solely by and
for the good of each’’ (Darwin, 1859, p. 228).
Notions of optimizing selection are underlying land-

marks of evolutionary theory developed during the Modern
Synthesis, like Fisher’s so-called fundamental theorem of
natural selection (Fisher, 1930), or Wright’s notion of hill
climbing on genotypically or phenotypically defined fitness
landscapes (Wright, 1932, 1967). Also Levins’s fitness-set
approach to the study of bivariate evolution (Levins,
1962, 1968), still enjoying widespread recognition in life-
history evolution (Yodzis, 1989, pp. 324–351; Case, 1999,
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pp. 175–177; Calow, 1999, p. 758), is based on the
assumption that, within a set of feasible phenotypes
defined by a trade-off, evolution will maximize a popula-
tion’s fitness.

The perception that evolution worked for the good of
the species was also common among field biologists, often
based on implicit or explicit ideas of group selection, which
found their culmination in the work by Wynne-Edwards
(1962). By the 1970s, explaining adaptations in terms of
species-level benefits had fallen into disrepute (Williams,
1966). While most biologists are thus aware that adaptive
evolution, in principle, can undermine a population’s
viability, and while such phenomena are regularly dis-
cussed in the context of the ‘tragedy of the commons’
(Hardin, 1968), the evolution of altruism (e.g., Axelrod and
Hamilton, 1981), or the evolution of sex (e.g., Maynard
Smith, 1978), the role of adaptive life-history evolution in
causing extinctions has received but limited attention to
date.

A notion still lingers in the biological community that it
should be only under very exceptional circumstances that
adaptive evolution worsens a population’s lot to the extent
of causing extinction. Earlier ESS theory (e.g., Maynard
Smith, 1982) did not address this issue, since classical
matrix games are not concerned with the impact of
strategies on population density. Also modern applications
of ESS theory based on the replicator equation (Taylor and
Jonker, 1978; Schuster and Sigmund, 1983; Hofbauer and
Sigmund, 1998) tend to focus attention on changes in the
frequencies, rather than the density, of strategies. For an
alternative approach to game dynamics that aimed at
including densities, see Cressman (1990).

While classical ESS theory, then, does not easily lend
itself to the study of selection-driven extinction, frequency-
dependent selection, a consistently emphasized aspect of
ESS theory, plays an important role in such processes.
Frequency-dependent selection is crucial for understanding
selection-driven extinction because it allows the invasion of
populations by a strategy that is beneficial to individuals as
long as that strategy is rare, while ruining the population’s
viability once that strategy has become common. Models
of selection-driven extinction cannot do without density-
dependent selection either: if fitness values are independent
of density, equilibrium population densities, and thus
extinctions, cannot be predicted. It thus becomes clear
that models of selection-driven extinction need to include
both frequency- and density-dependent selection. In other
words, they must incorporate a sufficient degree of
ecological realism.

A verbal and lucid example of a mechanism capable of
causing selection-driven extinction comes from considering
overtopping growth in plants. Taller trees get more
sunlight while casting shade onto their neighbors. As
selection causes the average tree height to increase,
fecundity declines, as more of the tree’s energy budget is
diverted from seed production to wood production. Under
such circumstances it may also take longer for trees to
reach maturity. Thus, arborescent growth as an evolu-
tionary response to selection for competitive ability can
cause deterioration both in a population’s carrying
capacity and in its intrinsic growth rate. The logical
conclusion of such a process may be population extinction,
as was first explained by Haldane (1932). Various later
authors have explored eco-evolutionary models of selec-
tion-driven extinction based on similar ingredients. Below
we provide a review of three salient studies.
Matsuda and Abrams (1994a) analyzed a Lotka–Volter-

ra model in which individuals are subject to asymmetric
competition and a carrying capacity that depends on their
body size. Specifically, the competitive impact experienced
by an individual with body size xv in a population with
mean body size x̄ was assumed to be aðxv; x̄Þ ¼
expð�haðxv � x̄ÞÞ, and the carrying capacity of a popula-
tion monomorphic in body size xv was KðxÞ ¼

K0 expð�hK ðxvÞÞ. The nonlinear function ha preserved the
sign of its argument, and the non-negative function hK went
to infinity when its argument did. Matsuda and Abrams
(1994a) concluded that, under these circumstances, adap-
tive evolution continues to increase body size indefinitely—
provided the advantage of large body size (as described by
ha) is big enough and the cost of increased body size (as
described by hK) is small enough. Since large body sizes
resulted in small carrying capacities, adaptive evolution
thus perpetually diminished population density, a phenom-
enon Matsuda and Abrams (1994a) called ‘runaway
evolution to self-extinction’. Since population density in
this model never vanished (it just continued to deteriorate),
additional stochastic factors were required to explain
extinction. Mathias and Kisdi (in press) modeled such
extinctions explicitly.
In a model by Dercole et al. (2002), the per capita growth

rate in a monomorphic population with adult body size x

and population density N(x) has a logistic component
rðxÞ � að0ÞNðxÞ, with the monotonically decreasing func-
tion r(x) capturing the negative influence of larger body
size on fecundity, and with að0ÞNðxÞ measuring the extra
mortality caused by intraspecific competition between
individuals of the same body size. As in the previous
model, the function a measured the competitive impact
between individuals: for phenotypes x and xv, the
competitive impact of x on xv is aðx� xvÞNðxÞ, where a
increases with x� xv, implying asymmetric competition.
Dercole et al. (2002) also incorporated an allee effect by
reducing per capita growth rates in proportion to
NðxÞ2=½1þNðxÞ2�. This allee effect caused bistability in
equilibrium population densities N�ðxÞ: for low x, only a
high-density equilibrium existed, for high x, only a low-
density equilibrium existed, and for intermediate x, the two
stable equilibria coexisted. The selection pressure on x

could be derived from the assumptions summarized here
and turned out to possess two antagonistic components:
the assumed shape of r favored small adult body size,
whereas the asymmetry of competition favored larger body
size. Consequently, strong competition at the high-density
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Fig. 4. Illustration of evolutionary suicide. (a) Equilibrium density N�ðxÞ

resulting for trait values x. Continuous and dotted curves depict stable and

unstable equilibria, respectively. (b) Selection gradient g(x) resulting for

trait values x. For all viable initial trait values, directional selection

increases x up to a critical trait value at which the evolving population

goes extinct. The equilibrium density, trait value, and selection gradient at

which extinction occurs are indicated by open circles. Parameters:

b(x) ¼ b0xe�x, a(Dx) ¼ 1/(1+e�kDx), b0 ¼ 10, k ¼ 5, and d ¼ 1.
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equilibrium increased body size evolutionarily, while the
dominance of the fecundity effect of body size at the low-
density equilibrium decreased body size. The interplay of
ecology and evolution in this model thus brought about an
evolutionary hysteresis: body size increased at the high-
density equilibrium until the population dropped to the
low-density equilibrium, at which point body size de-
creased until the population switched back to the high-
density equilibrium. At the low-density equilibrium,
demographic or environmental stochasticity was expected
to result in a greatly elevated extinction risk.

Also a model developed by Gyllenberg and Parvinen
(2001) was based on asymmetric competition and the
incorporation of an Allee effect. Their model is similar to
the previous one, except for three features: fecundity b(x)
was assumed to be peaked at an intermediate value of body
size x, a trait- and density-independent mortality d was
considered, and the allee effect reduced fecundity by the
factor NðxÞ=½1þNðxÞ�. The model’s invasion fitness was
thus given by

f ðxv;xÞ ¼ bðxvÞN
�ðxÞ=½1þNnðxÞ� � d � aðx� xvÞN

nðxÞ.

(6a)

The invasion fitness yields the model’s equilibrium density
and selection gradient. The equilibrium density N�ðxÞ is
inferred from f ðx;xÞ ¼ 0,

NnðxÞ ¼ 0,

1

2að0Þ
bðxÞ � d � að0Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½bðxÞ � d � að0Þ�2 � 4dað0Þ

q
�

� �
.

ð6bÞ

The extinction equilibrium N�ðxÞ ¼ 0 was stable for all x.
For intermediate values of x, two positive equilibria
coexisted, with the high-density one being stable, separated
from the extinction equilibrium by an unstable low-density
equilibrium. The model’s selection gradient,

gðxÞ ¼
@

@xv
f ðxv; xÞ

����
xv¼x

¼ b0ðxÞNnðxÞ=½1þNnðxÞ� � a0ð0ÞN�ðxÞ, ð6cÞ

was positive for all x, provided that a0(0) was sufficiently
negative, i.e., whenever competition was sufficiently asym-
metric. The adaptive dynamics of body size x thus drove
the population to the threshold at which the two positive
equilibria vanished by collision: above this threshold, only
the stable extinction equilibrium remained. In this model,
therefore, adaptive evolution did not reduce population
density gradually to zero, as in the two previous examples,
but instead caused the population to go extinct abruptly.
Fig. 4 illustrates this scenario.

Such abrupt transitions to extinction, caused by direc-
tional selection, have been termed ‘evolutionary suicide’ by
Ferrière (2000). More precisely, evolutionary suicide is
defined as a trait substitution sequence driven by mutation
and selection that takes a population toward and across a
boundary in a population’s trait space beyond which the
population cannot persist. Once the population’s traits
have evolved close enough to this boundary, variants can
invade that are viable as long as the current resident trait
value abounds, but that are not viable on their own. When
these variants start to invade the resident population, they
initially grow in density; once they have become sufficiently
abundant, concomitantly reducing the former resident’s
density, the variants bring about their own extinction.
It thus appears that the ecological requirements for

selection-driven extinction are easily met. Whenever
competitive ability trades off strongly with longevity or
fecundity, and competition is sufficiently asymmetric,
directional selection on traits underlying competitive
ability is expected to reduce population density. If the
resultant densities fall below the threshold density of an
allee effect, or if they imply a much elevated risk of
accidental extinction, the population is doomed. The
potential ubiquity of selection-driven extinctions is under-
scored by other examples of extinctions caused by
adaptation in different traits, including anti-predator
behavior (Matsuda and Abrams, 1994b), sexual traits
(Kirkpatrick, 1996; Kokko and Brooks, 2003), dispersal
rates (Gyllenberg et al., 2002), mutualism rates (Ferrière
et al., 2002), cannibalistic traits (Dercole and Rinaldi,
2002), maturation reaction norms (Ernande et al., 2002),
levels of altruism (Le Galliard et al., 2003), and selfing rates
(Cheptou, 2004); see also the review by Parvinen (2006).
Furthermore, Dieckmann and Ferrière (2004) showed, by
examining ecologically explicit multilocus models featuring
either diallelic loci or continua of alleles, that the incidence
of evolutionary suicide is by no means restricted to
phenotypic models of asexual evolution, but robustly
occurs also when sexual inheritance is taken into account.
It is not accidental that two of the examples described in

some detail above involved discontinuous transitions in
population density at critical trait values. In the context of
a model of dispersal evolution in metapopulations,
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Gyllenberg et al. (2002) proved that discontinuous transi-
tions to extinction, implying catastrophic bifurcations, are
a prerequisite for evolutionary suicide. This finding applies
more generally: wherever a population goes to extinction
through a continuous transition, it cannot undergo
evolutionary suicide (Gyllenberg and Parvinen, 2001). This
is easily shown for cases in which a population’s density N

and adaptive trait x are both one-dimensional (Dieckmann
and Ferrière, 2004). The generic continuous transition to
extinction then is the transcritical bifurcation, in which a
positive equilibrium and the extinction equilibrium collide
and exchange their stability at a critical trait value xc. In
the vicinity of xc, population dynamics can always be
written as d

dt
N ¼ ½ðx� xcÞ �N=K �rN, where K40 scales N

and r40 scales d
dt

N (up to redirection of x; Guckenheimer
and Holmes, 1997, p. 145). With the per capita growth rate
of a variant with trait value xv in an environment with
population density N thus being given by ½ðxv � xcÞ�

N=K �r, and with the equilibrium population density of a
resident population with trait value x ¼ xc vanishing,
N ¼ 0, we obtain the invasion fitness f ðxv; xcÞ ¼ ðxv �

xcÞr for the rare variant competing with the critical
resident. In addition, the consistency condition f ðx;xÞ ¼
0 for ecological equilibrium has to be fulfilled for all x.
When making the generic assumption that f ðxv; xÞ has a
leading linear order around xv;x ¼ xc, i.e., f ðxv;xÞ ¼
cvxv þ cx, the coefficients cv and c can be determined from
the two constraints f ðxv; xcÞ ¼ ðxv � xcÞr for all xv, and
f ðx; xÞ ¼ 0 for all x, which yields f ðxv;xÞ ¼ ðxv � xÞr. The
selection gradient operating on the adaptive trait x is thus
given by @

@xv
f ðxv;xÞ

��
xv¼x
¼ r, which is always positive. This

means that adaptive evolution takes x away from xc by
making it larger, thus increasing the equilibrium popula-
tion density from N�ðxcÞ ¼ 0 to N�ðxÞ ¼ ðx� xcÞK . There-
fore, adaptive evolution in this system can never cause
evolutionary suicide by driving x toward the critical trait
value xc. Similar conclusions were reached by Gyllenberg
and Parvinen (2001) and by Webb (2003).

In this section we reviewed how the proper population
dynamical embedding of models of adaptive life-history
evolution, including both frequency-dependent and den-
sity-dependent selection pressures, results in predictions of
selection-driven extinction under a wide range of ecologi-
cally plausible scenarios. We propose that the commonly
accepted null hypothesis of population extinctions in the
fossil record to have resulted from ecological or externally
imposed environmental changes needs to be reconsidered:
at the present state of knowledge, adaptive evolution
cannot be ruled out as a potentially widespread agent of
population extinctions.

4. Evolutionary epidemiology cannot rely on R0

maximization

In this section, we provide a concrete illustration of the
very general, and hence unavoidably abstract, concept of the
environmental feedback loop, by analyzing a few simple but
exemplary cases. By focusing on the evolution of virulence,
these examples also demonstrate the potential for mutual
illumination between applied and abstract ESS theory.
For a long time, it was close to dogma in epidemiological

theorizing (e.g., Anderson and May, 1982, 1991) that the
main basis for the study of virulence evolution should be
sought in the maximization of R0, defined as the number of
secondary infections engendered by a primary infection in
an otherwise infection-free population. To this end, R0 is
considered as a function of the disease’s demographic
parameters, which in turn are envisaged as functions of
some underlying trait vector x that is supposed to be under
evolutionary control.
At the opposite extreme of the abstraction spectrum,

Metz et al. (1996b), extending results by Mylius and
Diekmann (1995), proved that for ESSs to be characteriz-
able in terms of an optimization principle it is necessary
and sufficient that
(A) there exists a function B : R� E! R, with R

denoting the real numbers and E the realizable environ-
mental conditions, increasing in its first argument, and a
function c : X! R, with X denoting the set of potential
values of the trait vector, such that

signrðxv;EÞ ¼ sign BðcðxvÞ;EÞ, (7)

with rðxv;EÞ denoting invasion fitness, defined as the
asymptotic per capita rate of population increase of a
variant with trait xv in a resident environment E.
Metz et al. (1996b) also proved (A) to be equivalent to
(B) there exists a function Z : X� R! R, decreasing in

its second argument, and a function f : E! R such that

signrðxv;EÞ ¼ sign Zðxv;fðEÞÞ. (8)

Conditions (A) and (B) can be paraphrased as follows:
(A) means that the trait values affect fitness effectively in a
one-dimensional monotone manner, and (B) means that
the environment acts effectively in a one-dimensional
monotone manner. The reason for the epithet ‘effectively’
is that the one-dimensionalness and monotonicity only
need to pertain to the range of fitness values that matter in
ESS considerations, i.e., to those surrounding the change
from negative to positive values.
Relations (7) and (8) can be related to each other by the

observation that, if an optimization principle exists,
(C) it is possible to choose the functions f and c such

that

signrðxv;EÞ ¼ sign ðcðxvÞ � fðEÞÞ, (9)

where f and c are connected through the relation

cðxÞ ¼ fðEattrðxÞÞ, (10)

with Eattr(x) denoting the environment engendered by any
attractor attained by the community dynamics for the
parameter vector x. This, of course, implies that a suitable
function f will yield the same value for all the attractors
that may possibly by attained by x. With this additional
notation in place, we can also be more precise about the set
E of realizable environmental conditions: E ¼ EattrðXÞ. For
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environments outside this set, invasion fitness r may
assume any shape, just as the supposed existence of an
optimization principle does not impose any restrictions on
r except locally around the subset of E�X for which
rðxv;EÞ ¼ 0.

To better connect with the notation used in the previous
two sections, it may be helpful to observe that the
environment-dependent and resident-trait-dependent notions
of invasion fitness (denoted throughout this article by r and f,
respectively) are related to each other by f ðxv;xÞ ¼ rðxv;
EattrðxÞÞ, for any variant trait xv and resident trait x.

Naturally, results (A)–(C) hinge on the interpretation of
the term ‘optimization principle’. The latter is defined by
Metz et al. (1996b) as a function from trait values to real
numbers such that, for any possible constraint on the traits,
the ESS(s) can be calculated by maximizing this function.
The proviso in the previous sentence mirrors the usual
practice of combining an optimization principle, derived
from the population dynamics, with a discussion of the
dependence of the evolutionary outcome on the possible
constraints. Details of these considerations may be found
in Metz et al. (1996b), available at http://www.iiasa.ac.at/
cgi-bin/pubsrch?WP96004. What matters here is that, while
condition (A) is close to trivial, the equivalent condition
(B) and relation (10) in condition (C) provide a useful tool
for either deriving optimization principles or proving the
non-existence of such principles, for large collections of
population dynamical models. Below we will demonstrate
their application by means of some simple examples.

Just as evolution maximizes the function c appearing in
(A), it minimizes the function f in (B). Therefore, and since
f can be interpreted as a measure of environmental quality,
the latter has been dubbed a pessimization principle by
Mylius and Diekmann (1995): in the end, the worst
attainable world remains, together with those types that
can just cope with it.

As an aside, it may be worth pointing out that the
pairwise invasibility plots for eco-evolutionary models
allowing an optimization principle exhibit an immediately
recognizable, very special geometry, as illustrated in Fig. 5.
This geometry is a direct consequence of the linear pre-
order established by any optimization principle and
illustrates, in a visually easily recognizable manner, the
structural instability of optimization models.

The epidemiological models that we consider below have
been chosen for the simplicity of the calculations they
engender. In particular, their community dynamics possess
unique internal point attractors (which is almost a sine qua
non for obtaining analytical results). That these models
also allow explicit solutions for the equilibria is a boon
(when no explicit solutions are available, the same results
can usually be derived through an implicit differentiation
of the equilibrium equations). For a discussion of the
epidemiological implications and a similar analysis of
another suite of models see Dieckmann (2002).

We start out by giving a full population dynamical
description of the ecological context, before reverting to
considerations focusing on infected individuals. It is the
individual-based dynamics of the latter that provides the
basis for the classification of the environmental feedback
loop based on its consequences for the ESSs of disease
traits. The details of the population dynamics surrounding
infected individuals is relevant only in so far as it acts as an
environment affecting the population dynamical behavior
of the infected individuals.
To characterize the potential instantaneous environmen-

tal conditions to which infected individuals may be
exposed, we follow standard notation by letting S denote
the density of susceptible individuals, while I denotes the
density of infected individuals. After specifying the
dynamics of this instantaneous environment, the corre-
sponding evolutionary environments can be calculated
from the attractors of this dynamics. Infections occur
according to the simple law of mass action, with a fixed
rate constant b. Infected individuals do not recover but die
at a per capita rate a, acting on top of the per capita death
rate experienced by susceptible and infected individuals
alike. In the absence of the disease, I ¼ 0, the population
grows in a density-dependent manner, with per capita birth
rate b0 � hbðS; 0Þ and per capita death rate d0 � hdðS; 0Þ,
with b04d040. The functions hb and hd both increase in S,
with hbð0; 0Þ ¼ hdð0; 0Þ ¼ 0. The full population dynamical
equations are then given by

dS

dt
¼ ½bðS; IÞ � dðS; IÞ � bI �S,

dI

dt
¼ ½bS � a� dðS; IÞ�I , ð11aÞ

with

bðS; IÞ ¼ b0 � hbðS; IÞ; dðS; IÞ ¼ d0 þ hdðS; IÞ. (11b)

(The implicit assumption that infected individuals are not
allowed to reproduce greatly simplifies the proofs of the
attractivity of the equilibria, but can probably be relaxed.)
The parameters a and b are assumed to be under
evolutionary control by the disease (evolution in host-
controlled traits is not considered here). As usual, we
assume a and b to be connected by a constraint: b cannot
become too high and a simultaneously not too low, which
can be expressed as gða; bÞpm with g increasing in b and
decreasing in a. As evolution acts to increase b and
decrease a, it will quickly run into this constraint. From
there on, evolution will effectively be restricted to the curve
gða; bÞ ¼ m, alternatively parameterized as b ¼ bðaÞ, or as
ðaðxÞ;bðxÞÞ for some scalar physiological trait x.
Within the general class of models (11), we consider four

exemplary cases,

ðiÞ hbðS; IÞ ¼ kðS þ IÞ; hdðS; IÞ ¼ 0,

ðiiÞ hbðS; IÞ ¼ 0; hdðS; IÞ ¼ kS,

ðiiiÞ hbðS; IÞ ¼ 0; hdðS; IÞ ¼ kS2,

ðivÞ hbðS; IÞ ¼ 0; hdðS; IÞ ¼ kðS þ IÞ. ð11cÞ

http://www.iiasa.ac.at/cgi-bin/pubsrch?WP96004
http://www.iiasa.ac.at/cgi-bin/pubsrch?WP96004
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Fig. 5. Optimization principles (upper rows; horizontal axes: adaptive trait, vertical axes: quantity optimized by evolution), together with the

corresponding pairwise invasibility plots (lower rows; horizontal axes: resident trait, vertical axes: variant trait). Notice that the existence of an

optimization principle amounts to no more and no less than that all feasible values of the trait vector can be linearly pre-ordered: after dividing out over

the equivalence relation ‘‘equally good’’, one obtains a linearly ordered set of equivalence classes. The geometric implications are two-fold. First, the

antisymmetry of linear orders translates into the skew symmetry of the pairwise invasibility plots. Second, the transitivity of linear orders translates into

the fact that any isolas of the non-diagonal zero-contour curve (these isolas correspond to local maxima of the optimization principle that are exceeded by

its global maximum) have counterparts in wiggles in any other non-diagonal zero-contour curves that span the same range of trait values, either

horizontally or vertically.
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These model families have been rigged so that for model (i)
and (ii) the environmental feedback for the disease is one-
dimensional monotone. According to conditions (A) and
(B), these models thus support an optimization principle.
For model (i) the optimization principle is equivalent (i.e.,
monotonically related) to R0, while for model (ii) this is not
the case. For model (iii) the environment feedback acts
one-dimensionally but not monotone, and for model (iv) it
acts two-dimensionally. It should be understood that the
specific examples in Eq. (11c) are chosen primarily for
didactical purposes. For their individual-based underpin-
ning one may think of population regulation through
fighting. For models (i) and (iv) fighting may be initiated by
all individuals, whereas for models (ii) and (iii) infected
individuals are assumed to suffer from fights without being
able to initiate such fights themselves. Model (iii) is based
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on the assumption of aggression increasing linearly with
aggressor density. Fighting, of course, may here be
replaced by any other form of interference competition.

Since we only have to deal with point attractors of the
community dynamics, we can use R, the lifetime per capita
production of new disease cases by a variant disease case,
as a proxy for invasion fitness. We start by expressing R as
a general function of the variant traits xv ¼ ðav; bvÞ and of
the variables (S,I) parameterizing the potential environ-
mental conditions,

ðiÞ Rðav; bv;S; IÞ ¼
bvS

av þ d0
,

ðiiÞ Rðav;bv;S; IÞ ¼
bvS

av þ d0 þ kS
,

ðiiiÞ Rðav;bv;S; IÞ ¼
bvS

av þ d0 þ kS2
,

ðivÞ Rðav;bv;S; IÞ ¼
bvS

av þ d0 þ kðS þ IÞ
. ð12Þ

It is only later that we will confine attention to the
realizable environments, given by the equilibrium values
ðS�ða;bÞ; I�ða; bÞÞ produced by the possible residents
x ¼ ða;bÞ.

To derive firm conclusions from (12), we have to make
sure that the dynamical equations (11) indeed have unique
equilibrium points as their only internal attractors. This
appears indeed to be the case for models (i), (ii), and (iv).
For model (iii), bistability can occur, with the state space
divided into the basin of an internal locally stable
equilibrium and the basin of the disease-free boundary
equilibrium. Since the statements about ESSs to be made
below are predicated on the presence of the disease, these
stay true, though vacuous, in the absence of that disease.
All conclusions to be derived from (12) will thus be valid.

For model (i), R increases with S. So the optimization
principle can be constructed directly from (10). Minimizing
S�, which can easily be seen from (11) to yield S� ¼

ðaþ d0Þ=b, should thus be equivalent to maximizing
cða;bÞ ¼ �S� ¼ �ðaþ d0Þ=b. To calculate R0 for this
model, we observe that R0ða;bÞ ¼ Rða; b;S0; 0Þ ¼ bS0=
ðaþ d0Þ, with S0 denoting the equilibrium value for S in
the absence of the disease. It is not difficult to see that R0

and the c resulting from our general construction are
indeed monotonically related, independently of the value
of S0.

For model (ii), R is again monotone in S. With
S� ¼ ðaþ d0Þ=ðb� kÞ, we find that two equivalent optimi-
zation principles can be constructed as counterparts in
trait space of minimizing S� : c ¼ �ðaþ d0Þ=ðb� kÞ and
~c ¼ ðb� kÞ=ðaþ d0Þ. However, neither of these is equiva-
lent to maximizing R0 ¼ bS0=ðaþ d0 þ kS0Þ ¼ bðb0�

d0Þ=½kðaþ b0Þ�, where we used S0 ¼ ðb0 � d0Þ=k as for
model (i). To see this non-equivalence, it suffices to observe
that the contour lines, defined by R0ða;bÞ ¼ R0ða0;b0Þ and
cða;bÞ ¼ cða0;b0Þ for given (a0;b0), differ, as can be seen
from the lack of coincidence in their derivatives at (a0;b0),
calculated via an implicit differentiation of the defining
relations: da=db ¼ ðka0 þ b0Þ=ðb0kÞ for R0, which differs
from da=db ¼ ða0 þ d0Þ=ðb0 � kÞ for c.
The fact that invasion fitness in model (iii) is non-

monotone in any possible single scalar summary of the
condition of the environment, and that the evolutionary
environment in model (iv) is essentially two-dimensional,
can already be guessed from (12). However, to prove these
statements, we have to deal with the fact that, for instance,
in model (iii) R should be non-monotone relative to
whatever summary variable, if its domain is restricted to
the realizable values of S and in addition to an infinitesimal
neighborhood of those combinations of (av, bv) and
S�ða;bÞ for which Rðav; bv;S

�ða;bÞÞ ¼ 1. Doing so involves
many technicalities. These are collected in Appendix A.
The reason for going through the motions there is that the
utilized techniques are representative for a class of
techniques that allow dealing with much more difficult
problems of a similar ilk.
For the more biologically oriented reader, we add a

small dessert in the form of a fifth model. The fact that for
models (ii)–(iv) the ESS cannot be calculated by maximiz-
ing R0 may not pass the naive practitioner unnoticed, as in
these models maximization of R0 gives the counterintuitive
result that the outcome of the maximization depends in an
essential manner on the value of S0. So the R0-maximiza-
tion strategy seems harmless: just maximize R0, and if you
cannot do so independently of S0, start thinking a little
better. Our last example is specifically geared to deal with
this potential objection against our denouncement of R0-
maximization (for further corroborative examples, see
Dieckmann, 2002). The fifth model is defined by

ðvÞ
dS

dt
¼ ½bðS; IÞ � d0 � bI �S,

dI

dt
¼ ½bS � að1þ yIÞ � d0�I , ð13aÞ

with

bðS; IÞ ¼ b0½1� kðS þ IÞ�, (13b)

i.e., here the disease-dependent mortality increases with the
severity of the infection in the population. As a tongue-in-
cheek explanation, one may think of a reduction in the
efficiency of the health-care system occurring when too
many people are infected. This model again has a unique
internal point attractor. Our proxy of invasion fitness is
given by

ðvÞ Rðav;bv;S; IÞ ¼
bvS

avð1þ yIÞ þ d0
. (14)

In an as yet uninfected population, this reduces to the usual
R0ða; bÞ ¼ bS0=ðaþ d0Þ, as in model (i). So here maximiz-
ing R0 gives a result that is independent of S0, which means
that the non-applicability of R0-maximization may easily
elude the naive practitioner. However, since the feedback
environment in model (v) is two-dimensional, there exists
no optimization principle, and the ESS cannot be
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calculated by maximizing R0. All that remains in cases like
this is to do a full ESS calculation based on the fitness
proxy (14) and the equilibrium solutions

ðvÞ S�ða; bÞ ¼
ðbþ kÞðaþ d0Þ � yaðb0 � d0Þ

bðbþ kÞ þ yak
,

I�ða; bÞ ¼
bS�ða; bÞ � a� d0

ya
. ð15aÞ

Also for models (iii) and (iv), such a full ESS calculation
could be carried out based on using the equilibrium
solutions of these models,

ðiiiÞ S� ¼
b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4kðaþ d0Þ

q
2k

, (15b)

ðivÞ I� ¼
ðb0 � d0Þðb� kÞ � a� d0

b2 � k2 þ k
,

S� ¼
a� d0 þ kI�

b� k
. ð15cÞ

Eqs. (15) bring out the unfortunate consequence of having
to rely on a full ESS calculation: for even slightly more
complicated models, the ensuing formulas have a tendency
to be rather opaque, to say the least.

The overall take-home message of this section perhaps
does not come as a surprise in a special issue on ESS
theory: simple optimization can rarely be used to predict
evolutionary outcomes—and even when an optimization
principle exists, it is rarely equivalent to R0 (see also Mylius
and Diekmann, 1995). This general conclusion applies to
evolutionary epidemiology in particular (Dieckmann,
2002), where R0 maximization ruled maybe even more
firmly than in other areas of population biology. Condi-
tions (A) and (B) provide a complete characterization,
phrased in terms of the properties of the environmental
feedback loop, of all cases in which an optimization
principle does a proper job. In addition, relation (10) in
condition (C) provides a useful tool for getting hold of such
an optimization principle if one exists.

5. Generically, Hardy–Weinberg ratios occur for

evolutionary reasons only

The fourth of the surprises brought about by the
incorporation of more realistic environmental feedback
loops into evolutionary models is wholly conceptual,
without an immediate unexpected biological phenomenon
in its wake. The reason is that the evolutionary phenom-
enon to be discussed in this section has been unwittingly
presaged by a standard textbook simplification, which,
however, rarely applies in ecological reality. In almost any
textbook chapter on the mathematics of selection for
randomly mating populations, the Hardy–Weinberg law at
the level of new zygotes is presented as a useful general-
ization, introduced and motivated from a purely mechan-
istic basis. In contrast to this treatment, we will show below
that, even when assuming the global random union of
gametes, almost no population dynamical model with
ecologically realistic life histories has its zygotic genotype
frequencies on the Hardy–Weinberg manifold. Yet, even in
those cases, Hardy–Weinberg frequencies may well be seen
in practice. The apparent contradiction between the
preceding two statements is resolved by the demonstration,
to be given below, that the exceptional parameter values
necessary for Hardy–Weinberg frequencies occur as ESSs
in a large class of ecologically more realistic models. Thus,
the Hardy–Weinberg law may indeed reign in nature, but
for evolutionary instead of purely mechanistic reasons.
In textbooks on evolutionary biology, it is close to

dogma that under the random union of gametes, be it due
to a mixing of gametes in broadcast spawners or to random
mating, the newly formed zygotes occur in Hardy–Wein-
berg proportions. However, as is neatly stressed for the
case without selection in the unpublished textbook by
Felsenstein (1978–2005), available at http://evolution.
genetics.washington.edu/pgbook/pgbook.html, the Hardy–
Weinberg law for zygotes only holds when allele frequen-
cies in the two sexes are equal (without selection, the
zygotic genotype frequencies relax to Hardy–Weinberg
proportions in one generation, at least in the case of
autosomal genes). With selection, it should not be so much
the allele frequencies in the two sexes that should be equal,
but the allele frequencies in their gametic outputs. This is
where ecological considerations kick in.
The condition for generically having equal micro- and

macrogametic allele frequencies is that, for all feasible
environmental trajectories, the expected micro- and macro-
gametic outputs in the different genotypes are proportional
at all ages. If we restrict attention to equilibria, a
proportionality of the lifetime outputs is sufficient.
Although customarily assumed, such proportionality is
actually exceptional, when seen against the background of
most life histories encountered in the field. We may think,
for instance, of a life history in which females reproduce for
the first time at age 1, and males at age 2, and otherwise
produce age-independent gametic output. When consider-
ing an age-independent annual density-dependent survival
s, we can envisage a mutant allele that, in the heterozygote,
changes this survival by a factor a. Then, at any prescribed
density, carrying one copy of this mutation changes the
lifetime gametic output of females by a factor a 1�s

1�as
, and

that of males by a factor a2 1�s
1�as

. To achieve proportionality
of the macro- and microgametic outputs of the different
genotypes, the ratio of these two factors must be 1. As long
as both alleles are present, the genotype frequencies in the
newly produced zygotes do not lie on the Hardy–Weinberg
manifold. In particular, if the invasion ends in a stable
polymorphism, this departure from Hardy–Weinberg
frequencies persists. Similar statements apply essentially
whenever the age dependence of micro- and macrogametic
production is not exactly in proportion. This is even so in
hermaphroditic annual plants—which may be perceived
as the example best conforming to the simplified ecology
of the population genetics textbooks—when genetic

http://evolution.genetics.washington.edu/pgbook/pgbook.html
http://evolution.genetics.washington.edu/pgbook/pgbook.html
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differences affect seed production relative to flower
production. The latter would apply, in particular, to any
adaptive trait affecting relative competitive ability during
the seed-setting phase.

Observationally, transient polymorphisms are probably
much less important than polymorphic ESSs. In recent
days, it has been become clear, i.a. from evolutionary game
theory (Maynard Smith, 1982), from the consideration of
fluctuating environments (e.g., Ellner, 1996), and most
recently as a result of the adaptive dynamics research
program (Metz et al., 1996a; Geritz et al., 1998; Doebeli
and Dieckmann, 2000), that realistic ecologies more often
than not are conducive to the generation of diversity. In
some cases, such diversity is realized through species
formation (Dieckmann et al., 2004), but on many other
occasions some within-species form of diversity results, be
it purely phenotypic or genetically based (Leimar, 2005). It
is this genetically based diversity that has our interest here.

We will illustrate our point with a very simple eco-
genetic model. To that end, we concentrate on an annual
organism with a potentially polymorphic locus with two
segregating alleles, leading to phenotype vectors xG, with
G ¼ aa; aA;AA. The expected macrogametic output of an
individual with phenotype x is given by lðx;EÞ, where E

denotes the instantaneous ecological environment. Simi-
larly, the expected microgametic output is given by mðx;EÞ.
In this way, we may incorporate any determination of
sexual roles, from hermaphroditism to genetically deter-
mined dioicy. The environment E may, for instance, be an
m-dimensional vector,

E ¼ F
X

G

f1ðE;xGÞnG; . . . ;
X

G

fkðE;xGÞnG

 !
, (16a)

where nG denotes the population density of genotype G.
For the fi one may think of the per capita use of resources
like light, water, space, and various nutrients. The function
F then represents the outcome of the resource dynamics
given these demands. When the frequency of A in the
micro- and macrogametic outputs is denoted by pA and qA,
respectively, then, under the assumption of random
mating, we have

naa ¼ paqaN; naA ¼ ðpAqa þ paqAÞN,

nAA ¼ pAqAN, ð16bÞ

where N ¼ naa þ naA þ nAA denotes total population den-
sity, and pa ¼ 1� pA and qa ¼ 1� qA. Moreover, with next
generation values denoted by p0A and q0A, pA and qA satisfy
the recurrences

m̄p0A ¼ mAApAqA þ
1
2
maAðpAqa þ paqAÞ, (17a)

l̄q0A ¼ lAApAqA þ
1
2
laAðpAqa þ paqAÞ, (17b)

where mG and lG are abbreviations for mðxG;EÞ and
lðxG;EÞ, respectively, and

m̄ ¼ pAqAmAA þ ðpAqa þ paqAÞmaA þ paqamaa, (17c)
l̄ ¼ pAqAlAA þ ðpAqa þ paqAÞlaA þ paqalaa. (17d)

As a matter of convenience, we absorb all density
regulation in l, i.e., we include in m fertilizing propensities,
but not realized effectivities in the form of offspring
numbers, so that we can do the full zygote-to-zygote
bookkeeping through l. For the total population density
we thus obtain the recurrence

N 0 ¼ l̄N, (18)

which completes the specification of our eco-genetic model.
Based on the setting captured by (16)–(18), we can now

examine under what conditions the new zygote genotype
frequencies will stay on the Hardy–Weinberg manifold. As
can be seen from (16b), this requires p0A ¼ q0A in (17), for all
relevant allele frequencies and population densities. The
latter is ensured if lG ¼ ymG for all G, but generally does
not apply otherwise.
More important than the recurrences themselves are the

equilibria they engender. These can be calculated from (16)
to (18) after dropping the primes. When we refer to
(16)–(18) below, it will be assumed, unless mentioned
otherwise, that the primes have been dropped and that,
accordingly, pA and qA denote equilibrium values.
The seeming oversimplification of the model specified by

(16)–(18) is justified by the fact that it is actually much less
special than our initial description suggests. Following
arguments initiated by Charlesworth (1976, 1994), it was
shown by Diekmann et al. (2003) that, under the
assumption of random mating, the same equilibrium
equations follow from a large class of physiologically
structured population models. For this, we have to
interpret l as the expected lifetime macrogametic output
from a new zygote times the probability of their fertiliza-
tion, m as the expected lifetime microgametic output times
their fertilization propensity, and nG and N as birth rates.
The simple and the general case of course differ in their
internal, i.e., population dynamical, stability properties.
However, when it comes to external stability, i.e., the
stability towards invasion by variants altering phenotypic
expression, the two cases coincide, since all that matters in
both cases is whether a generation-based linearized
recurrence for the frequency of variant heterozygotes
predicts their increase or decrease.
The system of equilibrium equations (16)–(18) allows, in

principle, two different classes of equilibria, characterized
by the routes one can follow in the solution process. Along
the first route, one assumes that at least two of the lG or
two of the mG differ. In that case, given the lG and mG, (17)
produces up to three isolated internal solutions for pA and
qA (these solutions have been extensively studied by Owen,
1952; Bodmer, 1965; and Mandel, 1971; see also Karlin and
Lessard, 1986 and Diekmann et al., 2003). We will call
these equilibria ‘population genetic’ solutions. The second
route is based on the possibility, first discussed by
Lewontin (1958), of a solution in which all lG are
equal, and so are all mG. We will call these equilibria
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‘feedback-driven’ solutions. Any feedback-driven solution
satisfies the alternative equilibrium equations

laa ¼ laA ¼ lAA ¼ 1, (19a)

maa ¼ maA ¼ mAA, (19b)

together with (16). Whereas for a population genetic
equilibrium the number of equations, mþ 2þ 1 for Eqs.
(16)–(18) together, neatly matches the number of un-
knowns, E, pA and qA, and N, this is not the case for
feedback-driven equilibria, since (19) actually contains five
equalities that need to be satisfied. This means that,
generically, there is no solution, except for special cases,
such as when it is assumed that xaA ¼ xAA, so that both
laA ¼ lAA and maA ¼ mAA hold a priori. Thus, if there are
any polymorphic equilibria, we may expect them to be
population genetic ones. Consequently, except in the
equally non-generic case that lG ¼ ymG for G ¼ aa; aA;
AA, the zygotic genotype frequencies are off the Hardy–
Weinberg manifold.

The previous considerations were based on the assump-
tion that the phenotypes xG are given a priori. However, in
nature traits do not just take on any values, but are shaped
by evolution. There are two ways in which the xG may
change evolutionarily. Either some new allele a appears on
the scene, or an expression modifier, denoted by B, appears
at a locus that previously only carried an allele b. For the
sake of concreteness, and since the loci underlying the
expression of phenotypes x are likely to extend beyond
the single locus considered so far, we shall proceed on the
assumption that the evolution of xG is primarily driven by
modifiers. Accordingly, we mentally promote our focal
locus to the status of a genetic switch, with three states, aa,
aA, and AA, and assume that the output of this switch to a
phenotypic expression is under evolutionary control. One
particular reason for this ploy is that it will allow us to
discuss more easily the so-called ‘ideal free’ ESSs (Bulmer,
1994; see also Fretwell and Lucas, 1970).

To examine the evolution of phenotypic expression, we
need to consider the invasion fitness of the modifiers. For
this we shall use a fitness proxy, denoted RB, with this
notation intended to stress the proxy’s interpretation as an
expected lifetime offspring number sensu Diekmann et al.
(1990). In principle, the B allele can be transmitted in four
different states, in a macro- or a microgamete, together
with either a or A, and the appropriate (but necessarily
complicated) procedure would be to go through a book-
keeping argument to derive the linearized recurrences for
the four corresponding frequencies, followed by a calcula-
tion of RB as the associated dominant eigenvalue. Luckily,
we can fall back on a shortcut invented by Eshel and
Feldman (1984), and worked out for the most general case
by Liberman (1988), who showed that RB can be written as
a weighted sum,

RB ¼
1
2
ðw1 ~mBbaa þ w2 ~mBbaA þ w3 ~mBbAA

þ w1
~lBbaa þ w2

~lBbaA þ w3
~lBbAAÞ ð20aÞ
with weights

w1 ¼ pB;aqa þ paqB;a,

w2 ¼ pB;aqA þ pB;Aqa þ paqB;A þ pAqB;a,

w3 ¼ pB;AqA þ pAqB;A, ð20bÞ

where ~l ¼ l=l̄ and ~m ¼ m=m̄. The averages l̄, m̄, as well as
the gamete frequencies pa, qa, pA, qA, are to be determined
from (16) to (18) for the resident equilibrium. The long-
term relative frequencies of the different transmission states
of B, pB,a, qB,a, pB,A, and qB,A, are to be calculated as the
components of the normalized eigenvector of the linear
recurrences mentioned above. For the considerations
below, there is no need to determine the weights wi; it
suffices to know that all of them are positive, that Siwi ¼ 1,
and that, necessarily, Rb ¼ 1.
Armed with the fitness proxy given by (20), we can now

introduce the idea of ‘ideal free’ ESSs. If there are no
genetic constraints, in the sense that for any feasible
phenotype there exists a potential modifier realizing it, the
fitness contributions through the different routes—here
corresponding to the states of the genetic switch—should
be equal, i.e., ~mbbaa þ

~lbbaa ¼ ~mbbaA þ
~lbbaA ¼ ~mbbAA þ

~lbbAA.
For, if they were not, then a modifier B that were to change
the expression of all phenotypes with a smaller fitness
contribution to that of the phenotype with the highest
contribution would have an RB41. (Let us assume, for the
sake of the argument, that ~mbbaa þ

~lbbaao ~mbbaA þ
~lbbaA and

~mbbaA þ
~lbbaA4 ~mbbAA þ

~lbbAA; then changing both xbbaa and
xbbAA to xbbAA would lead to RB ¼

1
2

P
iwið ~mbbaA þ

~lbbaAÞ ¼
1
2
ð ~mbbaA þ

~lbbaAÞ4Rb ¼ 1, independently of the values of
the weights wi for either b or B.) The notion of ‘ideal free’
ESSs is customarily used to set apart ESSs that equalise
fitness contributions obtained through different routes,
reflecting the fact that such ESSs often obtain in the ideal
situation of a total freedom from constraints. (The only
constraints that matter here are genetic ones; constraints
on trait values remain allowed when considering ideal free
ESSs.)
The just introduced ideal free ESSs do not yet satisfy the

proportionality conditions mbbaa ¼ ylbbaa, mbbaA ¼ ylbbaA,
mbbAA ¼ ylbbAA, and mbbAA ¼ ylbbAA. To ensure this, we
need the additional assumption (to be called IF in the
remainder of this section) that gene expression is allowed to
be sex-dependent and that we can write xG ¼ ðxm;G ;xf ;GÞ,
mðxG;EÞ ¼ �mðxm;G;EÞ, lðxG;EÞ ¼ �lðxf ;G;EÞ, without any
physiological constraints tying xm,G to xf,G and without
any hard restriction on the realization of the feasible
combinations of xm,G and xf,G by single mutational steps.
For such ‘‘even more ideal free’’ ESSs, or IF-ESSs, we have
laa ¼ laA ¼ lAA and maa ¼ maA ¼ mAA, by the same argu-
ment as given earlier. Consequently, once an IF-ESSs has
been attained by evolution, zygotic gene frequencies will
follow the Hardy–Weinberg law.
Another matter is that for continuous trait spaces the

probability of directly jumping into an ideal free ESS or IF-
ESS will generally be negligible, to the extent of being
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observationally irrelevant. Therefore, the question remains
whether IF-ESSs are locally evolutionarily attracting.
Determining attractivity is easy for one-dimensional
strategy spaces (e.g., Taylor, 1989; Christiansen, 1991;
Metz et al., 1996a; Eshel et al., 1997; Geritz et al., 1998),
but very difficult otherwise. Leimar (2001, in press)
provides a solution for cases in which, close to an ESS,
mutational steps are still sufficiently small relative to the
distance from that ESS that the analysis can be based on
the canonical equation of adaptive dynamics (Dieckmann
and Law, 1996; Durinx and Metz, 2005; Champagnat
et al., this issue). In principle, convergence to the ESS may
depend on the mutational covariance matrix. However,
Leimar (2001, in press) derived conditions characterizing
those cases in which convergence, or divergence, is
determined only by the dependence of the selective regime
on the ecology. These conditions are expressed in terms of
local derivatives of the invasion fitness function at the ESS.
(In this context, it may be worth noting that we have
derived a general canonical equation for the modifier-
driven evolution scenario described above; De Kovel and
Metz, in preparation.) Unfortunately, the very idea of ideal
free ESSs, and thus also of IF-ESSs, is based on the
assumption that mutational steps are not small: in the
argument leading up to the definition of ideal free ESSs, we
had to assume the potential occurrence of mutational steps
that change the phenotype at one setting of the genetic
switch to the phenotype occurring at another setting. In
Appendix B, we sketch a research program that we believe
may, in the long run, resolve the convergence issue, at least
in principle, based on the assumption that the mutation
distribution is sufficiently smooth in phenotype space.

In this section we have argued that, once an IF-ESS has
been reached evolutionarily, zygotic allele frequencies will
lie on the Hardy–Weinberg manifold. Although the
Hardy–Weinberg law may thus reign in nature, using it
as a widely applicable primary assumption based on purely
mechanistic reasons is misleading, in particular when sex-
structured populations are embedded in realistic ecological
settings. We have also argued that, in general, Hardy–
Weinberg frequencies will not apply during the evolu-
tionary transients leading to an IF-ESS. That the law
applies after these transients are over, is caused by a lucky
combination of environmental feedback with sufficient
developmental and genetic freedom. Given such condi-
tions, long-term evolution either keeps moving, or en-
genders polymorphisms that give the appearance of being
selectively neutral (laa ¼ laA ¼ lAA and maa ¼ maA ¼ mAA),
so that, even for complicated life histories, the classical
arguments of Hardy (1908) and Weinberg (1908) hold sway
at the zygotic level.

6. Summary

All intelligent modeling and theorizing rely on idealiza-
tions. Good models, just as successful theories, require
stripping away the non-essential, to allow an unobstructed
view onto a phenomenon’s core. To delineate the domain
of validity of models and theories, and thus to assess
whether perhaps more than the non-essential has been
stripped away, robustness checks are to be carried out.
Here we have shown, in a sequence of four robustness

checks, how the incorporation of enhanced degrees of
ecological realism results in evolutionary phenomena not
predicted by the underlying simplified models:
�
 When evolutionary matrix games are embedded in more
realistic ecological settings, mixed ESSs no longer render
neutral all involved pure strategies and their mixtures.
By overcoming this fundamental structural instability,
more conclusive predictions of evolutionary outcomes
can be made, with population-level polymorphisms of
individual-level mixed strategies becoming amenable to
analysis (Section 2).

�
 When realistic types of density- and frequency-depen-

dent selection are considered in models of life-history
evolution, adaptations can no longer be assumed to
maximize a population’s viability. Instead, adaptive
evolution can become responsible for bringing about a
population’s extinction under a variety of ecologically
plausible scenarios (Section 3).

�
 When models of disease evolution are equipped with

realistic ecological detail, attempts at predicting evolu-
tionary outcomes through optimization principles typi-
cally become futile. As soon as the effective dimension
of the feedback loop governing the interaction of an
evolving population with its environment exceeds 1,
optimization-based predictions will necessarily be in
error (Section 4).

�
 When studying the population genetics of sex-structured

populations in realistic ecological settings, the Hard-
y–Weinberg law for zygotic proportions loses it validity.
It can be shown, however, that adherence to this law
may be reestablished in the course of evolution,
provided the underlying genetic system possesses suffi-
cient flexibility (Section 5).
In all these robustness checks, the investigated perturba-
tions of the simplified models have qualitative implications:
loss of neutrality (Section 2), loss of viability (Section 3),
loss of optimality (Section 4), and loss of Hardy–Weinberg
proportions (Section 5). In some circumstances the tiniest
perturbations suffice (Section 2), in other cases the
amplitude of the new phenomena grow with the considered
perturbation (Sections 4 and 5), and sometimes perturba-
tions may need to exceed a threshold level (Section 3).
Obviously, the failed robustness checks documented in

this study must not be misinterpreted as rendering the
underlying simplified models useless. Instead, great care
ought be taken not to abuse these idealized models by
drawing biological inferences that fall outside their
documented domain of validity. Since the ecological
theater of most evolutionary plays occurring in nature is
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complex, that may be a tall order. Modern ESS theory is
increasingly living up to this challenge.

Appendix A. Ascertaining the dimension of the

eco-evolutionary feedback

To assess the monotonicity or the effective dimension of
the feedback loop in the evolutionary models of epidemio-
logical dynamics discussed in Section 4, we need to examine
the dependence of Rðav; bv;S

�ða; bÞ; I�ða;bÞÞ on the resident
trait ða;bÞ locally around those combinations ða;bÞ that
yield Rðav;bv;S

�ða; bÞ; I�ða;bÞÞ ¼ 1, for all values of the
variant trait ðav;bvÞ.

To show that in model (iii) the feedback loop is non-
monotone, we start from (12) and (15). R depends on E ¼

ðS; IÞ and therefore on ða;bÞ in a one-dimensional manner,
through S alone. R as a function of S has a maximum at
Smaxðav;bvÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðav þ d0Þ=k

p
, and possesses no other inter-

nal extrema. We now consider the set M of resident
trait values that as residents maximize R, M ¼

fða;bÞjSmaxða;bÞ ¼ S�ða;bÞg. For ða;bÞ 2M we have
Rða;b;Smaxða; bÞÞ ¼ 1, and therefore sign lnRða;b;
Smaxða;bÞÞ ¼ signrða;b;Smaxða;bÞÞ ¼ 0. (To ward off po-
tential confusion, we repeat that the maximization is with
respect to the resident trait ða; bÞ, and not with respect to
the variant trait ðav;bvÞ, as is common in ESS calculations.)
The elements of M are thus precisely those trait values
around which the potentially interesting things happen:
they mark the traits for which R fails to be locally
monotone in S, and the variants close to these straddle the
border between positive and negative values of lnðRÞ. The
monotonicity or non-monotonicity of R in S is of concern
only in the neighborhood of M. The salient point here is
that M does not consist of just a single point but is a one-
dimensional manifold, as can be seen from its definition.
Any function f : S 7!fðSÞ 2 R having a non-decreasing
relation with sign lnðRðav;bv;SÞ, considered as a function
of S for a given ðav; bvÞ 2M, should have its maximum at
Smaxðav;bvÞ 2M—as in the close neighborhood of M,
by the very construction of that manifold, we
have sign lnðRðav; bv;SÞ ¼ 0 for S ¼ Smaxðav; bvÞ and
sign lnðRðav;bv;SÞ ¼ �1 for SaSmaxðav;bvÞ. Accordingly,
there can be a single function f fulfilling condition (B) for
all ðav;bvÞ 2M only if Smaxðav; bvÞ is constant on M. The
latter, however, is not the case. Hence, model (iii) does not
allow an optimization principle.

In models (i)–(iii), where the feedback loop acts through
S alone, it is immediately clear that the dimension of the
feedback is 1. In model (iv), where R is also influenced by I,
it is necessary to be more precise. For when the evolving
population itself appears in the feedback, the very fact that
there may be more than one type present in that population
may increase the number of environmental variables that it
is necessary to keep track of. However, the fact that
infected individuals were treated on a par with susceptible
individuals, through the sum S þ I , in their influence on
the density-dependent death rate, strongly suggests treating
all types of individuals identically when it comes to
determining the density-dependent deaths. If we proceed
on this assumption, we may conclude that the environment
of the infected individuals is at most two-dimensional,
spanned by the densities of susceptible and infected
individuals. What we still have to check is whether or
not, by some quirk, the model components conspire
around the subset of R4 defined by Rðav;bv;S

�ða;bÞ;
I�ða; bÞÞ ¼ 1, to produce a lower effective dimension.
To prove that the effective environmental dimension for

model (iv) is larger than 1, we first introduce a property
that is shared by all evolutionary models having effective
environmental dimension equal to 1, and then show that
model (iv) does not possess this property. Assume that
there does exist a function f : E! R and a function
g : X� R! R, not necessarily increasing in its second
argument, such that sign lnðRðxv;Eattr ðxÞÞ ¼ sign gðxv;
fðEattrðxÞÞÞ. Then the family of manifolds in X defined by
Rðxv;EattrðxÞÞ ¼ 1, parameterized by xv, equals the family
of manifolds defined by fðEattrðxÞÞ ¼ f0 with f0 defined by
gðxv;f0Þ ¼ 0, as is illustrated in Fig. 6. Translated into the
notation of model (iv), this means that a curve through a
point ða; bÞ ¼ ða0;b0Þ defined by Rðav; bv;S

�ða;bÞ;
I�ða; bÞÞ ¼ 1 will not change if we change ðav;bvÞ in such
a manner that the resulting curve still passes through the
point ða0; b0Þ. To check that this property does not hold for
R in (12), with S�and I� defined by (15), it suffices to
calculate the derivative in ða0;b0Þ of different curves
Rðav; bv;S

�ða;bÞ; I�ða;bÞÞ ¼ 1, with ðav; bvÞ 2 R2
þ, passing

through ða0;b0Þ, which is easily done through an implicit
differentiation in the defining equation. Since this deriva-
tive depends on ðav;bvÞ, the curves through ða0;b0Þ for
different ðav;bvÞ do not coincide, as they should if the
effective dimension of the environment equaled 1.

Appendix B. Ascertaining continuous stability in more

dimensions

How can we resolve whether or not ESSs are evolutio-
narily attracting when mutational steps are not necessarily
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small, as is the assumption implicitly made in the
consideration of IF-ESSs? Here we sketch, in a phrasing
adapted to the latter problem, a research program that we
expect to be helpful in addressing this open research
question in the case in which the distributions of
mutational steps are smooth and relatively wide.

We denote the potential variant trait combinations
engendered by a heterozygote modifier as xB ¼ ðxB;aa;
xB:aA;xB:aaÞ 2 X3, with X denoting the space of traits of
single individuals. A similar notation, xb ¼ ðxb;aa; xb:aA;
xb:aaÞ 2 X3, applies to the residents. We move the origin of
the space X

3 to the ESS. Moreover, we emphasize the
dependence of RB on the variant and resident traits,
RB ¼ RðxB; xbÞ. Using this notation, we define HðxbÞ ¼

fxjRðx; xbÞ41g, so that HðxbÞ � X3 is the set of potentially
successful invaders of xb. It follows from Taylor-expanding
R that the family of sets HðxbÞ is scale-invariant close to the
origin: if we neglect higher-order terms in HðxbÞ, multi-
plying the space X3 with a constant will map the family
onto itself. Fig. 7 illustrates such scale invariance for a
simpler two-dimensional problem. Since, for small muta-
tional steps, the invasion probability of a variant calculated
from a branching-process approximation depends on R

linearly, this probability satisfies similar scale invariance.
Moreover, by the smoothness and large extent of the
mutation distribution, we may assume all variants arising
from Xb through mutation to be uniformly distributed in
HðxbÞ. For the time being, we assume that any successful
invasion leads to a substitution. We can then decompose
the process of sequential substitutions into an autonomous
process on the unit sphere in X3, together with a subjugated
radial process. The logarithm of the radial process is a
Fig. 7. Configuration of sets of variants with positive invasion fitness for

different residents (small black dots) around an ESS (large black dot).
random walk with dependent steps. Convergence or
divergence of the radial process corresponds to conver-
gence of the log-radial process to either �N or +N. This
convergence, in turn, depends on whether the steps are
positive or negative on average. A negative average implies
almost sure convergence of the radial process to zero,
whereas a positive average implies that any neighborhood
of zero will almost surely be left forever. Having said this,
we run into the first real difficulty: to calculate these
average steps, we first have to calculate the stationary
distribution of the process on the unit sphere. Based on our
work so far, we can only say that this distribution satisfies a
forbidding looking integral equation.
A second difficulty is that invasion does not necessarily

imply substitution. As we concentrate on only a small
range of phenotypic possibilities, we may assume that the
genotype-to-phenotype map is additive to first order of
approximation. Close to the ESS, selection is weak relative
to recombination. So, to the required order of approxima-
tion, we can describe a polymorphism in terms of the
corresponding average phenotype x̄ ¼ ðx̄aa; x̄aA; x̄aaÞ, to-
gether with a list of variable length, corresponding to the
number of modifiers, consisting of elements ðpB;X BÞ, where
pB ¼ ðpB þ qBÞ=2 denotes the frequency on a modifier B,
with pB being its frequency in the microgametes and qB its
frequency in the macrogametes, and xB denotes the
modifier’s llelic effect. (Note that for given ðpB;X BÞ, pb

and xb can be calculated from pb ¼ 1� pB and pbxbþ

pBxB ¼ 0. By writing pB ¼ pB þ dB and qB ¼ pB � dB and
by expanding the genetic recurrences around the IF-ESS, it
can be seen, moreover, that up to second order pB satisfies
a classical genetic equilibrium equation, with ‘‘viabilities’’
vðx;EÞ=v̄ ¼ ½~lðx;EÞ þ ~mðx;EÞ�=2 of a type considered by
Zhivotovsky and Gavrilets (1993) and by Hermisson et al.
(2003). Furthermore, dB is first order in the distance to the
IF-ESS, and can, up to this order, be expressed explicitly in
terms of the pB and the differences of the relative female
and male gametic outputs, ~mðx;EÞ � ~lðx;EÞ.) The states of
the long-term evolutionary process then correspond to the
population dynamically feasible lists of this kind. This full
process satisfies the same scale invariance as before, and
can therefore be decomposed into a scale-free configuration
process, with states represented by x̄=jjx̄jj together with
lists ðpB; xB=jjx̄jjÞ, and a subjugated radial process jjx̄jj.
And, just as in the simple case, the log-radial process is a
random walk. However, the task of calculating the
stationary distribution of the configuration process, and
from that the average step of the log-radial process, is even
more daunting than for the earlier introduced toy process
based on the (close to an ESS often incorrect) assumption
that invasion implies substitution. The three reasons for yet
providing this sketch are that (i) it indicates where the
difficulties lie, (ii) it may put mathematicians on a
potentially interesting track, and (iii) it shows that the
local attractivity of an IF-ESS is an all-or-nothing
phenomenon, and can thus be determined by a single
simulation run.
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As a final point we remark that although the program
sketched above is both mathematically interesting and
possibly also rewarding, it is, for its biological meaning,
predicated on the assumption that deterministic forces stay
dominant. When the ESS is approached, the fitness values
of invaders get closer and closer to zero, so that, for finite
populations, the strength of selection will eventually
become comparable to that of mutation and/or random
drift. It thus depends on the interplay between many
factors whether or not the conclusions derived from the
idealization sketched above make biological sense. Salient
questions are as follows. How close an approximation of
the ESS are we interested in? What are the relative
curvatures of the fitness landscape and of its dependence
on the resident traits? What is the size of the population we
are considering? What is the frequency of the occurrence of
new modifier alleles with effects in the right range? How
long has the process been going on since the last externally
imposed change in the environment? Clarifying whether
convergence occurs in the idealized case of unrestricted
mutation limitation is thus only the natural first step in
studying a diversity of factors and their interplay.
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