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Spatio-Temporal Processes in Plant 
Communities 

1. Introduction 
A spatio-temporal process is a spatial pattern of objects that develops 
over the course of time. Such processes arise in a number of contexts 
from distributions of particles in physics to distributions of organisms in 
the biosphere. They are of particular interest to plant ecologists because 
spatial structure is an obvious feature of terrestrial plant communities 
and is thought to play a central role in their dynamics. In fact, interest in 
spatio-temporal processes in plant ecology goes back at least to the 
1930s, when A. S. Watt started to map the turnover of species in a grass-
land in the Breckland of England, keeping track of the spatial structure 
of the community. This and other work led him to suggest that the plant 
community might be understood as a system of patches cycling through 
several states (pioneer, building, mature and degenerate), the patches 
together forming a spatial mosaic (Watt 1947). These ideas became es-
tablished as a cornerstone of plant ecology under the banner of 'pattern 
and process' (van der Maarel 1996). 

Curiously, for a long time rather little was built on the foundations laid 
by Watt. Plant ecologists became engrossed in the spatial aspects of plant 
communities, rather than the link between spatial structure and temporal 
dynamics (e.g. Greig Smith 1957). Those plant ecologists who were 
interested in dynamical processes turned more to animal ecology for 
inspiration (e.g. Harper 1977), and here the innate mobility of many 
animals means that spatial structure plays a role secondary to temporal 
processes. There are at least two reasons for plant ecologists’ the lack of 
interest in spatio-temporal processes. The first is the labour required to 
obtain the data from natural communities, since regular censuses com-
prising detailed maps of the spatial pattern are needed. Second, there was 
no obvious formal mathematical structure within which such information 
could be analysed (Stone and Ezrati 1996); in other words, ecologists 
would have found it difficult to know what to do with the information 
once they had it. 
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But developments in mathematics, theoretical physics and computation 

are opening up new opportunities for achieving a synthesis of spatial and 
temporal aspects of plant ecology. These opportunities include modelling 
spatio-temporal processes on discretized lattice-like spaces (e.g. Durrett 
and Levin 1994) and the investigation of their dynamics by techniques 
that go beyond simulation (Matsuda et al. 1992, Harada and Iwasa 1994, 
Rand 1994, Hendry and McGlade 1995, Rand and Wilson 1995). 

In this paper we describe the contribution that we were able to make 
towards the synthesis of spatial and temporal processes in plant com-
munities during our stay at the Wissenschaftskolleg in 1996. The report 
has three parts: construction of stochastic models of spatially extended 
processes (Section 3), methods for estimation of model parameters from 
spatio-temporal processes observed in the field (Section 4), and reduc-
tion of the spatio-temporal process to a dynamical system in a relatively 
small number of dimensions (Section 5). To keep the research properly 
anchored in plant ecology, we used data from a grassland community 
from the Czech Republic, and we start with a description of this system 
(Section 2). 

We ought to mention that, as well as the application to plant ecology, 
there are at least two other reasons why it is important to develop an 
understanding of spatio-temporal processes. The first is that ecological 
theory has tended to proliferate into large numbers of rather ad hoc 
models. At the base of many of these special cases, we think there is a 
common formal framework, taking the form of individual-based spatio-
temporal stochastic processes. It would help to clarify the subject if it 
could be shown how the major classes of models can be recovered as 
mathematical limits of the underlying stochastic processes. Second, spa-
tially-extended data are becoming widely available from geographical 
information systems (GIS) technology and remote sensing by satellites; 
new mathematical and statistical techniques are going to be needed for 
the analysis of this information. 

2. Data 
Grassland communities are a good source of data on spatio-temporal 
processes. These communities show fine-scale spatial patterns, and the 
patterns develop rapidly through time (During and van Tooren 1988, van 
der Maarel and Sykes 1993). To a major extent, this is due to the 
frequent occurrence of clonal growth among grassland species, because 
daughters produced clonally tend to occur only in the close proximity of
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their mother plants. Further, as in all other terrestrial plant communities, 
interactions between plants are essentially short range; the growth and 
reproduction of a particular shoot responds not to an 'average' environ-
ment, but to that in its immediate neighbourhood. These two features 
make grassland communities particularly appropriate for treatment as 
spatio-temporal processes. 

For our study, we used data from a mountain grassland in the Mts. 
Krkonoše (Riesengebirge), in the northern part of the Czech Republic. 
The grasslands in this area were created by clearing small patches in the 
original forests during the past few hundred years. Traditionally they 
have been maintained for hay, with mowing once or twice a year, 
grazing in late autumn and manuring once in several years. The rather 
stable management over several centuries has produced grasslands with a 
remarkably well differentiated species composition, ranging from rather 
species-poor (ca. 10 species m-2) to quite species-rich (40 species m-2) 
depending on altitude, water and nutrient regimes. Though artificial 
grasslands occur at all altitudes, true montane grasslands are restricted to 
altitudes from 800 m up to the timberline at about 1300–1400 m. 

The particular data we used came from the Severka settlement (ca. 3 
km NW of Pec pod Snezkou�� , altitude 1100 m). The climate at the site is 
rather harsh, with cool summers and long winters with thick snow cover, 
usually lasting from November until the end of April; the grassland can 
sustain only one mowing per year. The plant community is rather spe-
cies-poor, and the four principal species that form the basis of our ana-
lysis were: Anthoxanthum alpinum Á. Löve et D. Löve, Deschampsia 
flexuosa (L.) Trin., Festuca rubra L., and Nardus stricta L. These are all 
clonal grasses (Figure 1), though their horizontal growth rates, branching 
frequencies and tussock morphologies differ. There are also other species 
in the grassland, but all of them occur at much lower abundance and may 
be safely assumed not to affect the dynamics of the four grasses 
substantially. Although the system is rather species-poor at the large 
scale, the species coexist at the fine scale, with a species density of 2-4 
species/10 cm2. 
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Figure 1. Four grass species used for analysis of spatio-temporal processes 
(drawn by Sylvie Pechá

�c ková) 
 

In this grassland, four permanent plots of 50 x 50 cm were established in 
1984-5, and subdivided into grids of 15 x 15 cells for recording the 
plants. The number of shoots of each species within each cell of each 
grid was counted each year in mid July and, after recording, the plots and 
their surroundings were clipped at the height of 1 cm to simulate 
traditional management. This procedure has continued up to the present 
time and provides detailed information on the spatio-temporal process of 
the community. The information is illustrated for one of the permanent 
plots in Figure 2. The species clearly differ a lot in overall abundance, 
with Deschampsia being the most common; they also differ in spatial 
structure, and Nardus is especially clumped. In addition, the spatial 
structure of Anthoxanthum and Deschampsia is somewhat more labile 
through time. 

Being discrete in space and time, the information from the permanent 
plots can be no more than an approximation to the full process. But, to 
record the community in continuous space, one would need the exact 
spatial location of each shoot, which would not be feasible. Owing to the 
short growing season, discretization of time to a single point each year is 
reasonable. 
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Figure 2. Observed spatial patterns of four grass species in a single plot, from 1984 to 
1994; patterns are shown for alternate years.  The depth of shading of cells 
within a large square indicates for one species and one census the number of 
shoots (white indicates absence of the species). A column of large squares 
depicts the spatial pattern of one species through time;  a row shows the spatial 
pattern of all species at a single time. 
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3. Models of spatio-temporal dynamics 

3.1 Individual-based stochastic model in continuous space and time 

The stochastic model starts with the notion of an individual represented 
as a point x in the plane. The locations of all individuals in each species i 
are collected into the set Li; i.e. there is an individual of species i at the 
point x if and only if x ∈ Li. The contribution of an individual of species 
i at point x' to the spatial density pi(x) of that species is given by the 
Dirac delta-function ( )x xδ ′ , a function which is peaked at x = x' and is 0 
at all other points x. The spatial density (pattern) in species i is obtained 
as the sum of all these individual contributions 

 ( ) ( )
i

i x
x L

p x xδ ′
′∈

= ∑    . 

For a community of N species the spatial pattern of individuals is then 
given by the vector of these density functions: 

 ( )1( ) ( ),..., ( )Np x p x p x=    . 

Clearly p(x) is but one of an infinite number of spatial patterns in which 
individuals could be laid out at an instant in time. Moreover the spatial 
pattern changes over the course of time, as random births, deaths and 
movements occur. It will help to think of the probability P(p) that the 
community has the pattern p(x). One can then envisage the changing 
pattern in space as a Markovian stochastic process, writing the rate of 
change of the probability with respect to time as 

 ( ) ( | ) ( ) ( | ) ( )d P p Dp w p p P p w p p P p
dt

′ ′ ′ ′= ⋅ − ⋅⎡ ⎤⎣ ⎦∫ .          (1) 

This is a function-valued stochastic process describing the flux of 
probability to and from the function p(x), ( | )w p p′  being the probability 
per unit time of the shift from function p'(x) to p(x); to cover all possible 
transitions in and out of p(x), one has to integrate over all functions p'(x). 

The primary events acting at the microscopic individual level are 
births, deaths and movements. It is these that cause the shift from one 
spatial pattern to another, and ( | )w p p′  can be disaggregated into these 
events: 
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( | )w p p′ =
1

N

i=
∑ ( , ) ( ) ( )i x idx b x p p x p u pδ ′′ ′ ′ ′⋅ ⋅ Δ + ⋅ −∫        (births) 

                 +
1

N

i=
∑ ( , ) ( ) ( )i x idx d x p p x p u pδ ′′ ′ ′ ′⋅ ⋅ Δ − ⋅ −∫       (deaths) 

  +
1

N

i=
∑ ( , , ) ( ) ( )i x i x idx dx m x x p p x p u u pδ δ′ ′′′ ′′ ′ ′′ ′ ′⋅ ⋅ Δ − ⋅ + ⋅ −∫∫ . 

                                                                                (movements)            

Here ( , )ib x p′  (respectively ( , )id x p′ ) is the per capita probability per 
unit time for a birth (respectively a death) in species i at the point x' 
when the spatial pattern is given by p(x). The term ( , , )im x x p′ ′′  is the per 
capita probability per unit time for a movement from the point x′  to x′′  
in species i when the spatial pattern is given by p(x). The functions Δ  
are generalized delta functions that select the appropriate event taking 
pattern p to p', ui being an N-vector having value 1 for element i and zero 
elsewhere. For example 

 ( ) 0 ifx i x ip u p p p uδ δ′ ′′ ′Δ + ⋅ − = ≠ + ⋅   ; 

in other words, with a birth at point x′  to species i, Δ  allows an incre-
ment only to the probability P( x ip uδ ′+ ⋅ ) of spatial pattern x ip uδ ′+ ⋅ ; 
the probability of all other spatial patterns is unaltered. In formal terms, 
the generalized delta function is defined by the relation 

( ) ( ) ( )Dp F p p p F p′ ′ ′⋅ Δ − =∫  for any functional F. 
This completes the formalism needed to define the stochastic model. 

Once specific functions have been incorporated for the birth, death and 
movement events, realizations can be generated, and one can then see 
how spatial patterns develop through time. One can also investigate the 
dynamics of moments of the stochastic model; this becomes important 
for dealing with questions of dimension reduction. 

3.2 Individual-based stochastic model in discrete space and continuous  
       time 

Although the dynamics should correctly be thought of in continuous 
space, information from the field is rarely available in this form. It is 
more likely to be discretized in some way, often as numbers of 
individuals within the cells of a 2-dimensional lattice, as in the case of 
our Krkonoše community. Some transformation of the formal stochastic 
framework is needed to deal with discrete space. 
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1...

M
Nn  'n

 
We write the number of individuals of species i in cell k of the lattice 

as ( )k
in  with i = 1, ..., N and k = 1, ..., M. The spatial pattern of species i 

at some instant in time is given by the matrix ni of the numbers in each 
cell, and that of the whole community as the vector of matrices n = (n1, 
..., nN). The changing pattern in space can be seen as a stochastic process 
analogous to Equation (1) 

 [ ]( ) ( | ) ( ) ( | ) ( )
n

d P n w n n P n w n n P n
dt ′

′ ′ ′= ⋅ − ⋅∑  ,        (2) 

but now describing the flux of probability to and from the vector of 
matrices n. The abbreviation                      is used. As before, the proba-
bility per unit time of the transition from n to n' can be disaggregated 
into the births, deaths and movements: 

( | )w n n′ = ( )( ) ( ) ( ) ( )

, ,
( ) , ( , ) ( , )k k l l

i i j j
i k j l

b n n n n i j k lδ δ δ′⋅ ⋅ + ⋅∑ ∏      (births) 

     + ( )( ) ( ) ( ) ( )

, ,
( ) , ( , ) ( , )k k l l

i i j j
i k j l

d n n n n i j k lδ δ δ′⋅ ⋅ − ⋅∑ ∏      (deaths) 

     + ( )( , ) ( ) ( ) ( )

, ,
( ) , ( , ) ( , ) ( , ) ( , )k k k l l

i i j j
i k j l

m n n n n i j k l i j k lδ δ δ δ δ′ ′ ′⋅ ⋅ − ⋅ + ⋅∑ ∏ .   

                               (movements) 

Here ( ) ( )k
ib n  (respectively ( ) ( )k

id n ) is the per capita probability per unit 
time for a birth (respectively a death) in species i in cell k when the spa-
tial pattern is given by n. The term ( , ) ( )k k

im n′  is the per capita probability 
per unit time for a movement from cell k to k' in species i when the spa-
tial pattern is given by n. The term ( , ) ( , )i j k lδ δ⋅  is a product of Kron-
ecker delta symbols, returning the value 1 when j = i and l = k, and 0 
otherwise. The product of the outer Kronecker delta symbols then selects 
the appropriate event taking pattern n to n'. 
 

=∑ ∑
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3.3  Individual-based stochastic model in discrete space and discrete  

  time 

Natural communities most often occur in seasonal environments, and it 
is important to have a formalism that allows for the fluctuations in 
ecological processes that result from this. To achieve this, the per capita 
transition probabilities per unit time are made time dependent: ( ) ( , )k

ib n t , 
( ) ( , )k
id n t  and ( , ) ( , )k k

im n t′ . Thus, if time t is measured in years, the 
effects of seasonality can be reflected by assuming that these functions 
possess a period of 1. The per capita probabilities of birth for each time 
step are then obtained as 

 1( ) ( )
0

( ) ( , )k k
i ib n dt b n t= ∫  

and analogous equations hold for the processes of death and movement. 
For ecological systems with this property, it is natural to transform the 

individual-based stochastic model (2) from continuous time to discrete 
time. Equation (2) is replaced by a recurrence relation describing the 
change in probability P(n) from time t to t+1: 

 [ ]1
'

( ) ( | ) ( ) ( | ) ( )t t t
n

P n w n n P n w n n P n+ ′ ′ ′= ⋅ − ⋅∑    . 

For a discrete-time formalism to be adequate, microscopic events (births, 
deaths, movements) that depend on n have to be sufficiently well 
separated in time. We make this explicit in the following equation: 

 
,

( | ) ( | ) ( | ) ( | )m d b
n n

w n n w n n w n n w n n
′′ ′′′

′ ′ ′′ ′′ ′′′ ′′′= ⋅ ⋅∑    . 

This is to be interpreted as a probability ( | )bw n n′′′  that births take the 
spatial pattern to n′′′  given that it starts as n, times the probability 

( | )dw n n′′ ′′′  that deaths take the pattern to n′′  given that it starts as n′′′ , 
times the probability that movements take the pattern to n′  given that it 
starts as n′′ . The summation allows for the different paths possible 
between n and ′n . This separation of the microscopic events is needed 
because of their dependence on the current spatial pattern, and is not 
required for those events which are independent of pattern. 

The birth term is: 

( ) ( )
( )1

( ) ( ) ( )

,
( | ) , ( ),

kni

k k k
b i i j j i j

i k j
w n n n n b n

β
δ β β′ ′= + Σ ⋅∑∏ ∏

…

P   . 
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( )
1...

k
njβ

 

(1... ;1... )M M
μ  ∑

Here ( )( ) ( ),k
i jb n βP  is the probability that there are jβ  births to parent j 

of species i in cell k, this being Poisson distributed with mean ( ) ( )k
ib n ; 

the product over j then gives the joint probability of 1β  births to parent 
1, 2β  to parent 2, and so on. The Kronecker delta symbol returns 1 when 

( ) ( )k k
i j j in nβ ′+ Σ = , and 0 otherwise. The term             is to be under-

stood as ( )k
in  separate summations (one for each parent), over 0, 1, 2, ... 

offspring produced by the parent. The death term 

 ( )( ) ( ) ( ) ( )

,
( | ) ( ), ,k k k k

d i i i i
i k

w n n d n n n n′ ′= −∏B   

is based on the binomial distribution B, with )()( nd k
i  the per capita 

probability of death, )(k
in  the number of individuals, and n ni

k
i

k( ) ( )− ′  
the number that die. The movement term is: 

 ( )
(1... ;1... )

( ) ( ) ( , ) ( , )( | ) , ( )
M M

k k k k k k
m i i k

i k
w n n n n

μ
δ μ μ′ ′

′′ ′= + Σ −∑∏ ∏  

       ( )( , ) ( ) ( , )( ), ,k k k k k
i i

k
m n n μ′ ′

′
∏B . 

The element ( , )k kμ ′  of the  M M×  matrix μ  gives the number of 
individuals that move from cell k to k ′ . With per capita probability of 
movement from cell k to k ′  given by ( , ) ( )k k

im n′ , and ( )k
in  individuals in 

cell k, the probability that ( , )k kμ ′  move to cell k ′  is obtained from the 
binomial distribution B. The Kronecker delta symbol returns the value 1 
when the net change in numbers of species i in cell k obtains 

( ) ( , ) ( , ) ( )( )k k k k k k
i k in nμ μ′ ′

′ ′+ Σ − = , and 0 otherwise. The term                
is to be understood as a sequence of M M×  separate summations, one 
for each pair (k, ′k ), over 0, 1, 2, ... individuals moving from cell k to 
k ′ . 

This formalism defines a stochastic model in discrete space and 
discrete time which matches the kind of information most often available 
from plant communities. In particular it provides an appropriate basis for 
a stochastic model of the Krkonoše community below. 

∑
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4. Parameter estimation 

Section 3 shows how to describe spatio-temporal processes in terms of 
individual-based stochastic models, but there is still a major bridge to be 
built before such models can be taken as a description of an observed 
spatio-temporal process. As in all modelling, we need (1) to specify 
appropriate functions to describe the process, in particular to determine 
rates for the occurrence of macroscopic events, and (2) to obtain 
estimates for the values of parameters in these functions. The choice of 
functions rests on external knowledge about the system; in the case of 
births, deaths and movements of the clonal grasses in our Krkonoše 
community, such understanding is quite well developed, as described 
below (Section 4.1). But there is much less understanding on how to 
obtain parameter values that best fit the data; here we suggest two 
techniques for doing this (Sections 4.2 and 4.3). 

4.1 Functions to describe dynamics 

We concentrate on a stochastic model in discrete space and time, as this 
matches the structure of the data described in Section 2. Consider a cell k 
on the lattice, and a set of neighbour cells S(k). The state of cell k is given 
by the number of shoots of each of the four grass species it contains, 
written as n(k  = ( ){ | { , , , }}k

in i A D F N∈  (A: Anthoxanthum; D: Deschamp-
sia; F: Festuca; N: Nardus). The state of the neighbourhood is written as 
N(k)  = ( ) ( ){ | }l kn l S∈ . 

The stochastic model should update the state of each cell on the basis 
of random births, deaths and movements of shoots. In keeping with the 
available evidence from grasslands (Jónsdóttir 1991, Duralia and Reader 
1993), we assume that interactions occur through sensitivity of births to 
the presence of shoots in the immediate vicinity. The number of 
daughters born to a shoot of species i in cell k following census t is taken 
to be a Poisson-distributed random variable, with a mean given by 

 ( ) ( )

{ , , , }
expk k

i i ij j
j A D F N

b c a n
∈

⎛ ⎞
= ⋅ ⋅⎜ ⎟

⎝ ⎠
∑ . 

The interactions are species-specific, the parameter aij describing the 
effect of species j on i; it is this that leads to a coupling of the dynamics 
of species in the model. The other parameter ci is the mean of the 
Poisson distribution in the absence of any other shoots. Deaths of 
individuals are assumed to be independent of the presence of other
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shoots, the probability that a shoot of species i survives from census t to 
t+1 being si. To deal with movement of shoots, one needs to allow 
changes in position from one cell to another. Movements are small 
(Herben et al. unpublished results), and a four-cell neighbourhood (the 
'north', 'east', 'south' and 'west' neighbours of cell k) is large enough to 
capture most that occur. We write the probability that a shoot of species i 
in cell k at census t moves to either one of these neighbour cells by the 
next census as mi. These movements induce a local coupling of the cells, 
and allow spatial structures to develop. 

The stochastic model is now specified to the level of seven parameters 
(si, aiA, aiD, aiF, aiN, ci, mi) of species i. The si’s have been estimated 
independently by field measurements, and can therefore be taken as 
known; the values sA = 0.2, sD = 0.7, sF = 0.3 and sN = 0.7 are used 
below. The remaining six parameters of each species, denoted by the 
vector vi = (aiA, aiD, aiF, aiN, ci, mi) for species i, have to be estimated 
from the observed spatio-temporal process. 

4.2 Model fitting from single-cell processes 

One way to estimate the parameters vi is to consider each cell as a 
separate item (Law et al. 1997). The number of shoots of species i in cell 
k at census time t+1 can be thought of as a random variable that depends 
on the number of shoots of each species in cell k and the neighbouring 
cells at census time t (n(k), N(k)), and the model parameters can be estima-
ted by a regression of the values observed at t+1, ( )k

in′ , against the ex-
pected values ( )k

in′�  predicted by the model based on vi. With the model 
describeed above, )(~ k

in′  is given by: 

 ( ) ( ) ( ) ( ) ( )(1 ) (1 ) (1 )
4 k

k k k l li
i i i i i i i

l S

mn s m n b n b
∈

⎛ ⎞
′ = ⋅ − ⋅ ⋅ + + ⋅ ⋅ +⎜ ⎟

⎝ ⎠
∑� . 

Notice that estimation can proceed separately for each species, because 
species other than i only enter into this equation through their numbers at 
census t. 

Potentially there is a lot of information in the observed spatio-temporal 
process on which to base the estimation, there being 15 x 15 x 11 values 
of ( )k

in′  for each plot. But the number of cells that can be used needs to 
be restricted in several ways. First, boundary cells should be excluded 
because their neighbourhoods are incomplete. Second, there is little 
purpose served in including cell k if there are no shoots of species i in
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this cell or its neighbourhood or both at time t. Third, one may expect 
spatial and temporal correlations to be present that violate the statistical 
assumption of independence. Some subsampling of the cells is needed; 
we worked with one fifth of the cells, cycling through them in such a 
way that a five year period elapsed before returning to the same cell, as 
shown in Figure 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Tiling used for non-linear regression;  cells chosen for analysis are shown as 

black. The starting position was displaced one cell to the right in successive 
years, so that each cell was revisited for sampling only after five years. 
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Estimation of the parameters vi requires iterative adjustment of vi by 
non-linear regression until the function 

 ( )2( ) ( )( ) ( )k k
i i i

k
d F n F n′ ′= −∑ �  

reaches a local minimum. The function F is used to correct for a 
dependence of the standard deviation on the mean. Prior analysis 
indicated a power relationship baσ μ= ⋅  between the mean μ  and 
standard deviation σ  of the dependent variable, and the transformation 
F(x) = (1 ) /( (1 ))bx a b− ⋅ −  was used to remove this relationship. The 
parameters a and b were obtained from the relationship between the 
mean and standard deviation using a regression analysis on the 
untransformed data. As there might be concern regarding the reliability 
of the technique, we tested the method on time series of data artificially 
generated with known parameter values, and found that the method 
recovers the parameter values with reasonable accuracy (Herben et al. 
1996, Law et al. 1997). 

The results from parameter estimation confirm that the community is 
essentially competitive, as the interaction coefficients are predominantly 
negative (Table 1). To the plant ecologist, the matrix of interaction terms 
has the interesting feature that it lacks diagonal dominance; in other 
words, intraspecific coefficients on the diagonal are not noticeably larger 
than the off-diagonal ones describing interspecific competition. The 
matrix also has the property of strong asymmetries in pairwise 
interactions; one can see this for instance in the comparison aAD = -0.033 
and aDA = -0.134. Another distinctive feature is the lack of intransitivities 
that would allow cyclic replacement of one species by another; Watt's 
(1947) notion of the mosaic cycle does not seem appropriate for this 
commmunity. 
Table 1 Parameter estimates obtained from non-linear regression analysis.  In cases 

where the 95% confidence limits of the estimate span zero, the estimate is 
shown in brackets. 

Species (i) aiA aiD aiF aiN ci mi 

Anthoxanthum -0.031 -0.033 (-0.015) -0.019 4.889 0.156 

Deschampsia -0.134  -0.037 -0.243 -0.178 0.983 0.358 

Festuca (-0.008) (0.000) -0.023 -0.135 2.481 0.066 

Nardus -0.151 (0.014) 0.068 -0.036 0.950 0.035



310                                Wissenschaftskolleg · Jahrbuch 1995/96 
 
Interaction coefficients form the basic building blocks of community 
ecology, as they make community dynamics more than the sum of the 
independent dynamics of the species present.  Yet they are particularly 
difficult to estimate, and ecologists have had to devise elaborate 
experimental schemes involving the manipulation of densities of plants 
to determine their values (Goldberg and Barton 1992). Non-linear 
regression on spatio-temporal processes as described above opens up a 
new approach that holds some promise for achieving greater under-
standing of plant community dynamics. It has the important feature of 
being non-invasive; the interactions can be estimated without any exter-
nal interference to the community. 

4.3 Model fitting from spatio-temporal moments 

By focusing on changes in single cells over single time steps, the non-
linear regression method (Section 4.2), ignores the larger-scale spatial 
and temporal structure of the data. Such structure includes aggregations 
of shoots within species and the spatial distribution of one species 
relative to another (two aspects of spatial correlations); it also includes 
the location of clumps over the course of time (temporal correlations). 
As one can see from Figure 2, such patterns readily arise, and techniques 
of parameter estimation based on these larger-scale features would be 
using important information unavailable to the regression method above. 

But to make use of such large-scale features, one needs to step outside 
the traditional statistical framework of regression analysis. There is no 
unique function that could be said to capture all the essential features of 
a spatio-temporal process; the mean number of shoots per cell, for 
instance, is not enough, as it lacks all information on the spatial 
structure. Consequently there is no unique measure of the goodness-of-fit 
between two spatio-temporal processes, such as one observed in the field 
and one given by a stochastic model. Novel approaches are needed, both 
to define measures of goodness-of-fit and to move down gradients in the 
parameter space until the difference between the patterns is minimized. 

Here we describe a new method based on a gradient descent on a 
function of the first and second order moments of the spatio-temporal 
process. These moments capture a substantial amount of information 
about the larger-scale spatial and temporal structure of the data. The first 
moment of species i for year t is simply the mean number of shoots per 
cell, given by 
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where K is the number of cells. The second moment describes the spatio-
temporal correlation at a distance r between species i at year t and 
species j at year t+τ  and is given by: 
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1 2
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where 1 2 1 2{( , ) | dist( , ) }rS k k k k r= = ; the term rS  is the number of 
elements in Sr, and corrects for the finite grid size. The term 

( ) ( )i jn t n t τ⋅ +  normalizes the correlation such that ( , , )ijc t rτ  > 1 
(respectively < 1) implies a positive (respectively negative) correlation at 
a distance r between species i at year t and species j at year t+τ . Figure 4 
shows that ( , , )ijc t rτ  captures important features of the spatial structure 
of the data in Figure 2 in 1984. The strong tendency for Nardus to form 
aggregations appears as a large auto-correlation at small distances, 
whereas Deschampsia, which is much less clumped, has a weak auto-
correlation. It can also be seen that the tendency for Deschampsia to be 
at low density in the vicinity of clumps of Nardus is reflected in a cross-
correlation between the species which is less than 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Spatial correlations ( , , )ijc t rτ  of Deschampsia and Nardus for the grid data   

 shown in Figure 2, with t = 1984, and time delay τ = 0. 
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The moments ( )in t  and ( , , )ijc t rτ  can be computed for an observed 
spatio-temporal process, and also for one generated using the functions 
in Section 4.1, ( )in t�  and ( , , )ijc t rτ� , for some given parameters vi. We 
use them to construct a function for each species i, the pattern-deviation 
function di, based on a weighted average of the difference between the 
moments of the observed process and those of the model. The smaller 
the value of this function, the better the parameters describe the observed 
spatio-temporal process. At the start of the simulated process, the 
stochastic model is set to the same spatial pattern as the data. As in 
Section 4.2, we do not attempt to estimate the parameters of all species 
simultaneously; the spatial patterns of species other than i are held at 
their field values when the stochastic model is run for species i. 

The function di is defined as 

   (1 )i n ni n cid w d w d= ⋅ + − ⋅  

where  ( )2( )ni t i
t

d w N t= ∑    , 

   ( )2

, , ,
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The w's are weights given to the various moments and need to be chosen 
externally.  We found it necessary to give the second-order moments a 
greater weight than the first-order one, in order to get an improvement in 
the pattern; wn = 0.25 was used. Moments later in the spatio-temporal 
process were given more weight corresponding to the greater opportunity 
for the stochastic model to diverge from the field spatial pattern the 
longer it runs. Auto-correlations (i = j) and cross-correlations (i ≠  j) 
were given the same weight wij = 0.25. Correlations at large radii are 
likely to be affected by the finite size of the grid and were given a lower 
weight, using a negative exponential function of radius. 
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A particular value of the pattern-deviation function determines a mani-
fold in a six-dimensional space of the parameters (i.e. ( )i id f v= ). It is 
therefore possible to adjust the values of the model parameters iteratively 
in such a way that di goes to a local minimum. For this purpose, we 
developed a technique based on Powell's quadratically convergent 
method (Brent 1973). This algorithm takes sections across the surface in 
a window around the current parameter values, finds the minimum 
within the window on each section in turn, and updates the parameter 
values and the directions of the sections until no further reduction in di is 
possible. We could do no more than sample certain points along each 
section, because at each point the stochastic model has to be run and the 
moments computed. Some random variation is to be expected in the 
course of sampling the section, and we therefore used a least squares fit 
of the values of di to a cubic polynomial to find the local minimum along 
each section. 

Checks on the pattern deviation function suggested that it could be 
rather rugged, and it is therefore important for the parameter values to be 
fairly close to the minimum when starting a gradient descent. For this 
reason, we set the parameters at the start to the values from non-linear 
regression (Table 1). Reductions in the pattern-deviation function were 
still obtained during the course of optimization for each species, and this 
indicates that some improvement in fit to the overall spatio-temporal 
process could still be achieved after non-linear regression. 

Table 2 gives parameter values obtained from the gradient-descent 
method. The estimated values differ from those in Table 1 in that the cis 
tend to be larger, and intraspecific interactions appear stronger in Antho-
xanthum and Nardus. Probabilities of movement between cells mis are 
also somewhat increased. Figure 5 gives a realization of the stochastic 
model using these parameter values. The realization was started in 1984 
using the spatial pattern of shoots in the field as shown in Figure 2; 
 
Table 2 Parameter estimates obtained from gradient descent on the pattern-deviation  

function. The numbers are arithmetic means of the values obtained from 
iteration 41 to 50 of the gradient descent. 

Species (i) aiA   aiD aiF aiN ci mi 

Anthoxanthum -0.137 -0.026 -0.018 -0.016 9.900 0.520 

Deschampsia -0.085 -0.044 -0.292 -0.288 1.285 0.503 

Festuca -0.011 -0.000 -0.031 -0.109 3.627 0.101 

Nardus -0.090  0.010  0.039 -0.112 2.408 0.053
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this allows a direct comparison of the observed and simulated patterns in 
Figures 2 and 5. As one would expect from a stochastic realization, the 
exact patterns become different as time progresses; yet the major spatial 
features of the simulated and observed processes remain broadly 
comparable. There is still room for improving the match between the 
results of the model and patterns in the field, but this may require 
structural alterations to the model rather than improved methods of para-
meter estimation. 

5. Dimension reduction 

5.1 A fundamental dilemma 

Sections 3 and 4 have dealt with the formal structure of models describ-
ing spatio-temporal processes in plant ecology, and how to estimate the 
parameters of these models. We now turn to questions of model analysis 
and interpretation, and here one is faced with a dilemma. 

On the one hand, there are established analytical methods for investi-
gating mean-field dynamics. But such mean-field models only reflect 
temporal change in the ecological system, and do not take into account 
any aspect of its spatial structure. This is why predictions from mean-
field models can go widely astray as soon as the underlying ecological 
system is spatially heterogeneous. Nevertheless, mean-field models are 
convenient and tractable. The number of dynamical dimensions in such 
models equals the number of interacting populations within the 
ecological community, which may be as low as one; in the case of the 
Krkonoše community it would be four. 

On the other hand, there are models for spatially heterogeneous com-
munities such as those introduced in Section 3, as well as others like 
partial differential equations or cellular automata. These paradigms for 
modelling ecological systems in space all have one property in common: 
to describe the state of the system at any particular point in time a very 
large number of dynamical variables (in the order of hundreds, thousands 
or tenthousands) has to be specified. Such numbers reflect the huge 
amount of information potentially present in a spatial pattern and are the 
reason why we refer to such models as high-dimensional. Dynamical 
models of this complexity entail poor efficiencies in numerical simula-
tions and preclude utilizing the rich tool-box of analytical methods 
devised, for instance, in bifurcation theory. Even worse, the 
interpretation, prediction and understanding of complex spatial models
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Figure 5. A realization of the stochastic model for community dynamics, based on the 
parameters in Table 2, estimated from gradient descent on the pattern-deviation 
function.  Layout as described in Figure 2. 
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can be close to impossible since it may be far from obvious on which 
quantities or abstract entities a mechanistic explanation of dynamical 
phenomena observed eventually should be based. Powerful predictions 
from ecological models are based either (i) on analytical methods -- 
which for high-dimensional spatial models are always difficult and very 
often not feasible, or (ii) on heuristically establishing causal relations 
with qualitative conditionals and conclusions -- a goal which is notor-
iously hard to achieve for the more complex spatially explicit models. 

In summary, researchers investigating spatial dynamics in ecology are 
confronted with a decision either to use complex models that have a 
tendency to be incomprehensible, or to use models that are tractable but 
dangerously over-simplified. 

5.2 The potential for dimension reduction 

In this situation one might hope to find some middle ground comprising 
dynamical models of low dimensionality that capture essential features 
of spatial heterogeneity. Such models would combine the virtues of both 
extremes, simultaneously achieving sufficient accuracy and retaining 
tractability, whilst avoiding both over-simplification and excessive 
complexity. This is not an idle hope. Rand and Wilson (1995) have 
demonstrated that the spatio-temporal population dynamics of a partic-
ular three-species community can be reduced to a four-dimensional 
dynamical system. Evidently the introduction of  a single extra dimen-
sion was sufficient to reflect the effects of spatial patterns within the 
community. Rand and Wilson employed a numerical (or top-down) 
approach and, as a consequence, an ecological interpretation of the 
fourth dynamical variable was not made. A constructive (or bottom-up) 
approach, on the other hand, would ensure that the dynamical variables 
introduced are readily interpretable, and also would give deeper insights 
into those aspects of spatio-temporal dynamics that are essential for 
shaping ecological change observed. 

Why should techniques of dimension reduction conceivably work for 
spatio-temporal processes in ecology? Ecological communities are char-
acterized by two general features. First, the interactions between indi-
viduals in such systems are on a local scale. In other words, the spatial 
distance over which one individual affects another is small relative to the 
spatial extension of the system as a whole. For example, in the Krkonoše 
community the interaction of tillers decays rapidly with spatial distance: 
interactions at 5 cm are already weak, and interactions over distances 
greater than 20 cm are negligible. Second, there are several sources of
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stochastic fluctuation in the population dynamics, including demo-
graphic stochasticity and environmental noise; these introduce perturb-
bations that counteract the deterministic changes resulting from eco-
logical interactions. Together these two features mean that deterministic 
effects predominate only at short spatial scales; deterministic influences 
over larger distances are drowned in the stochastic fluctuations. In conse-
quence, spatial patterns which imply a high degree of spatial correlation 
between distant locations in space are very unlikely to be realized in such 
systems. 

From this argument we can infer further that, of all the patterns pos-
sible, only those from a certain subset, characterized by the absence of 
long-range correlations, are at all likely to occur. The dynamics of such 
ecosystems thus effectively reduce to the set R of sufficiently likely pat-
terns. The variables that distinguish patterns in the set R from patterns in 
the set R' (which are not in R) do not correspond to essential dynamical 
degrees of freedom and are dispensable. By removing them from the 
dynamical description of the full spatio-temporal model, the number of 
variables remaining and hence the dimensionality of the model is re-
duced. 

5.3 Which statistics should be chosen? 

When we refer to variables for describing spatio-temporal processes in a 
low-dimensional dynamical system, we are talking about various kinds 
of spatial statistics. At each time step of the spatial dynamics a particular 
pattern is realized. For example, in a discrete-space model, the pattern 
can be specified by simultaneously describing the state of each cell. 
Alternatively, a partial description of the pattern is given by counting the 
number of individuals in each species. Or one might specify the number 
of patches exceeding a certain size for each species. Or one could work 
from the frequency distribution of patch sizes, or employ specific 
indices, characterizing degrees of clumping or clump shapes, as 
occasionally done in plant ecology. The set of spatial statistics we could 
consider for any given pattern appears to be inexhaustable. If aspects of 
spatial heterogeneity are to be included as dynamical variables, the 
choice of an appropriate set of spatial statistics has to be made. What 
should this be? 

The simple answer is that no unique solution exists. But we can at least 
give some conditions that the statistics should meet. As a trivial first 
condition, these statistics are required to measure spatial heterogeneities. 
Second, they should possess a meaningful ecological interpretation. 
Third, they should be accessible to measurements in the field and, as far 
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as possible, they should correspond to common practice in ecological 
field work. Eventually, and this is the strongest condition, a convenient 
set of spatial statistics can be subdivided into subsets S and S' such that: 

C1. the statistics from S and S' together unambiguously characterize 
each of the spatial patterns possible, 

C2. the statistics in S differentiate sufficiently well between spatial 
structures in R, 

C3. statistics from S' assume constant values in R. 

A slightly less demanding alternative to condition C3 is given by as-
sumeing that in R the values of statistics from S' can be inferred from the 
values of statistics from S. However, in this case redefining the statistics 
in S' by subtracting their predicted values obtained from S suffices to 
fulfill condition C3 again. 

In addition to those sketched above there is a further, important cond-
ition for choosing statistics. The next section is concerned with this. 

5.4 Relaxation projections 

Initial configurations of a spatial ecological process can be taken from 
the set of all possible patterns, i.e. the union of the sets R and ′R  denot-
ed by R R′∪ . In contrast, the set of patterns likely to be found after the 
process has run for a while is just R. So what happens in between? 

In Section 5.2 we have seen that the mapping R R R′∪ →  results from 
the destruction of global correlations. For distances larger than the 
interaction range, the rate for this transition is proportional to the sum of 
demographic and environmental noise. In consequence, the decay of 
long-range order often is very fast relative to the dynamics of short-range 
correlations. This separation of time scales guarantees that, even when 
starting the spatio-temporal process from an arbitrary pattern in R R′∪ , 
after a short time τ , a reduced dynamic, operating merely in R, obtains 
with good accuracy. 

For ecological systems in the field that have been left sufficiently 
undisturbed in the past, the period τ  will have already passed. 
Consequently, the entire dynamics p(t) starting from a current pattern 
p(0) will lie within R. Spatial statistics obeying C1 to C3 then provide 
the basis of a dimensionally reduced dynamical description. On the other 
hand, for ecological systems starting from an arbitrary initial pattern, the 
reduced dynamics have to apply to initial patterns in R′  as well as R, 
and a further condition for the spatial statistics is helpful. 
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C4. At time τ , the dynamics of any pattern starting from p(0) in 

R R′∪  with spatial statistics ( (0))S p  and ( (0))S p′  are well 
approximated by ( ( )) ( (0))S p S pτ =  and ( ( ))S p Sτ ∞′ ′= , where 

′∞S  is the set of constant values that the ′S  statistics take in R. 
Mathematically the mappings R R R′∪ →  and S S S S∞′ ′∪ → ∪  are 
projections. They project the full space of possible patterns onto the sub-
space of those patterns likely to be realized after the fast degrees of 
freedom (i.e. the long-range correlations) have relaxed. Such mappings 
that mimic the relaxation process we therefore call relaxation pro-
jections. Any spatial statistics obeying conditions C1 to C4 define such 
relaxation projections. In general, projections are non-invertible map-
pings. Objects projected consequently carry a diminished amount of 
information. In particular, relaxation projections remove the dynamically 
non-essential information from a spatial pattern. 

5.5 Correlation dynamics 

Here we illustrate the general principles proposed in Sections 5.1 to 5.4, 
focusing on a single species, and using a model continuous in space and 
time as introduced in Section 3.1. To do this, we take a simple choice for 
the ecological rates, 

 ( , )d x p D=  

 ( , , ) ( )m x x p M x x′ ′= −  

 ( )( , ) ( , )b x p B n x p=  . 

This means that the per capita death rate is a positive constant D, and 
that the per capita probability of movement from x to ′x  per unit time is 
a non-negative function of the distance between the points x and ′x . The 
per capita birth rate is a non-negative function of the local abundance of 
individuals in the pattern p around location x, defined by 

 ( , ) ( ) ( )n x p dx W x x p x′ ′ ′= − ⋅∫  

where ( )W x x′ −  is a weighting for locations x′  at distance 1x x ξ′ − =  
with 1 1( ) 1d Wξ ξ =∫ . This illustrative ecological model thus incorporates 
birth rates which are locally density-dependent, while processes of death 
and movement occur independent of densities. 
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A particular set of spatial statistics fulfilling conditions C1 to C4 is 
given by correlation functions. For a pattern p of area A, spatial correla-
tion functions of order n are defined by 

 ( )
1

1 1 1 1
1 1

1( ,..., , ) ... ( )
n n

n n n k k k l
k l

C p dx dx x x p x
A

ξ ξ δ ξ
−

− +
= =

= ⋅ − − ⋅∏ ∏∫ ∫ . 

Thus, the first-order correlation function 

 1 1 1
1( ) ( )C p dx p x
A

= ⋅ ∫  

is just the global density of individuals within the spatial pattern p, 
whereas the second-order correlation function 

 2 1 1 2 2 1 1 1 2
1( , ) ( ) ( ) ( )C p dx dx x x p x p x
A

ξ δ ξ= ⋅ − − ⋅ ⋅∫ ∫  

measures the density of pairs of individuals at distance 1ξ . Each higher-
order correlation introduces a further distance 2ξ , 3ξ , ..., as individuals 
are taken in triples, quadruples, and so on. 

In the space of all patterns, expected values C1, 2 1( )C ξ , 3 1 2( , )C ξ ξ , ...  
of the correlation functions are obtained as 

 1 1 1 1( ,..., ) ( ) ( ,..., , )n n n nC Dp P p C pξ ξ ξ ξ− −= ⋅∫  . 

We use this to translate from a stochastic process / ( )d dt P p in the space 
of patterns p to a deterministic dynamic in the space of statistics Cn . As 
a first step, the dynamics of the first-order correlation-function C1  are 

 1 1 1
1 ( ) ( )d dC Dp P p dx p x

dt A dt
= ⋅ ⋅∫ ∫  

and, after some algebra, this yields 

( )1 1 2 2 1 2 1
1 ( ) ( ) ( ) ( )d C Dp P p dx B dx W x x p x D p x

dt A
⎡ ⎤= ⋅ − ⋅ − ⋅⎣ ⎦∫ ∫ ∫ . 

Since we want to transform the right-hand side of this equation to the 
form of correlation functions, we make the simplifying assumption that 
the function B is linear, 0 1( )B n B B n= + ⋅ . The ecological implication of
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this assumption is that the per capita birth rate is linear in local 
abundance, i.e. it is of logistic or Lotka-Volterra type. From this we 
obtain 

 1 0 1 1 1 1 2 1( ) ( ) ( )d C B D C B d W C
dt

ξ ξ ξ= − ⋅ + ⋅ ⋅∫  . 

For spatially homogeneous systems the relation 2 1 1 1( )C C Cξ = ⋅  holds 
and in this case the dynamics of C1  simply reduce to the mean-field 
result 

 2
1 0 1 1 1( )d C B D C B C

dt
= − ⋅ + ⋅  . 

For spatially heterogeneous systems, however, the mean-field result is 
incorrect and the dynamics of the first-order correlation function C1  are 
contingent on those of the second-order correlation function C2 1( )ξ . 
Therefore we need to work out the dynamics of C2 , and these are given 
by the equation 

2 1 0 2 1 1 2 2 3 1 2
1 ( ) ( ) ( ) ( ) ( , )
2

d C B D M C B d W C
dt

ξ ξ ξ ξ ξ ξ⋅ = − − ⋅ + ⋅ ⋅∫     

            2 2 2 1 2( ) ( )d M Cξ ξ ξ ξ+ ⋅ +∫  

            ( )1
1 1 0 1 2 2 2 1 1( ) ( ) ( )C B B d W C Cδ ξ ξ ξ ξ −+ ⋅ ⋅ + ⋅ ⋅ ⋅∫  

with 1 1( )d M Mξ ξ =∫ . We are omitting the delta peak at distance 
1 0ξ = , resulting from self pairing. Notice on the right-hand side of this 

equation that the dynamics of 2C  depend on that of 3C . 
This observation can be generalized: independent of the order n we 

consider, the dynamics of nC  are contingent upon 1nC + . The sequence 
of equations that results is refered to as a moment hierarchy, and it 
prohibits the use of the dynamical equation for 2C , unless we simultane-
ously consider the dynamics of C3  etc. We face a problem of moment 
closure which can only be resolved by truncating moment hierarchies 
using appropriate approximations. For instance, we already have seen 
that, with the relation 2 1 1 1( )C C Cξ = ⋅ , we could remove the 2C  
dependence from the 1C  dynamics, and obtain the mean-field equation. 

We now can improve on the simple mean-field approximation by 
truncating the hierarchy of spatial correlation functions at order 2 instead 
of 1. This is achieved by the relation 1

3 1 2 2 1 2 2 1( , ) ( ) ( )C C C Cξ ξ ξ ξ −= ⋅ ⋅ , 
from which the following equation for the dynamics of 2C  is obtained:
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( )1
2 1 0 1 2 2 2 2 1 2 1

1 ( ) ( ) ( ) ( )
2

d C B D M B d W C C C
dt

ξ ξ ξ ξ ξ−⋅ = − − + ⋅ ⋅ ⋅ ⋅∫  

            2 2 2 1 2( ) ( )d M Cξ ξ ξ ξ+ ⋅ +∫  

            ( )1
1 1 0 1 2 2 2 1 1( ) ( ) ( )C B B d W C Cδ ξ ξ ξ ξ −+ ⋅ ⋅ + ⋅ ⋅ ⋅∫  

As a result the set of equations for the dynamics of 1C  and 2C  is now 
closed. The two equations provide a natural escape from the over-sim-
plified mean-field models. By utilizing the second-order correlation 
function 2C , these dynamics are well suited to deal with the spatial het-
erogeneities that occur in many ecological systems. 

These results are first steps towards more general techniques for 
reducing the complexity of spatial ecological models. A number of 
promising extensions can be considered. 

First, the assumption of linearity made for the dependence of per capita 
rates (like e.g. B) on local abundances should be removed. This is 
important for two reasons. (i) The response of individuals to changes in 
their environment is often non-linear. (ii) Owing to stochastic fluctu-
ations caused by the finite sizes of interaction ranges, local environments 
are bound to differ across individuals. Consequently the mean response 
of a population to a distribution of environments can differ from the 
response predicted for the distribution mean. To compensate for this 
effect fluctuation corrections are required; these act in addition to the 
correlation corrections derived above. This results in a two-fold moment 
hierarchy, that deals with departures from homogeneity originating either 
from spatial correlations or from stochastic fluctuations. 

Second, as long-range order is often absent in ecological systems, 
correlation functions carry essential information only for short distances. 
For this reason a short-range expansion of the equation for C2  can pro-
vide a good approximation to its functional version. The dynamics of the 
correlation function might then be approximated by the dynamics of (i) 
its intensity at distance zero and (ii) its exponential range of increase or 
decay. This would achieve the goal of reducing the dynamical dimension 
of spatio-temporal models, making the dimension as low as three or even 
two in the case of single-species systems. 

Third, some of the structural assumptions underlying the modeling 
approach presented could be relaxed. Individuals may be given internal 
degrees of freedom as well as spatial extension, environmental hetero-
geneities could be introduced, and the premise of pairwise interactions, 
presently pervading most research on spatial ecological systems, could 
be challenged. 
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Fourth, correlation functions are not the only choice of spatial statistics 
for dimension reduction. There are several advantages of these functions: 
(i) truncating their moment hierarchy at correlation order 2 yields a 
natural extension of mean-field models, (ii) correlation functions are 
measurable and ecologically meaningful, and (iii) these functions are 
closely related to our understanding of correlation destruction and are 
therefore expected to define reliable relaxation projections. For particular 
systems, however, other projections might be more appropriate. 
Eventually a suite of successful projections and statistics should become 
available to help ecologists reduce complex spatio-temporal models to 
manageable low-dimensional representations. 

6. Concluding comments 
This report is more a record of work in progress than the final results of a 
completed research programme. We have defined three different classes 
of individual-based stochastic models to provide formal descriptions of 
spatio-temporal processes in ecology. These models support transitions 
between continuous and discrete representations both in the spatial and 
in the temporal domain. This amounts to a first step in establishing a 
network of formal links between different classes of spatially explicit 
models in ecology. We also have devised two quite different techniques 
for estimating parameters of spatio-temporal models. These methods 
have the potential to uncover some of plant ecology's better guarded 
secrets, such as the strength of interactions between species. However, 
the methods for fitting parameters based on spatio-temporal moments of 
observed and simulated processes are particularly novel and require 
further exploration. 

Systematic methods for the dimension-reduction of spatio-temporal 
processes in ecology are just becoming available. Current results are 
promising, yet the strengths and shortcomings of these innovative 
techniques have to be delineated in more detail. Many of the questions of 
interest to a plant ecologist depend on developments in this area. For 
instance, how appropriate are the mean-field approximations widely used 
in plant ecology? Can self-maintaining spatial patterns develop under 
reasonable assumptions about parameter values; in other words, is Watt's 
(1947) paradigm of pattern and process supported by formal analysis? 
What conditions are needed for plant communities to generate their own 
spatial structure? Do alternative spatial or spatio-temporal structures (i.e. 
alternative attractors) develop when starting from different initial 
patterns? Low-dimensional dynamical systems that provide us with 
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approximations to the full dynamics of spatio-temporal processes would 
greatly help ecologists to answer these questions. 

Acknowledgements 
The research described here was possible only through the generous 

support and encouragement of the Wissenschaftkolleg. We are very 
grateful to the Institution, to the staff, and to the other Fellows, for pro-
viding such ideal conditions for the research programme. 



                                  Ulf Dieckmann, Tomáš Herben, Richard Law                             325 
 

References 
Brent, R. P. (1973) Algorithms for minimization without derivatives. 

Prentice-Hall, Englewood Cliffs, N J. 
Duralia, T. E. and Reader, R. J. (1993) “Does abundance reflect 

competitive ability?: a field test with three prairie grasses”. Oikos, 68, 
82-90. 

During, H. J. and van Tooren, B. F. (1988) “Pattern dynamics in the 
bryophyte layer of a chalk grassland”. In: H. J. During, M. J. A. 
Werger and J. H. Willems (eds), Dynamics of pattern and diversity in 
plant communities, pp 195-208. Academic Publishing, The Hague. 

Durrett, R. and Levin, S. A. (1994) “Stochastic spatial models: a user's 
guide to ecological applications”. Philosophical Transactions of the 
Royal Society London B, 343, 329-350. 

Goldberg, D. E. and Barton, A. M. (1992) “Patterns and consequences of 
interspecific competition in natural communities: a review of field 
experiments with plants”. American Naturalist, 139, 771-801. 

Greig Smith, P. (1957) Quantitative Plant Ecology. Butterworth & Co. 
Harada, Y. and Iwasa, Y. (1994) “Lattice population dynamics for plants 

with dispersing seeds and vegetative propogation”. Researches on 
Population Ecology, 36, 237-249. 

Harper, J. L. (1977) Population Biology of Plants. Academic Press, 
London. 

Hendry, R. and McGlade, J. (1995) “The role of memory in ecological 
systems”. Proceedings of the Royal Society London B, 259, 153-159. 

Herben, T, Law, R. and Dieckmann, U. (1996) “Non-linear regression 
recovers competition coefficients in time series of grid data”. 
Manuscript. 

Jónsdóttir, G. Á. (1991) “Effects of density and weather on tiller 
dynamics in Agrostis stolonifera, Festuca rubra and Poa irrigate”. 
Acta Botanica Neerlandica, 40, 311-318. 

Law, R., Herben, T and Dieckmann, U. (1997) Non-manipulative 
estimates of competition coeffcients in a montane grassland 
community. Journal of Ecology, in press. 

Matsuda, H., Ogita, N., Sasaki, A. and Sato, K. (1992) “Statistical 
mechanics of population: the lattice Lotka-Volterra model”. Progress 
of theoretical Physics, 88, 1035-1048. 

Rand, D. A. (1994) “Measuring and characterizing spatial patterns, 
dynamics and chaos in spatially extended dynamical systems and 
ecologies”. Philosophical Transactions of the Royal Society London A, 
348, 497-514. 



326                                Wissenschaftskolleg · Jahrbuch 1995/96 
 
Rand, D. A. and Wilson, H. B. (1995) “Using spatio-temporal chaos and 

intermediate-scale determinism to quantify spatially extended 
ecosystems”. Proceedings of the Royal Society London B, 259, 111-
117. 

Stone, L. and Ezrati, S. (1996) “Chaos, cycles and spatio-temporal 
dynamics in plant ecology”. Journal of Ecology, 84, 279-291. 

van der Maarel E. (1996) “Pattern and process in the plant community: 
fifty years after A. S. Watt”. Journal of Vegetation Science, 7, 19-28. 

van der Maarel, E. and Sykes, M.T. (1993) “Small scale plant species 
turnover in a limestone grassland: the carousel model and some 
comments on the niche concept. Journal of Vegetation Science, 4, 179-
188. 

Watt, A. S. (1947) “Pattern and process in the plant community”. 
Journal of Ecology, 35, 1-22. 


