Tables and models of growth and productivity of forests of major forest forming species have been approved by the Federal Agency of Forest Management of Russia and recommended for use in forestry and forest management of Russia (Protocol of the Council of Federal Agency of Forest Management No 2 dated by 8 June 2006).

The tables and models are developed by Shvidenko A.Z. (Leader), Schepaschenko D.G., Nilsson S., and Buluy Yu.I. as part of research of International Institute for Applied Systems Analysis in collaboration with V.N. Sukachev Institute of Forest, Siberian Branch, Russian Academy of Sciences, and Moscow State Forest University.

Moscow 2008
Summary

This book includes four types of models and tables destined for use in forest inventory, for planning of forest management activities, for different scientific applications, and as cognitive and training materials for professional education in forestry and forest management: growth (yield) models and tables (M/T), M/T of biological productivity, general M/T of growth and mortality of stands of major forest forming species of Northern Eurasia, and “standard” tables of basal area and growing stock of fully-stocked stands. The information is available at http://www.iiasa.ac.at/Research/FOR/forest_cdrom/
The Federal Service of Forest Management of the Russian Federation has approved the tables and models included in this issue and recommended them for use in forestry and forest management of the country.

Growth (yield) models and tables (GMT)

Two types of growth models and tables (below - GMT) presented in this issue – for fully-stocked and modal stands - are widely used in Russian forestry and forest management. By definition, fully stocked stands are represented by the most productive (i.e., having maximal growing stock) forests, which potentially are able to grow under given growth conditions. GMT of such a type represent patterns, which should be formed by sustainable forest management. GMT of modal stands describe the growth of actual, existing forests and, thus, take into account the impacts of regional regimes of forest management and natural disturbances. General GMT comprise averaged data for the entire growing area of an individual (dominant) species, and regional ones - for an individual region. A total of 142 ecological regions within Russian territories were used as a primary unit of spatial distribution of GMT (Figure 6, English names of ecoregions are presented in Table below). Ecoregions were established based on the following major principles: (1) homogeneity of the territory by growth conditions (climate, soil); (2) similarity of major land forms (mountain versus plain areas); (3) specifics of hydrological regimes (e.g., presence of permafrost); (4) similarity of anthropogenic impacts on forests and level of forest transformation; and (5) belonging of individual ecoregions to the same administrative region (subject of the Russian Federation). The recommended regions for the use of GMT are indicated in the names of the corresponding regional GMT (see Content in English).

Site index was used as a major tool of classification of GMT by level of productivity. All GMT were set in a unified system of site indexes. The unification means that the same average heights were used at base ages for all GMT in order to denote site index classes. The base ages were: 50 years for fast-growing species, 160 for Siberian cedar - stone pine (Pinus sibirica) and 100 years for the rest of the major forest forming species. For these ages, the heights were taken from the general site index (bonitat) scale by Prof. M. Orlov (Table VI of introductory Chapter). Forest types (according to the Russian definition of this term) were used as a second classifier in regional models (e.g., separate models were developed for automorphic and hydromorphic growth conditions of the same species growing in the same region) but within the framework of the site index system.

Modeling and unification of GMT were provided due to the following reasons. (1) Many of the existing growth (yield) tables were established a long time ago (the first yield tables in Russia were published in 1844) and do not represent conditions of a rapidly changing environment. Northern Eurasia currently has a different climate than three decades ago. Different sources assess the increase in productivity of boreal forests to be about 1–4% per decade due to climate change, CO2 fertilization and nitrogen deposition. It is practically impossible to redevelop hundreds of yield tables based on new environments and the only practical way (at least for Northern Eurasia) is to present existing yield tables in an analytical form as the basis for current and future relevant modeling corrections. The majority of yield tables which are used in Russia have been published in a tabular form and corresponding models are not known. (2) Analysis and synthesis of yield tables, particularly for the huge NE forest territory (900 million ha or about a quarter of the global forest area), has an obvious cognitive sense because they are based on the growth and productivity of forests during the “pre-global change” period, and it is important
to retain this information. (3) A unified system that would accumulate the regularities of growth and dynamics of forests is needed for the development of other diverse “semi-empirical” types of models, e.g., models of biological productivity.

From several hundreds of yield tables developed for Northern Eurasian forests, about 130 were included in the system (of which all are used in practical forestry or which are interesting from a historical or cognitive points of view) including different types of GMT - general and regional, for fully stocked and modal, naturally formed and planted, single-species and mixed stands.

The Richards–Chapman growth function was used as an analytical expression for the modeling within individual site indexes. The estimates of parameters were calculated by site indexes for one or several yield tables (if such tables were available for the same object should be modeled), and site indexes within individual species were aggregated by a polynomial quadratic form. The modeling results were considered satisfactory if the root-sum-square difference between the model and the initial (from yield tables) dynamics of basic indicators did not exceed ±3%, and in any individual point was less than ±6%. The adequacy of the models was checked in the standard way by analyzing the residuals. The coefficients of the Richards–Chapman function substantially vary for different tree species and geographical locations but can be represented by a regression two-dimensional function which includes site index and relative stocking of stands for individual species and homogeneous site conditions (Shvidenko et al., 1995). A special modification of the growth function has been developed for natural forests of the taiga zone which have succession stages of over-mature forests of which basal area and growing stock decrease by age (Venevsky and Shvidenko, 1997).

Results of the modeling showed that the established analytical system of GMT satisfactorily represents specific features of growth of the Northern Eurasia’s boreal and temperate forests for diverse species, regions and sites. The accuracy of this transformation corresponded to the requirements were formulated above and was provided for about 96% of all compared values. Thus, the system has accumulated huge semi-empirical information collected by many generations of thousands of forest inventory professionals and scientists across Northern Eurasia (including in this region territories of the former Soviet Union) during the last 150 years. This information, which was dispersed in hundreds of not readily available Russian sources, is presented in the system in an explicit and “operational” form.

Development of models (tables) of biological productivity (MBP)

Models of biological productivity (MBP) represent dynamics of phytomass and NPP of forest ecosystems. The models have been developed in two steps: (1) development of models for estimation of phytomass’ dynamics, and (2) modeling of dynamics of Net Primary Production of forest ecosystems.

In order to assess dynamics of phytomass, the ratio \(R_i = F_i / GS \) of phytomass fractions \(F_i \) to growing stock \(GS \) (i.e., Biomass Extension Factor) as a function of biometric characteristics of forests \(T_j \) (which are defined by forest inventory in Russia) were modeled, i.e.,

\[
R = \frac{F}{GS} = f(T).
\]

A database, which includes some 3500 sample plots and 250 regional studies, has been used for parametrizing \(R_i \). The models have been presented in the form

\[
R_i = c_0 \cdot SI^{C_1} \cdot A^{(C_2 + C_3 \cdot RS + C_4 \cdot RS^2)} \quad \text{and} \quad R_i = c_0 \cdot A^{C_1} \cdot SI^{C_2} \cdot RS^{C_3} \cdot \exp(C_4 \cdot A + C_5 \cdot RS),
\]

where \(A \) is age (years), \(SI \) is site index (coded as 3, 4, ..., 13 for Ic, Ib, ..., Vb site indexes, respectively), \(RS \) is relative stocking, and \(c_0 \)–\(c_5 \) are regression coefficients. Five fractions of phytomass of trees were considered: stem wood over bark, bark, wood of branches (over bark), foliage, and roots.
Equations similar to (2) and (3) were also used for quantifying phytomass of understory (shrubs and undergrowth) and green forest floor. In the latter models, the mass of phytomass fractions \(F \) were directly modeled instead of modeling the ratio \(R \). Appendix 3 contains the coefficients of phytomass models. Equations (1) and (2) are adequate by independent and dependent variables for tree species and ecoregions involved in the analysis. These equations and, as a rule, regression coefficients are statistically significant at 0.05 level of significance.

In order to develop MBP, a special simulation algorithm which combines GMT, models of phytomass and a number of parameters describing biological production of forest ecosystem was developed. This algorithm was published (Швиденко и др., 2004; Shvidenko et al., 2007) and is briefly described in the introductory Chapter to this issue.

Russian classifications of forests by types of age structure of stands are based on variation coefficients of age and diameter of trees constituting a stand and usually include (1) even-aged and relatively even-aged stands, (2) relatively uneven-aged, (3) (absolutely) uneven-aged stands, and (4) gradually uneven-aged stands (Shvidenko et al., 2000; Semechkin, 2002). The major part of the models developed have been produced for single species and even-aged stands. For mixed stands, simplified models that represent the dynamics of species composition, average height and diameter of dominant species were developed. For such type of models, the dynamics of growing stock volume and total production (of stem wood) are presented altogether for all species. One can point out that the dynamics of these two latter indicators are accurately and adequately described by the Richards–Chapman equation that demonstrates the availability of aggregated regularities of the production process in mixed forests, at least in terms of increment/accumulation/mortality of stem wood. Satisfactory results of the modeling have also been achieved for relatively uneven-aged and gradually uneven-aged stands. For uneven-aged and gradually uneven stands, only some illustrative examples are presented.

In order to make all models compatible, the MBP were developed for all GMT included in the system discussed above. The analytical form of the MBP is bulky and is not presented in this issue. However, models presented in Appendixes contain enough information for compiling the algorithm for calculation of MBP. As an example, Figure 1 contains the graphical form of general MBP for fully-stocked pine forests.

The uncertainty of developed models is of a primary interest. Uncertainty of the initial yield tables cannot be estimated in any formal way. Assessment of the actual accuracy of the models of phytomass using traditional statistical methods is also difficult. The indicators of statistical accuracy of the equations should be used with some caution for a number of reasons: accuracy of initial data, which were collected during a long period of time, is mostly unknown; spatial distribution of sample plots does not correspond to the requirements of the designed experiment; there are differences in species composition of forests, in which phytomass is assessed, with those of forests in which experimental material was collected, etc. However, it has been shown that the developed system has an acceptable level of reliability. Using error propagation theory with a partial use of expert estimates and \textit{a priori} probabilities, and standard sensitivity analysis, the total phytomass of Russian forests as a whole and for large regions can be estimated with the “summarized” error (i.e., a function of random and systematic errors, which cannot be separated for a majority of cases) in the range of 4 to 7\% (\textit{a priori} confidential probability 0.9), respectively, under the assumption that the entire system of accounting does not have unrecognized biases (Shvidenko et al., 2003, 2004). The application of the MBP to initial sample plots has shown that there are no systematic errors by major phytomass fractions. Some systematic differences are recognized for NPP (from +5 to +10\% for some species and regions) that could be (at least, partially) connected to a changing environment. The development of models of biological productivity of the considered type presents, to our knowledge, the first attempt of such a kind for Northern Eurasian forests.
Tables and models of gross and net growth (TMG)

Tables and models of gross and net growth (TMG) are developed for stands of 5 forest forming species (pine, spruce, oak, birch and aspen). They contain age dynamics of gross (dTV) and net (dGS) growth and mortality (dM) by site indexes and relative stocking, averaged for the entire growth area of the above mentioned tree species.

The TMG have been developed based on regularities of dynamics of total production and growing stock volume under different densities using the approach suggested in (Кенставичюс и др., 1981). The models have been developed using non-linear dependence of growing stock and total production (total volume) of stands on relative stocking. Models of dynamics of growing stock and total production under different stocking have been presented by the Richards-Chapman growth function and further aggregated by the three-dimensional (site index, age and relative stocking) function. The models were parametrized based on available information from different publications (e.g., Кенставичюс и др., 1981; Тюрин и др., 1945; Загреев и др., 1992) and using regularities derived from growth models presented in this issue. Gross and net growth were calculated as numerical values of derivatives of the developed models, and mortality – as the difference between gross and net growth. Data presented in Part 3 represent a simplified and modified version of tables from Shvidenko et al., 1996. It is relevant to point out that the TMG are developed for mechanical aggregates of stands and do not specifically account for previous history of growth and forest management of stands. Thus, the accuracy of the TMG is not high, at least in application to individual stands.

“Standard” tables of basal area and growing stock of fully-stocked stands

“Standard” tables of basal area (BA) and growing stock (GS) of fully-stocked stands contain dynamics of BA and GS as a function of average height of stands. They are produced based on corresponding models of growth of fully-stocked stands. Such a type of reference data is widely used in the practice of forest inventory in Russia.

“Standard” tables included in this book reflect regularities of the corresponding growth models of fully-stocked stands presented in Part I. We did not provide any modeling correction and regulating of results of direct calculations. Such corrections could be done by forest inventory enterprises using regional experimental data. Dependently upon methodologies were used for development of the corresponding models of growth, the “standard” tables either include site index (bonitat) of stands as an input to the tables or not.

In order to provide a possibility to use the models and tables of this issue for non-Russian speakers, the English content is presented at beginning of the book. The first tables of each species and type contain column headers in English. English definitions of major terms used are given below.

Major terms and definitions

Average diameter – root-sum-square average of diameters of trees of a stand (element of forest) measured at breast height, i.e., at 1.3 m from the soil surface (diameter of the average tree of a stand), cm.

Average height of a stand (element of forest) – height corresponding to average tree of a stand (i.e., tree with average diameter), m.

Average increment (average change of growing stock) – yearly change of growing stock of a stand, calculated for the full period of the stand’s growth, i.e. \(Z_{\text{gdp}} = M_A / A \), where \(M_A \) – growing stock of a stand at age \(A \).
Basal area – sum of area of cross sections of all living trees constituting a stand (element of forest) measured at breast height, m²·ha⁻¹.

Bonitat (site index) – (dimensionless) indicator of productivity of forest stands; it is defined by average age and average height of a stand (element of forest); in Russia site indexes are denoted by Latin numbers I, I, II, …, Va, etc.

Net growth (current change of growing stock) – change of growing stock volume of a stand per time unit, as a rule for 1 year. Measured in m³·ha⁻¹·year⁻¹.

Growing stock volume – sum of volumes of all living trees of a stand; measured in m³·ha⁻¹.

Gross growth (current increment by total productivity) – change of total production per time unit, as a rule for 1 year. Measured in m³·ha⁻¹·year⁻¹.

Modal stands – actual stands (a term of Russian forest inventory)

Net Ecosystem Production (NEP) – difference between Net Primary Production and Heterotrophic Respiration. Measured in units of dry matter per time unit (t·ha⁻¹·year⁻¹) or carbon (t C ha⁻¹·year⁻¹).

Net Primary Production (NPP) – amount of organic matter fixed in plant tissues. NPP is defined as difference between Gross Primary Production (Gross Photosynthesis) and Autotrophic Respiration. Measured in units of dry matter per time unit (t·ha⁻¹·year⁻¹) or carbon (t C ha⁻¹·year⁻¹).

Phytomass (Live biomass) (of a forest ecosystem) – amount of organic matter of living plants constituting the ecosystem. MBP of this issue include 7 fractions (components) of phytomass: stem wood (over bark), bark of stems, wood of branches (over bark), foliage, understorey (undergrowth and shrubs), and green forest floor. Measured in units of dry matter (usually t·ha⁻¹) or carbon (t C ha⁻¹).

Species composition – distribution of growing stock volume by tree species constituting a stand; is represented by a formula expressed as the distribution in percent. For example, 7P3B means that from 65% to 74% of growing stock is presented by pine, and from 25% to 34% - by spruce.

Stocking (relative) – ratio of basal area of an estimated stand to the basal area of the analogues fully-stocked stand (the latter is taken from growth table of fully-stocked (normal) stands).

Total productivity (of a stand) – sum of growing stock volume which has been produced by a forest stand during the entire period of a stand’s life, i.e. the sum of growing stock volume at age A and sum of mortality for the period before A; measured in m³·ha⁻¹.

Ecological regions (ecoregions)

<table>
<thead>
<tr>
<th>Code of ecoregions</th>
<th>Name of ecoregions</th>
<th>Subject of the Russian Federation</th>
</tr>
</thead>
<tbody>
<tr>
<td>009</td>
<td>Caucasus mountain deciduous forests</td>
<td>Republics: Dagestan, Ingushetia, Kabardino-Balkaria, Karachaevo-Cherkessia, Severnaja Osetia -Alania, Chechnja</td>
</tr>
<tr>
<td>011</td>
<td>Altai mountain middle taiga</td>
<td>Altai kray and Republic Altai</td>
</tr>
<tr>
<td>012</td>
<td>Altai forest steppe</td>
<td></td>
</tr>
<tr>
<td>013</td>
<td>Altai mountain southern taiga</td>
<td></td>
</tr>
<tr>
<td>014</td>
<td>Altai mountain forest steppe</td>
<td></td>
</tr>
<tr>
<td>031</td>
<td>Kuban' northern steppe</td>
<td>Krasnodar Kray and Republic Adygeja</td>
</tr>
<tr>
<td>032</td>
<td>Caucasus coastal mountain deciduous forests</td>
<td></td>
</tr>
<tr>
<td>041</td>
<td>Taimir tundra</td>
<td>Krasnoyarsk Kray including Taimir and Evenkia autonomous okrugs, as well as Khakass Republic</td>
</tr>
<tr>
<td>042</td>
<td>Putorana-Anabar sparse taiga</td>
<td></td>
</tr>
<tr>
<td>043</td>
<td>Putorana mountain northern taiga</td>
<td></td>
</tr>
<tr>
<td>044</td>
<td>Tungussky middle taiga</td>
<td></td>
</tr>
<tr>
<td>045</td>
<td>Angara Southern taiga</td>
<td></td>
</tr>
<tr>
<td>046</td>
<td>Kansk-Achinsk forest steppe</td>
<td></td>
</tr>
<tr>
<td>Code of ecoregions</td>
<td>Name of ecoregions</td>
<td>Subject of the Russian Federation</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>047</td>
<td>Khakassia mountain Southern taiga</td>
<td></td>
</tr>
<tr>
<td>048</td>
<td>Sajansky mountain middle taiga</td>
<td></td>
</tr>
<tr>
<td>051</td>
<td>Samarga mountain Southern taiga</td>
<td></td>
</tr>
<tr>
<td>052</td>
<td>Southern Sikhote-Alin mountain coniferous-broadleaves forests</td>
<td>Primorsky Kray</td>
</tr>
<tr>
<td>053</td>
<td>Near-Khankaisky forest steppe</td>
<td>Stavropol Kray</td>
</tr>
<tr>
<td>071</td>
<td>Stavropol northern steppe</td>
<td>Stavropol Kray</td>
</tr>
<tr>
<td>072</td>
<td>Vorcaucasus mountain deciduous forests</td>
<td>Stavropol Kray</td>
</tr>
<tr>
<td>081</td>
<td>Okhotsky mountain Northern taiga</td>
<td>Khabarovsk Kray and Evreiskaja autonomous oblast</td>
</tr>
<tr>
<td>082</td>
<td>Low Amur mountain middle taiga</td>
<td>Khabarovsk Kray and Evreiskaja autonomous oblast</td>
</tr>
<tr>
<td>083</td>
<td>Near-Amur mountain Southern taiga</td>
<td></td>
</tr>
<tr>
<td>084</td>
<td>Middle Sikhote-Alin mountain coniferous-broadleaves forests</td>
<td></td>
</tr>
<tr>
<td>085</td>
<td>Birobidjan coniferous-broadleaves forests</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>Zeja-Selemdja mountain middle taiga</td>
<td>Amur oblast</td>
</tr>
<tr>
<td>102</td>
<td>Middle Amur mountain Southern taiga</td>
<td>Amur oblast</td>
</tr>
<tr>
<td>103</td>
<td>Zeja-Bureja forest steppe</td>
<td>Amur oblast</td>
</tr>
<tr>
<td>111</td>
<td>White Sea-Novaja Zemlja arctic tundra</td>
<td>Arkhangelsk oblast</td>
</tr>
<tr>
<td>112</td>
<td>Nenetsky forest tundra</td>
<td>Arkhangelsk oblast</td>
</tr>
<tr>
<td>113</td>
<td>Pechora-Mezen' Northern taiga</td>
<td>Arkhangelsk oblast</td>
</tr>
<tr>
<td>114</td>
<td>Onega-Northernern Dvina middle taiga</td>
<td>Arkhangelsk oblast</td>
</tr>
<tr>
<td>121</td>
<td>Astrakhan semi-desert</td>
<td>Astrakhan oblast</td>
</tr>
<tr>
<td>141</td>
<td>Belgorod forest steppe</td>
<td>Belgorod oblast</td>
</tr>
<tr>
<td>151</td>
<td>Brjansk deciduous forests</td>
<td>Brjansk oblast</td>
</tr>
<tr>
<td>171</td>
<td>Kjazma (Vladimir) mixed forests with dominance of coniferous</td>
<td>Vladimir oblast</td>
</tr>
<tr>
<td>181</td>
<td>Volgograd southern steppe</td>
<td>Volgograd oblast</td>
</tr>
<tr>
<td>191</td>
<td>Belojarisk-Velikiy Ustjug middle taiga</td>
<td>Voronezh oblast</td>
</tr>
<tr>
<td>192</td>
<td>Upper-Sukhona southern taiga</td>
<td>Voronezh oblast</td>
</tr>
<tr>
<td>201</td>
<td>Voronezh forest steppe</td>
<td>Voronezh oblast</td>
</tr>
<tr>
<td>221</td>
<td>Vetruga mixed forests with dominance of deciduous</td>
<td>Voronezh oblast</td>
</tr>
<tr>
<td>222</td>
<td>Pjana-Teshink deciduous forests</td>
<td>Voronezh oblast</td>
</tr>
<tr>
<td>241</td>
<td>Ivanovo mixed forests with dominance of coniferous</td>
<td>Ivanovo oblast</td>
</tr>
<tr>
<td>251</td>
<td>Katanga middle taiga</td>
<td></td>
</tr>
<tr>
<td>252</td>
<td>Vitim mountain middle taiga</td>
<td>Irkutsk oblast and Ust-Ordynsky Burjatsky autonomous okrug</td>
</tr>
<tr>
<td>253</td>
<td>Angara-Lena southern taiga</td>
<td></td>
</tr>
<tr>
<td>254</td>
<td>Angara forest steppe</td>
<td></td>
</tr>
<tr>
<td>255</td>
<td>Sajan-Nearbaikal mountain middle taiga</td>
<td></td>
</tr>
<tr>
<td>271</td>
<td>Kaliningrad mixed forests with dominance of coniferous</td>
<td>Kaliningrad oblast</td>
</tr>
<tr>
<td>281</td>
<td>Tver mixed forests with dominance of coniferous</td>
<td>Tver oblast</td>
</tr>
<tr>
<td>291</td>
<td>Kaluga mixed forests with dominance of deciduous</td>
<td>Kaluga oblast</td>
</tr>
<tr>
<td>301</td>
<td>Korjak mountain tundra</td>
<td>Korjaksky autonomous okrug</td>
</tr>
<tr>
<td>302</td>
<td>Western Kamchatka mountain forest tundra</td>
<td>Kamchatka oblast</td>
</tr>
<tr>
<td>303</td>
<td>Pacific mountain northern taiga</td>
<td>Kamchatka oblast</td>
</tr>
<tr>
<td>304</td>
<td>Cental Kamchatka middle taiga</td>
<td>Kamchatka oblast</td>
</tr>
<tr>
<td>305</td>
<td>Southern Kamchatka mountain meadow sparse forests</td>
<td>Kamchatka oblast</td>
</tr>
<tr>
<td>Code of ecoregions</td>
<td>Name of ecoregions</td>
<td>Subject of the Russian Federation</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>321</td>
<td>Tom’-Jaija southern taiga</td>
<td>Kemerovo oblast</td>
</tr>
<tr>
<td>322</td>
<td>Inja-Cuhnja mountain forest steppe</td>
<td>Kirov oblast</td>
</tr>
<tr>
<td>323</td>
<td>Altai-Kuznetsk mountain southern taiga</td>
<td>Kirov oblast</td>
</tr>
<tr>
<td>331</td>
<td>Kirov southern taiga</td>
<td>Kemerovo oblast</td>
</tr>
<tr>
<td>332</td>
<td>Southern Kirov mixed forests with dominance of coniferous</td>
<td>Kirov oblast</td>
</tr>
<tr>
<td>341</td>
<td>Kostroma southern taiga</td>
<td>Kostroma oblast</td>
</tr>
<tr>
<td>342</td>
<td>Makar’ev mixed forests with dominance of coniferous</td>
<td>Samara oblast</td>
</tr>
<tr>
<td>361</td>
<td>Soksky forest steppe</td>
<td>Samara oblast</td>
</tr>
<tr>
<td>362</td>
<td>Samara southern steppe</td>
<td>Lipetsk oblast</td>
</tr>
<tr>
<td>371</td>
<td>Kurgan forest steppe</td>
<td>Magadan oblast and Chukotsky autonomous okrug</td>
</tr>
<tr>
<td>381</td>
<td>Kursk forest steppe</td>
<td>Novosibirsk oblast</td>
</tr>
<tr>
<td>411</td>
<td>Leningrad southern taiga</td>
<td>Moscow oblast</td>
</tr>
<tr>
<td>421</td>
<td>Lipezk forest steppe</td>
<td>Novgorod oblast</td>
</tr>
<tr>
<td>441</td>
<td>Chukotka mountain tundra</td>
<td>Novgorod oblast</td>
</tr>
<tr>
<td>442</td>
<td>Eastern Kolima mountain sparse taiga</td>
<td>Novgorod oblast</td>
</tr>
<tr>
<td>443</td>
<td>Jana mountain northern taiga</td>
<td>Novgorod oblast</td>
</tr>
<tr>
<td>461</td>
<td>Moscow mixed forests with dominance of coniferous</td>
<td>Smolensk oblast</td>
</tr>
<tr>
<td>462</td>
<td>Behind-Oka deciduous forests</td>
<td>Smolensk oblast</td>
</tr>
<tr>
<td>471</td>
<td>Kola tundra</td>
<td>Smolensk oblast</td>
</tr>
<tr>
<td>472</td>
<td>Khibini-Kheiven forest tundra</td>
<td>Smolensk oblast</td>
</tr>
<tr>
<td>473</td>
<td>Kandalaksha mountain northern taiga</td>
<td>Smolensk oblast</td>
</tr>
<tr>
<td>491</td>
<td>Novgorod mixed forests with dominance of coniferous</td>
<td>Smolensk oblast</td>
</tr>
<tr>
<td>501</td>
<td>Tara-Shagonar southern taiga</td>
<td>Smolensk oblast</td>
</tr>
<tr>
<td>502</td>
<td>Barabinsky forest steppe</td>
<td>Smolensk oblast</td>
</tr>
<tr>
<td>521</td>
<td>Irtish southern taiga</td>
<td>Smolensk oblast</td>
</tr>
<tr>
<td>522</td>
<td>Irtish forest steppe</td>
<td>Smolensk oblast</td>
</tr>
<tr>
<td>531</td>
<td>Bolshekinelsky forest steppe</td>
<td>Smolensk oblast</td>
</tr>
<tr>
<td>532</td>
<td>Orenburg northern steppe</td>
<td>Smolensk oblast</td>
</tr>
<tr>
<td>541</td>
<td>Orel deciduous forests</td>
<td>Smolensk oblast</td>
</tr>
<tr>
<td>561</td>
<td>Penza forest steppe</td>
<td>Smolensk oblast</td>
</tr>
<tr>
<td>571</td>
<td>Kama-Kosinsk middle taiga</td>
<td>Smolensk oblast</td>
</tr>
<tr>
<td>572</td>
<td>Perm-Kama southern taiga</td>
<td>Smolensk oblast</td>
</tr>
<tr>
<td>573</td>
<td>Buisk-Irensk mixed forests with dominance of coniferous</td>
<td>Smolensk oblast</td>
</tr>
<tr>
<td>574</td>
<td>Vishera-Kos’va mountain middle taiga</td>
<td>Smolensk oblast</td>
</tr>
<tr>
<td>581</td>
<td>Pskov mixed forests with dominance of coniferous</td>
<td>Smolensk oblast</td>
</tr>
<tr>
<td>601</td>
<td>Rostov northern steppe</td>
<td>Smolensk oblast</td>
</tr>
<tr>
<td>611</td>
<td>Rjazan’ deciduous forests</td>
<td>Smolensk oblast</td>
</tr>
<tr>
<td>631</td>
<td>Khopersk-Medvediza forest steppe</td>
<td>Smolensk oblast</td>
</tr>
<tr>
<td>632</td>
<td>Saratov northern steppe</td>
<td>Smolensk oblast</td>
</tr>
<tr>
<td>641</td>
<td>Middle-Sakhalin mountain middle taiga</td>
<td>Smolensk oblast</td>
</tr>
<tr>
<td>642</td>
<td>Southern Sakhalin mountain southern taiga</td>
<td>Smolensk oblast</td>
</tr>
<tr>
<td>651</td>
<td>Middle Ural mountain southern taiga</td>
<td>Smolensk oblast</td>
</tr>
<tr>
<td>652</td>
<td>Pel’ma-Sos’va middle taiga</td>
<td>Smolensk oblast</td>
</tr>
<tr>
<td>653</td>
<td>Pizhma-Navda southern taiga</td>
<td>Smolensk oblast</td>
</tr>
<tr>
<td>661</td>
<td>Upper-Dnepr mixed forests with dominance of coniferous</td>
<td>Smolensk oblast</td>
</tr>
<tr>
<td>681</td>
<td>Tambov forest steppe</td>
<td>Smolensk oblast</td>
</tr>
<tr>
<td>691</td>
<td>Ob’-Tim’ middle taiga</td>
<td>Smolensk oblast</td>
</tr>
<tr>
<td>Code of ecoregions *</td>
<td>Name of ecoregions</td>
<td>Subject of the Russian Federation</td>
</tr>
<tr>
<td>----------------------</td>
<td>---------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>692</td>
<td>Ket-Vasjugan southern taiga</td>
<td></td>
</tr>
<tr>
<td>701</td>
<td>Tula deciduous forests</td>
<td>Tula oblast</td>
</tr>
<tr>
<td>711</td>
<td>Jamal-Gidan’ tundra</td>
<td>Tjumen oblast and Jamal0-Nenetsky and Khanti-Mansiisky autonomous okrugs</td>
</tr>
<tr>
<td>712</td>
<td>Ob’-Taz sparse taiga</td>
<td></td>
</tr>
<tr>
<td>713</td>
<td>Ob’-Irtish middle taiga</td>
<td></td>
</tr>
<tr>
<td>714</td>
<td>Irtish-Tobol southern taiga</td>
<td></td>
</tr>
<tr>
<td>715</td>
<td>Ishim forest steppe</td>
<td></td>
</tr>
<tr>
<td>731</td>
<td>Ul’janovsk deciduous forests</td>
<td>Uljanovsk oblast</td>
</tr>
<tr>
<td>751</td>
<td>Zlatoust mountain southern taiga</td>
<td></td>
</tr>
<tr>
<td>752</td>
<td>Western Cheljabinsk forest steppe</td>
<td>Cheljabinsk oblast</td>
</tr>
<tr>
<td>753</td>
<td>Near Ural northern steppe</td>
<td></td>
</tr>
<tr>
<td>761</td>
<td>Shilka mountain middle taiga</td>
<td></td>
</tr>
<tr>
<td>762</td>
<td>Argun’ mountain forest steppe</td>
<td>Chita oblast</td>
</tr>
<tr>
<td>781</td>
<td>Jaroslav’ southern taiga</td>
<td></td>
</tr>
<tr>
<td>782</td>
<td>Naro-Plescheevsk mixed forests with dominance of coniferous</td>
<td>Jaroslavl oblast</td>
</tr>
<tr>
<td>801</td>
<td>Bashkiria forest steppe</td>
<td>Republic Bashkortostan</td>
</tr>
<tr>
<td>802</td>
<td>Southern Ural mountain southern taiga</td>
<td></td>
</tr>
<tr>
<td>811</td>
<td>Tunkin-Zabaikal’e mountain middle taiga</td>
<td>Republic Burjatia</td>
</tr>
<tr>
<td>812</td>
<td>Selenga mountain southern taiga</td>
<td></td>
</tr>
<tr>
<td>851</td>
<td>Kalmikija semi-desert</td>
<td>Kalmik Republic</td>
</tr>
<tr>
<td>861</td>
<td>Karelia northern taiga</td>
<td>Republic Karelia</td>
</tr>
<tr>
<td>862</td>
<td>Onega-Ladoga middle taiga</td>
<td></td>
</tr>
<tr>
<td>871</td>
<td>Usinsk-Jurakh forest tundra</td>
<td></td>
</tr>
<tr>
<td>872</td>
<td>Middle Pechora northern taiga</td>
<td></td>
</tr>
<tr>
<td>873</td>
<td>Siktivkar middle taiga</td>
<td>Republic Komi</td>
</tr>
<tr>
<td>874</td>
<td>Komi southern taiga</td>
<td></td>
</tr>
<tr>
<td>881</td>
<td>Mariisky mixed forests with dominance of coniferous</td>
<td>Republic Mariy El</td>
</tr>
<tr>
<td>891</td>
<td>Mordovia deciduous forests</td>
<td>Republic Mordovia</td>
</tr>
<tr>
<td>921</td>
<td>Tataria mixed forests with dominance of deciduous</td>
<td>Republic Tatarstan</td>
</tr>
<tr>
<td>931</td>
<td>Tuva mountain forest steppe</td>
<td></td>
</tr>
<tr>
<td>932</td>
<td>Sajano-Tuva mountain southern taiga</td>
<td>Republic Tyva</td>
</tr>
<tr>
<td>941</td>
<td>Chepzovsk southern taiga</td>
<td></td>
</tr>
<tr>
<td>942</td>
<td>Valsk mixed forests with dominance of coniferous</td>
<td>Republic Udmurtia</td>
</tr>
<tr>
<td>971</td>
<td>Chuvashia deciduous forests</td>
<td>Chuvash Republic</td>
</tr>
<tr>
<td>981</td>
<td>Northern Jakutia tundra</td>
<td>Republic Sakha (Jakutia)</td>
</tr>
<tr>
<td>982</td>
<td>Jana-Indigirka sparse taiga</td>
<td></td>
</tr>
<tr>
<td>983</td>
<td>Vilju-Sangarsk northern taiga</td>
<td></td>
</tr>
<tr>
<td>984</td>
<td>Middle-Lena middle taiga</td>
<td></td>
</tr>
<tr>
<td>985</td>
<td>Upper Lena mountain middle taiga</td>
<td></td>
</tr>
</tbody>
</table>

* Indicated on the map of ecoregions.
Fig. Ecoregions of Russia (Shvidenko et al., 2000).
Part one. Growth tables

2. Regional growth tables of pine stands

2.1. Growth tables of fully-stocked stands

2.1.1. Growth of fully-stocked pine stands in north-west ecoregions of the European part (zones of northern and middle taiga in territories of Karelia and Murmansk oblast')

2.1.2. Growth of fully-stocked pine stands in forest tundra and north taiga ecoregions of north-east of the European part

2.1.3. Growth of fully-stocked pine stands in middle taiga ecoregions of the European part

2.1.4. Growth of fully-stocked pine stands in mountain middle- and south taiga ecoregions of Urals

2.1.5. Growth of fully-stocked pine stands in middle taiga, south taiga, subtaiga and forest steppe ecoregions of Central and East Siberia

2.1.6. Growth of fully-stocked pine stands in south of West Siberia (subtaiga, forest steppe and mountain taiga ecoregions)

2.1.7. Growth of fully-stocked pine stands in north taiga ecoregions of West Siberia (hydromorphic forest types)

2.1.8. Growth of fully-stocked pine stands in mountain ecoregions of Zabaikalia

2.1.9. Growth of fully-stocked pine stands in small hill areas of Kazakhstan

2.1.10. Growth of fully-stocked belt pine stands in south of Siberia
2.1.11. Goal programs of growth of pine stands in the European part (ecoregions of zones of mixed forests, deciduous forests and forest steppe) 156
2.1.12. Growth of fully-stocked planted pine stands in the European part (ecoregions of zones of south taiga, mixed forests, deciduous forests, and forest steppe) 159
2.1.13. Growth of fully-stocked pine stands in Middle Povolzh’e (zones of mixed and deciduous forests and forest steppe) 161

2.2. Growth tables of modal stands
2.2.1. Growth of modal pine stands in western ecoregions of the European part (zones of southern taiga, mixed and deciduous forests) 166
2.2.2. Growth of modal pine stands in Karelia and Murmansk oblast’ (ecoregions of northern and middle taiga, relative stocking 0.65) 168
2.2.3. Growth of modal pine stands in Karelia and Murmansk oblast’ (ecoregions of northern and middle, relative stocking 0.8) 169
2.2.4. Growth of modal pine stands in central ecoregions of the European part (southern taiga, zones of mixed and deciduous forests, forest steppe) 172
2.2.5. Growth of modal pine stands in forest tundra and northern taiga ecoregions of the European part 174
2.2.6. Growth of mixed modal pine stands in north taiga ecoregions of West Siberian plain 176
2.2.7. Growth of modal pine stands in hydromorphic forest types of taiga regions of Siberia 178
2.2.8. Growth of modal pine stands in authomorphic forest types of taiga regions of Siberia 180
2.2.9. Growth of modal planted pine stands in forest steppe and northern steppe ecoregions of the European part 183

3. Regional tables of fully-stocked spruce stands 185
3.1. Growth tables of fully-stocked stands
3.1.1. Growth of fully-stocked spruce stands of North-West European Russia (ecoregions of southern taiga and northern subzone of mixed forests) 185
3.1.2. Growth of even-aged fully-stocked spruce stands of northern and middle taiga ecoregions of European Russia 187
3.1.3. Growth of fully-stocked spruce stands of southern taiga ecoregions of the European part 190
3.1.4. Growth of fully-stocked spruce stands of southern taiga ecoregions of Ural 193
3.1.5. Growth of fully-stocked planted spruce stands of ecoregions of southern taiga, mixed and deciduous forests of the European part (goal programs of the growth) 196
3.1.6. Growth of fully-stocked spruce stands of ecoregions of the zones of mixed forests of the European part 198
3.1.7. Growth of fully-stocked stands of Shrenk’s spruce (*Picea shrenkiana*) 200
3.1.8. Growth of uneven-aged fully-stocked spruce stands of European North 203
3.2. Growth tables of modal stands
3.2.1. Growth of modal spruce stands of North-West European Russia (ecoregions of southern taiga and northern subzone of mixed forests) 206
3.2.2. Growth of modal mixed spruce-deciduous stands of central part of the European part (ecoregions of southern taiga and mixed forests) 208
3.2.3. Growth of modal spruce stands of Middle Siberia (ecoregions of southern and middle taiga) 210
3.2.4. Growth of modal spruce stands of Northern Priokhotie (ecoregions of northern taiga) 212
4. Regional growth tables of larch stands

4.1. Growth tables of fully-stocked stands

4.1.1. Growth of planted fully-stocked larch stands in the European part (ecoregions of southern taiga, zones of mixed and deciduous forests and forest steppe)

4.1.2. Growth of fully-stocked larch stands in mountain taiga ecoregions of the south of West Siberia

4.1.3. Growth of fully-stocked larch stands in Central Siberia (ecoregions of middle and south taiga)

4.1.4. Growth of fully-stocked larch stands in forest steppe ecoregions of Burjatia and Irkutsk oblast’

4.1.5. Growth of fully-stocked larch stands in Magadan oblast’ and east of Jakutia (Saha) Republic (ecoregions of northern and sparse taiga)

4.1.6. Growth of fully-stocked larch stands in central and southern Jakutia (Saha) (ecoregions of mountain middle taiga)

4.1.7. Growth of fully-stocked larch stands in south of Far East (ecoregions of south taiga and coniferous-broadleaves forests)

4.1.8. Growth of larch stands of maximal productivity in Middle Siberia (ecoregions of middle and south taiga)

4.2. Growth tables of modal stands

4.2.1. Growth of modal larch forests of Yenisey Krjazh and south of Krasnoyarsk kray (ecoregions of mountain taiga forests and subtaiga)

4.2.2. Growth of modal larch forests of Angara River basin (ecoregions of middle and south taiga)

4.2.3. Growth of modal larch forests of Pribaikalie and upper reaches of Lena River (ecoregions of mountain taiga)

4.2.4. Growth of modal larch forests of taiga ecoregions of Zabaikalie (Republic Burjatia, Chita and Amur oblast’)

4.2.5. Growth of modal larch forests of Central and North Jakutia (ecoregions of north, sparse and middle taiga)

4.2.6. Growth of modal larch forests of South Jakutia (Sakha) (forest types- Larch forests with bilberry, ecoregions of middle taiga)

4.2.7. Growth of modal larch forests of South Jakutia (Sakha) (forest types with Ledum and mosses, ecoregions of middle taiga)

4.2.8. Growth of modal larch forests of Magadan oblast’ and North-East Jakutia (Sakha) (ecoregions of forest tundra and sparse taiga)

4.2.9. Growth of modal larch forests of South Far East (ecoregions of south taiga and coniferous-broadleaves forests)

4.2.10. Growth of modal larch forests of Priokhot’ja (hydromorphic forest types, ecoregions of northern taiga)

4.2.11. Growth of modal larch forests of North-East Jakutia (Sakha) dependently on soils and relief (ecoregions of forest tundra and sparse taiga)

5. Regional growth tables of fir stands

5.1. Growth tables of fully-stocked stands

5.1.1. Growth of fully-stocked fir stands (Abies sibirica) in south taiga ecoregions of West Siberia

5.1.2. Growth of fully-stocked fir stands (Abies sibirica) in mountain taiga ecoregions of Altai

5.1.3. Growth of fully-stocked fir stands (Abies sibirica) in south taiga ecoregions of Urals

5.1.4. Growth of fully-stocked fir stands (Abies sibirica) in Sakhalin

5.2. Growth tables of modal stands

5.2.1. Growth of modal fir stands (Abies sibirica) of mountain ecoregions of Srednesibirskoe ploskogorie (Middle Siberia table land)

5.2.2. Growth of modal fir stands (Abies sibirica) of mountain ecoregions of south Central Siberia
6. Regional growth tables of cedar (Stone pine, *Pinus sibirica*) stands

6.1. Growth tables of fully-stocked stands

6.1.1. Growth of fully-stocked cedar stands in mountain taiga ecoregions of Zabaikal’e (Republic Burjatia, Chita and Irkutsk oblast’)

6.1.2. Growth of fully-stocked cedar stands in mountain taiga ecoregions of Mountain Altai

6.1.3. Growth of fully-stocked cedar stands in mountain taiga ecoregions of North and Middle Ural (authomorphic forest types)

6.1.4. Growth of fully-stocked cedar stands in mountain taiga ecoregions of North and Middle Ural (hydromorphic forest types)

6.1.5. Growth of fully-stocked relatively uneven-aged cedar stands in mountain taiga ecoregions of Mountain Altai

6.1.6. Growth of fully-stocked cedar stands in mountain taiga ecoregions of East Sajan

6.1.7. Growth of fully-stocked mixed cedar stands Middle Siberia table land (*Srednesibirskoe ploskogorie*)

6.2. Growth tables of modal stands

6.2.1. Growth of modal mixed cedar stands in Irkutsk oblast’ (green mosses forest types)

6.2.2. Growth of modal mixed cedar stands in Irkutsk oblast’ (hydromorphic forest types)

6.2.3. Growth of modal mixed cedar stands of Middle Siberia table land

6.2.4. Growth of modal cedar stands in Mountain Altai (group of forest types with *Bergenia*)

7. Regional growth tables of oak stands

7.1. Growth tables of fully-stocked stands

7.1.1. Goal programs of growth of optimal oak stands in the European part (ecoregions of zones of mixed forests, deciduous forests and forest steppe)

7.1.2. Growth of fully-stocked oak stands of North Caucasus (ecoregions of zones of deciduous forests and forest steppe)

7.1.3. Growth of fully-stocked oak (*Quercus petraea*) stands of South European part (ecoregions of zones of steppe and forest steppe)

7.1.4. Growth of fully-stocked oak stands of seed origin in the European part (ecoregions of zones of deciduous forests and forest steppe)

7.1.5. Growth of fully-stocked oak stands of vegetative origin in steppe ecoregions of South-East of the European part

7.1.6. Growth of fully-stocked oak stands in ecoregions of zone of mixed forests of the European part

7.1.7. Growth of fully-stocked oak stands of vegetative origin in forest steppe ecoregions of forest steppe of the European part

7.1.8. Growth of fully-stocked oak stands (*Quercus iberica*) in Northern Caucasus

7.2. Growth tables of modal stands

7.2.1. Growth of modal oak stands in the European part (ecoregions of zone of deciduous forests and forest steppe)

7.2.2. Growth of mixed modal oak-birch-aspen stands in the European part (ecoregions of zone of deciduous forests and forest steppe)

8. Regional growth tables of birch stands

8.1. Growth tables of fully-stocked stands

8.1.1. Growth of fully-stocked birch stands of North-East of the European part (ecoregions of zones of south taiga and mixed forests)

8.1.2. Goal program of growth of birch stands in the European part (ecoregions of zones of mixed forests, deciduous and forest steppe)
8.1.3. Growth of fully-stocked birch stands of South Zauralie (ecoregions of forest steppe and northern steppe) 320
8.1.4. Growth of fully-stocked birch stands of plain part of Middle Priuralie (ecoregions of zones of south taiga, middle taiga and northern subzone of mixed forests) 321
8.1.5. Growth of fully-stocked birch stands of North-East of mountain taiga ecoregions of Middle Urals 322
8.1.6. Growth of fully-stocked birch stands of North-East of the European part (ecoregions of zones of south taiga and mixed forests) 323
8.1.7. Growth of fully-stocked birch stands of steppe ecoregions of West Siberia 326
8.2. Growth tables of modal stands 329
8.2.1. Growth of modal birch stands in south and middle taiga ecoregions of Siberia 329
8.2.2. Growth of modal birch stands in forest steppe ecoregions of Siberia 331
8.2.3. Growth of modal birch stands in mountain taiga ecoregions of South Siberia 333
8.2.4. Growth of modal birch stands in mountain taiga regions of Pribaikalie 335
8.2.5. Growth of modal birch stands in the European part 336

9. Regional growth tables of aspen stands 341
9.1. Growth tables of fully-stocked stands 341
9.1.1. Growth of fully-stocked aspen stands of vegetative origin of the European part (ecoregions of southern taiga and zones of mixed and deciduous forests) 341
9.1.2. Growth of fully-stocked aspen stands of Zauralie and West Siberia (ecoregions of middle and southern taiga) 343
9.1.3. Growth of fully-stocked aspen stands of Central and East Siberia (ecoregions of middle and southern taiga) 345
9.1.4. Growth of fully-stocked aspen stands in ecoregions of forest steppe and steppe of Siberia and Kazakhstan 347
9.1.5. Growth of fully-stocked aspen stands in western part of the European part (ecoregions of zones of mixed and deciduous forests) 349
9.1.6. Growth of fully-stocked two layer aspen-spruce stands in the European part (ecoregions of north taiga) 351
9.1.7. Growth of fully-stocked two layer aspen-spruce stands in the European part (ecoregions of middle taiga) 357
9.2. Growth tables of modal stands 363
9.2.1. Growth of modal aspen stands in the European part (ecoregions of south taiga and mixed forests) 363
9.2.2. Growth of modal aspen stands in West Siberia (ecoregions of middle and south taiga) 364
9.2.3. Growth of modal aspen stands in forest steppe ecoregions of Siberia 366
9.2.4. Growth of modal aspen stands in mountain taiga ecoregions of South of West and Central Siberia 368
9.2.5. Growth of modal aspen stands in south taiga ecoregions of Central Siberia 370

10. Regional growth tables of lime-tree, poplar, alder and hornbeam stands 373
10.1. Growth tables of fully-stocked stands 373
10.1.1. Growth of fully-stocked of lime-tree stands of vegetative origin in the European part (ecoregions of zones of deciduous forests and forest steppe) 373
10.1.2. Growth of fully-stocked of hornbeam stands of vegetative origin in the European part (ecoregions of zones of deciduous forests and forest steppe) 375
10.1.3. Growth of fully-stocked of stands of black alder of vegetative origin in South-West of the European part (ecoregions of zones of mixed forests, deciduous forests and forest steppe) 377
10.2. Growth tables of modal stands
10.2.1. Growth of modal stands of poplar (Populus laurifolia) in Republic Tuva

Part two. Tables of biological productivity (TBP)

1. General TBP of fully-stocked (normal) forests

1.1. TBP of fully-stocked (normal) pine forests

1.2. TBP of fully-stocked (normal) spruce forests

1.3. TBP of fully-stocked (normal) fir forests

1.4. TBP of fully-stocked (normal) larch forests

1.5. TBP of fully-stocked (normal) stone pine (Pinus sibirica) forests

1.6. TBP of fully-stocked (normal) oak forests (Quercus borealis) of seed origin

1.7. TBP of fully-stocked (normal) oak forests (Quercus borealis) of vegetative origin

1.8. TBP of fully-stocked (normal) beech forests

1.9. TBP of fully-stocked (normal) ash (Fraxinus excelsior) forests

1.10. TBP of fully-stocked (normal) hornbeam forests

1.11. TBP of fully-stocked (normal) white acacia forests

1.12. TBP of fully-stocked (normal) ash (Fraxinus manshurica) forests

1.13. TBP of fully-stocked (normal) birch forests

1.14. TBP of fully-stocked (normal) aspen forests

1.15. TBP of fully-stocked (normal) lime-tree forests

1.16. TBP of fully-stocked (normal) gray alder forests

1.17. TBP of fully-stocked (normal) black alder forests

1.18. TBP of fully-stocked (normal) gray willow (Salix alba) forests

1.19. TBP of fully-stocked (normal) maple forests

2. Regional TBP of pine forests

2.1. TBP of fully-stocked forests

2.1.1. TBP of fully-stocked pine forests in north-west ecoregions of the European part (zones of northern and middle taiga in territories of Karelia and Murmansk oblast')

2.1.2. TBP of fully-stocked pine forests in forest tundra and north taiga ecoregions of north-east of the European part

2.1.3. TBP of fully-stocked pine forests in middle taiga ecoregions of the European part

2.1.4. TBP of fully-stocked pine forests in mountain middle- and south taiga ecoregions of Urals

2.1.5. TBP of fully-stocked pine forests in middle taiga, south taiga, subtaiga and forest steppe ecoregions of Central and East Siberia

2.1.6. TBP of fully-stocked pine forests in south of West Siberia (subtaiga, forest steppe and mountain taiga ecoregions)

2.1.7. TBP of fully-stocked pine forests in north taiga ecoregions of West Siberia (hydromorphic forest types)

2.1.8. TBP of fully-stocked pine forests in mountain ecoregions of Zabaikalia

2.1.9. TBP of fully-stocked pine forests in small hill areas of Kazakhstan

2.1.10. TBP of fully-stocked belt pine forests in south of Siberia

2.1.11. TBP for goal programs of growth of pine forests in the European part (ecoregions of zones of mixed forests, deciduous forests and forest steppe)

2.1.12. TBP of fully-stocked planted pine forests in the European part (ecoregions of zones of south taiga, mixed forests, deciduous forests, and forest steppe)

2.1.13. TBP of fully-stocked pine forests in Middle Povolzh’e (zones of mixed and deciduous forests and forest steppe)

2.1.14. TBP of fully-stocked pine forests in the European part (ecoregions of zone of mixed forests)
2.2. TBP of modal forests

2.2.1. TBP of modal pine forests in western ecoregions of the European part (zones of southern taiga, mixed and deciduous forests) 486
2.2.2. TBP of modal pine forests in Karelia and Murmansk oblast’ (ecoregions of northern and middle taiga, relative stocking 0.65) 489
2.2.3. TBP of modal pine forests in Karelia and Murmansk oblast’ (ecoregions of northern and middle, relative stocking 0.8) 491
2.2.4. TBP of modal pine forests in central ecoregions of the European part (southern taiga, zones of mixed and deciduous forests, forest steppe) 493
2.2.5. TBP of modal pine forests in forest tundra and northern taiga ecoregions of the European part 496
2.2.6. TBP of mixed modal pine forests in north taiga ecoregions of West Siberian plain 499
2.2.7. TBP of modal pine forests in hydromorphic forest types of taiga regions of Siberia 502
2.2.8. TBP of modal pine forests in authomorphic forest types of taiga regions of Siberia 504
2.2.9. TBP of modal planted pine forests in forest steppe and northern steppe ecoregions of the European part 506

3. Regional TBP of spruce forests 509
3.1. TBP tables of fully-stocked forests
3.1.1. TBP of fully-stocked spruce forests of North-West European Russia (ecoregions of southern taiga and northern subzone of mixed forests) 509
3.1.2. TBP of even-aged fully-stocked spruce forests of northern and middle taiga ecoregions of European Russia 512
3.1.3. TBP of fully-stocked spruce forests of southern taiga ecoregions of the European part 515
3.1.4. TBP of fully-stocked spruce forests of southern taiga ecoregions of Ural 518
3.1.5. TBP of fully-stocked planted spruce forests of ecoregions of southern taiga, mixed and deciduous forests of the European part (goal programs of the growth) 521
3.1.6. TBP of fully-stocked spruce forests of ecoregions of the zones of mixed forests of the European part 524
3.1.7. TBP of fully-stocked forests of Shrenk’s spruce (Picea shrenkiana) 527
3.1.8. TBP of uneven-aged fully-stocked spruce forests of European North 531
3.2. Growth tables of modal forests
3.2.1. TBP of modal spruce forests of North-West European Russia (ecoregions of southern taiga and northern subzone of mixed forests) 533
3.2.2. TBP of modal mixed spruce-deciduous forests of central part of the European part (ecoregions of southern taiga and mixed forests) 537
3.2.3. TBP of modal spruce forests of Middle Siberia (ecoregions of southern and middle taiga) 540
3.2.4. TBP of modal spruce forests of Northern Priokhotie (ecoregions of northern taiga) 542

4. Regional TBP of larch forests 544
4.1. TBP of fully-stocked forests
4.1.1. TBP of planted fully-stocked larch forests in the European part (ecoregions of southern taiga, zones of mixed and deciduous forests and forest steppe) 544
4.1.2. TBP of fully-stocked larch forests in mountain taiga ecoregions of the south of West Siberia 547
4.1.3. TBP of fully-stocked larch forests in Central Siberia (ecoregions of middle and south taiga) 552
4.1.4. TBP of fully-stocked larch forests in forest steppe ecoregions of Burjatia and Irkutsk oblast’ 555
4.1.5. TBP of fully-stocked larch forests in Magadan oblast’ and east of Jakutia (Saha) Republic (ecoregions of northern and sparse taiga) 557
4.1.6. TBP of fully-stocked larch forests in central and southern Jakutia (Saha) (ecoregions of mountain middle taiga) 560
4.1.7. TBP of fully-stocked larch forests in south of Far East (ecoregions of south taiga and coniferous-broadleaves forests) 561

4.1.8. TBP of larch forests of maximal productivity in Middle Siberia (ecoregions of middle and south taiga) 564

4.2. TBP of modal forests 568

4.2.1. TBP of modal larch forests of Yenisey Krjazh and south of Krasnoyarsk kray (ecoregions of mountain taiga forests and subtaiga) 568

4.2.2. TBP of modal larch forests of Angara River basin (ecoregions of middle and south taiga) 569

4.2.3. TBP of modal larch forests of Pribaikalie and upper reaches of Lena River (ecoregions of mountain taiga) 572

4.2.4. TBP of modal larch forests of taiga ecoregions of Zabaikalie (Republic Burjatia, Chita and Amur oblast’) 574

4.2.5. TBP of modal larch forests of Central and North Jakutia (ecoregions of north, sparse and middle taiga) 576

4.2.6. TBP of modal larch forests of South Jakutia (Sakha) (forest types- Larch forests with bilberry, ecoregions of middle taiga) 577

4.2.7. TBP of modal larch forests of South Jakutia (Sakha) (forest types with Ledum and mosses, ecoregions of middle taiga) 579

4.2.8. TBP of modal larch forests of Magadan oblast’ and North-East Jakutia (Sakha) (ecoregions of forest tundra and sparse taiga) 581

4.2.9. TBP of modal larch forests of South Far East (ecoregions of south taiga and coniferous-broadleaves forests) 583

4.2.10. TBP of modal larch forests of Priokhot’ja (hydromorphic forest types, ecoregions of northern taiga) 586

4.2.11. TBP of modal larch forests of North-East Jakutia (Sakha) dependently on soils and relief (ecoregions of forest tundra and sparse taiga) 587

5. Regional TBP of fir forests 590

5.1. TBP of fully-stocked forests 590

5.1.1. TBP of fully-stocked fir forests (Abies sibirica) in south taiga ecoregions of West Siberia 590

5.1.2. TBP of fully-stocked fir forests (Abies sibirica) in mountain taiga ecoregions of Altai 594

5.1.3. TBP of fully-stocked fir forests (Abies sibirica) in south taiga ecoregions of Urals 596

5.1.4. TBP of fully-stocked relatively uneven-aged mixed fir forests (Abies sachalinensis) in Sakhalin oblast’ (ecoregions of south and middle taiga) 598

5.2. Growth tables of modal forests 600

5.2.1. TBP of modal fir forests (Abies sibirica) of mountain ecoregions of Srednesibirskoe ploskogorie (Middle Siberia table land) 600

5.2.2. TBP of modal fir forests (Abies sibirica) of mountain ecoregions of south Central Siberia 601

6. Regional growth tables of cedar (Stone pine, Pinus sibirica) forests 603

6.1. Growth tables of fully-stocked forests 603

6.1.1. TBP of fully-stocked cedar forests in mountain taiga ecoregions of Zabaikal’e (Republic Burjatia, Chita and Irkutsk oblast’) 603

6.1.2. TBP of fully-stocked cedar forests in mountain taiga ecoregions of Mountain Altai 606

6.1.3. TBP of fully-stocked cedar forests in mountain taiga ecoregions of North and Middle Ural (authomorphic forest types) 609

6.1.4. TBP of fully-stocked cedar forests in mountain taiga ecoregions of North and Middle Ural (hydromorphic forest types) 612

6.1.5. TBP of fully-stocked relatively uneven-aged cedar forests in mountain taiga ecoregions of Mountain Altai 614
6.1.6. TBP of fully-stocked cedar forests in mountain taiga ecoregions of East Sajan

6.1.7. TBP of fully-stocked mixed cedar forests Middle Siberia table land (*Srednesibirskoe ploskogorie*)

6.2. Growth tables of modal forests

6.2.1. TBP of modal mixed cedar forests in Irkutsk oblast’ (green mosses forest types)

6.2.2. TBP of modal mixed cedar forests in Irkutsk oblast’ (hydromorphic forest types)

6.2.3. TBP of modal mixed cedar forests of Middle Siberia table land

6.2.4. TBP of modal cedar forests in Mountain Altai (group of forest types with *Bergenia*)

7. Regional growth tables of oak forests

7.1. TBP of fully-stocked forests

7.1.1. TBP of goal programs of growth of optimal oak forests in the European part (ecoregions of zones of mixed forests, deciduous forests and forest steppe)

7.1.2. TBP of fully-stocked oak forests of North Caucasus (ecoregions of zones of deciduous forests and forest steppe)

7.1.3. TBP of fully-stocked oak (*Quercus petraea*) forests of South European part (ecoregions of zones of steppe and forest steppe)

7.1.4. TBP of fully-stocked oak forests of seed origin in the European part (ecoregions of zones of deciduous forests and forest steppe)

7.1.5. TBP of fully-stocked oak forests of vegetative origin in steppe ecoregions of South-East of the European part

7.1.6. TBP of fully-stocked oak forests in ecoregions of zone of mixed forests of the European part

7.1.7. TBP of fully-stocked oak forests of vegetative origin in forest steppe ecoregions of forest steppe of the European part

7.1.8. TBP of fully-stocked oak forests (*Quercus iberica*) in Northern Caucasus

7.2. TBP tables of modal forests

7.2.1. TBP of modal oak forests in the European part (ecoregions of zone of deciduous forests and forest steppe)

7.2.2. TBP of mixed modal oak-birch-aspen forests in the European part (ecoregions of zone of deciduous forests and forest steppe)

8. Regional TBP of birch forests

8.1. TBP of fully-stocked forests

8.1.1. TBP of fully-stocked birch forests of North-East of the European part (ecoregions of zones of south taiga and mixed forests)

8.1.2. TBP of goal program of growth of birch forests in the European part (ecoregions of zones of mixed forests, deciduous and forest steppe)

8.1.3. TBP of fully-stocked birch forests of South Zauralie (ecoregions of forest steppe and northern steppe)

8.1.4. TBP of fully-stocked birch forests of plain part of Middle Priuralie (ecoregions of zones of south taiga, middle taiga and northern subzone of mixed forests)

8.1.5. TBP of fully-stocked birch forests of North-East of mountain taiga ecoregions of Middle Urals

8.1.6. TBP of fully-stocked birch forests of North-East of the European part (ecoregions of zones of south taiga and mixed forests)

8.1.7. TBP of fully-stocked birch forests of steppe ecoregions of West Siberia

8.2. TBP of modal forests

8.2.1. TBP of modal birch forests in south and middle taiga ecoregions of Siberia

8.2.2. TBP of modal birch forests in forest steppe ecoregions of Siberia

8.2.3. TBP of modal birch forests in mountain taiga ecoregions of South Siberia
8.2.4. TBP of modal birch forests in mountain taiga regions of Pribaikalie 681
8.2.5. TBP of modal birch forests in the European part 683

9. Regional TBP of aspen forests 687
9.1. TBP of fully-stocked forests 687
9.1.1. TBP of fully-stocked aspen forests of vegetative origin of the European part (ecoregions of southern taiga and zones of mixed and deciduous forests) 687
9.1.2. TBP of fully-stocked aspen forests of Zauralie and West Siberia (ecoregions of middle and southern taiga) 691
9.1.3. TBP of fully-stocked aspen forests of Central and East Siberia (ecoregions of middle and southern taiga) 694
9.1.4. TBP of fully-stocked aspen forests in ecoregions of forest steppe and steppe of Siberia and Kazakhstan 697
9.1.5. TBP of fully-stocked aspen forests in western part of the European part (ecoregions of zones of mixed and deciduous forests) 701
9.1.6. TBP of fully-stocked two layer aspen-spruce forests in the European part (ecoregions of north taiga) 703
9.1.7. TBP of fully-stocked two layer aspen-spruce forests in the European part (ecoregions of middle taiga) 708
9.2. TBP of modal forests 712
9.2.1. TBP of modal aspen forests in the European part (ecoregions of south taiga and mixed forests) 712
9.2.2. TBP of modal aspen forests in West Siberia (ecoregions of middle and south taiga) 715
9.2.3. TBP of modal aspen forests in forest steppe ecoregions of Siberia 717
9.2.4. TBP of modal aspen forests in mountain taiga ecoregions of South of West and Central Siberia 719
9.2.5. TBP of modal aspen forests in south taiga ecoregions of Central Siberia 721

10. Regional TBP of lime-tree, poplar, alder and hornbeam forests 723
10.1. TBP tables of fully-stocked forests 723
10.1.1. TBP of fully-stocked of lime-tree forests of vegetative origin in the European part (ecoregions of zones of deciduous forests and forest steppe) 723
10.1.2. TBP of fully-stocked of hornbeam forests of vegetative origin in the European part (ecoregions of zones of deciduous forests and forest steppe) 726
10.1.3. TBP of fully-stocked of forests of black alder of vegetative origin in South-West of the European part (ecoregions of zones of mixed forests, deciduous forests and forest steppe) 728
10.2. TBP of modal forests 730
10.2.1. TBP of modal forests of poplar (Populus laurifolia) in Republic Tuva 730

Part three. General tables of growth and mortality of stands of major forest forming species of different stocking 732

3.1. Pine stands 733
3.1.1. Gross growth of pine stands 733
3.1.2. Net growth of pine stands 734
3.1.3. Mortality of pine stands 736
3.2. Spruce stands 738
3.2.1. Gross growth of spruce stands 738
3.2.2. Net growth of spruce stands 740
3.2.3. Mortality of spruce stands 742
3.3. Oak stands
3.3.1. Gross growth of oak stands
3.3.2. Net growth of oak stands
3.3.3. Mortality of oak stands
3.4. Birch stands
3.4.1. Gross growth of birch stands
3.4.2. Net growth of birch stands
3.4.3. Mortality of birch stands
3.5. Aspen stands
3.5.1. Gross growth of aspen stands
3.5.2. Net growth of aspen stands
3.5.3. Mortality of aspen stands

Part four. «Standard tables» of basal area and growing stock of fully-stocked stands of Northern Eurasia

1. Standard tables of basal area of fully-stocked stands
 1.1. Standard tables of basal area of fully-stocked stands – general tables
 1.2. Standard tables of basal area of pine stands
 1.3. Standard tables of basal area of spruce stands
 1.4. Standard tables of basal area of larch stands
 1.5. Standard tables of basal area of fir stands
 1.6. Standard tables of basal area of cedar (Stone pine, Pinus Sibirica) stands
 1.7. Standard tables of basal area of oak stands
 1.8. Standard tables of basal area of birch stands
 1.9. Standard tables of basal area of aspen stands
 1.10. Standard tables of basal area of lime-tree, hornbeam and black alder stands

2. Standard tables of growing stock of fully stocked stands
 2.1. Standard tables of growing stock of fully-stocked stands – general tables
 2.2. Standard tables of growing stock of pine stands
 2.3. Standard tables of growing stock of spruce stands
 2.4. Standard tables of growing stock of larch stands
 2.5. Standard tables of growing stock of fir stands
 2.6. Standard tables of growing stock of cedar (Stone pine, Pinus Sibirica) stands
 2.7. Standard tables of growing stock of oak stands
 2.8. Standard tables of growing stock of birch stands
 2.9. Standard tables of growing stock of aspen stands
 2.10. Standard tables of growing stock of lime-tree, hornbeam and black alder stands

Appendices

Appendix 1. Coefficients of models of growth of fully-stocked stands by species (general tables)
Appendix 2. Coefficients of regional growth models by species
Appendix 3. Coefficients of models for assessment of phytomass
Appendix 4. Coefficients of models of growth and mortality under different stocking

Summary (in English)
List of ecoregions (in English)