Hydrogen and the Realities of Technology Diffusion

Arnulf Grubler

YALE FES September 19, 2003

Why Hydrogen?

- Need zero-emission fuels at point of consumption (energy density)
- Climate Change: best transitional strategy for carbon management of fossil fuels (steamreforming+sequestration)
- Logical evolution of energy system

Source: IIASA

Source: IIASA

When Will Hydrogen Come?

- C. Marchetti 1982: Non-fossil hydrogen via transition through "methane economy"
- Post 2000 scenario literature:

2020: zero in BAU, small market niche (<2EJ) in "technology push" scenarios.

2050: Best guess 20+ EJ, much larger in climate stabilization and/or "technology push" scenarios

How Does Hydrogen Come?

After extraordinary cost reductions for PEM fuel cells over the past decade, manufacturing scale brings costs below \$500 per kW by 2006 and \$50 per kW shortly after 2010, to be directly competitive with internal combustion engines.

Source: SHELL 2001

"I think you should be more explicit here in step two"

Technology is...

H - Hardware (artifacts, "machines") PEM
 +

S - Software (know-how, know-why) FC cogen

 - "Orgware" (institutions, regulation, "rules of the game")

Hierarchies of Change

- Incremental (H): 3-litre car
- Radical (Hⁿ+S): Fuel Cell
- Systems change (Hⁿ+Sⁿ+O): FC cogeneration units using CH₄ and H₂ "towngas" (hythane) strategy
- Clusters, families, "paradigms" (Hⁿ+Sⁿ+Oⁿ): e.g. H₂ economy: H₂ + FC = all energy services; consumers = utilities

Increasing Impact but also Increasing Time for Change

Hierarchies of Change

With increasing hierarchy of change:

- More interdependence, spill-overs and clustering
- Larger market size and social/environmental impact
- But: Slower diffusion

USA - USSR: Infrastructure Substitution

Pace of Diffusion 2 (Hierarchies)

	USA		USSR	
	to	Δt	t _o	Δt
Total length of transport infrastructure	1950	80	1980	80
Growth of railways 1830-1930 1930-1987	1858 Decline	54 Decline	1890 1949	37 44
Treated ties (USA) Track electrification (USSR)	1923	26	1965	27
Replacement of steam locomotives	1950	12	1960	13

Economics 101

Basic Economics of PV Supply and Demand

Source: BP, 2003

Fuel Cell Marketing Strategy: Successive Market Niches via Cost Reductions

Source: P. B. Bos, *Commercializing Fuel Cells – Managing Risks*, Fourth Grove Fuel Cell Symposium, Commonwealth Institute London, September 19-22, 1995

Theory vs Practice

Innovation Challenges

Innovation & Diffusion Uncertainty

- "Heavier-than-air flying machines are impossible." Lord Kelvin, 1895.
- "I think there is a world market for maybe five computers." Tom Watson, IBM chair, 1943.
- "But what ... is it good for?" IBM engineer commenting on the microchip in 1968.
- "There is no need for any individual to have a computer in their home." Ken Olson, President, Digital Equipment, 1977.
- More fun: http://my.athenet.net/~jlindsay/SkepticQuotes.html

Technological Uncertainties

- Invention \rightarrow innovation (feasibility)
- Standardized design AFC, MCFC, PAFC, PEMFC, SOFC,....
- Increasing returns (if and how much cost reductions)
- Innovation "impatience" (the valley of death)
- Infrastructure needs
- Diffusion environment (economic, institutional, social)
- Environment

A. Grubler, 2003

+/?

?

?

Technological Uncertainty: Patented but non-functional smoke-spark arrestors

Source: J. White, American Locomotives, 1968.

Stages of Technology Development and the Resource Gap for Innovation

Source: M. Chertow, 2003

Brazil - Ethanol Learning Curve: "Hold your breath!"

Infrastructure: Let 1000 Flowers Bloom?

Source: N. Uesugi, 2003.

CH₄ vs H₂ – From Competition to Synergy

- Maximize use of existing and incremental infrastructure: gas pipelines, LNG terminals
- 21st century learns from 19th towngas (hythane) = CH_4 + H_2 (10-30%)
- Separation at point of final use
- Critical technology: Membrane separation

Social & Environmental Uncertainties

- Public acceptance: Perceived relative advantage is key:
 -- safety/reliability
 -- autonomy
 -- cleanliness
 -- economics
- Regulators : Running after the fact, or "precautionary principle"
- Leakage: Continuous risk assessment, but beware of early doomsdayers (that's how you get into Science)

Conclusion

- Look at systems (and competitors) and don't dream of 1 technology "fits all"
- Supplyer-user interaction and systems integration critical for learning (avoid white elephants)
- Hierachies of change: expect long diffusion time (risk of innovation "impatience")
- Biggest obstacles: uncertainty, and regulatory environment (e.g. lack of)
- Where to start: Find customers and develop H₂ "orgware" (get ear of regulator)