Wissenschaftlicher Beirat für Globale Umweltfragen (WBGU)

Innovation as Driver of Global Transformations. Inputs to the WBGU "Transformations" Study

Arnulf Grubler 18/2/2010

gruebler@iiasa.ac.at

Questions Asked

- What are the preconditions for radical innovations (technological, social) and for technology leaps?
- How can innovation processes, meant to support the transformation towards a low-carbon society, be steered and accelerated?
- How can the radical innovations which are necessary for a global low-carbon society be diffused globally?
- Which fields of innovation do you think are the most important ones for a transformation towards a low-carbon society?
- Bonus: Historical Diffusion/Transition patterns: what do we know?

A Brief History of PV

Q1: Preconditions for radical innovations

- TC is evolutionary, i.e. has emergent properties. Impossible to define "radical" ex ante (even ex post, cf. Mensch/Kleinknecht controversy)
- 3 views:
 - -- "breakthroughs" are serendipitous

-- created via crisis of old: Schumpeter's "gales of creative destruction" (AG) \rightarrow need for destruction mechanisms (and not dominant "grandfathering")

-- planned/mastered (Manhattan and Apollo project models; true for innovation but very costly, <u>no ensuing diffusion</u>)

- Q: is "radical" innovation needed at all (e.g. fusion)? Perhaps simply need acceleration of diffusion of known (and to be improved) practices/technologies (PV, CCS, and above all efficiency!) (ex. Alphabetization of USSR in 1920s, cell phones in DCs)
- Q: is "radical" innovation not coming too late? (invention-innovation lags, diffusion time,..)

Invention – Innovation Lag: The Unrecognized Inventor

Movie Actress Hedy Lamarr (Eva Kiesler) together with musician George Antheil patented "secret communication system" in 1942 which US Navy thought useless Now as "spread spectrum technology" basis of all cell phones. Invention-Innovation lag: 50 years!

Time Lag Between Invention and Innovation: No shortening of stochastic variation

Source: Rosegger, 1996

Q2: Steering/accelerating innovation

- No production function for innovation known (only minimum but not-sufficient conditions) inputs: \$\$\$, human capital, incentive structures, structured collective learning channels (usersupplier links)
- more inputs ≠ more outputs
- policy pitfalls: \rightarrow GEA KM24 "policy quality list"
- Accelerating <u>diffusion of innovations</u>: see Q3

The Conventional View: Accelerating Change

http://www.un.org/cyberschoolbus/briefing/technology/tech.pdf

Growth of the Internet:

25 years as public (military/academic) infrastructure before commercialization!

arnulf.grubler@yale.edu

Technology Genesis - Concepts and Policy Leverages

Characteristics of Successful Technology Innovation Policies

- Create Knowledge! Or: Enable technological learning while learning about technologies yourself
- Assure Feed-backs! Or: Create/enable knowledge flows for technology learning and spillovers.
- Experiment! Or: Stop worrying about failure.
- Align Incentive Structures! Or: Don't confuse the market.
- Be stable! Or: Innovation relies on policy stability and credibility.
- Focus of Technology Portfolios! Or: don't pick a winner, but be picky on your picks.

Source: GEA KM24 draft

Nuclear R&D Expenditure vs. remaining Knowledge Stock (knowledge obsolescence)

Data: IEA, 2009 energy R&D stats. Totals for all IEA countries. Source: GEA KM24 draft

Multiple Sources of Technology Learning

Source: G. Nemet, 2008

Nuclear Investment Costs in US and France: 2 Cases of Negative Learning

Q3: How to diffuse radical solutions globally?

- good knowledge of diffusion drivers at micro level, but serious constraints at macro-level (systems size, techn. interdependence) → Table_EnePolicy
- Key concept: diffusion depends on:

 innovation characteristics (Passivhaus)
 adoption environment characteristics (building standards, energy/carbon prices)
 which are not substitutable
 (CCS in China w/o carbon price??)
- Globalization not via imitation but due to need to escape network exclusion (ex Internet)
- Core periphery: lags, catch-up, and heterogeneous adoption levels

Diffusion: Macro variables

- Involves time and space (S-curve and spatial hierarchy centers)
- First mover vs. follower: longest (slowest) diffusion time & highest adoption (first mover) vs. catch-up at lower levels (follower)
- Market size vs speed and impact: Large size & impact = slower diffusion
 Small size and impact (fashion) = fast diffusion
- Diffusion (slower) vs. substitution (faster)

Determinants of Diffusion Speed (beyond macro)

- Type of adoption decision (individual, collective, authoritative)
- Type of communication channels (mass media vs. word-ofmouth)
- Nature of social system (interconnection, sources of learning: internal vs. external)
- Existence and efforts of change agents
 - -- relative advantage (e.g. performance, costs);
 - -- adoption effort (e.g. investment size);
 - -- compatibility (technological, social integration);
 - -- observability (social visibility, learn from neighbors);
 - -- trialability (learning from own experience).

Rates of Change: (Diffusion Rates of Transport Systems)

	US	USA		R
	t _o	Δt	t _o	Δt
Total length of transport	1950	80	1980	80
Growth of railways 1830-1930 1930-1987	1858 Decline	54 Decline	1890 1949	37 44
Treated ties (USA) Track electrification (USSR)	1923	26	1965	27
Replacement of steam	1950	12	1960	13

	USA		1	JSSR
	t _o	$\Delta t(years)$	t ₀	Δt (years)
primary energy				
wood coal oil	1883 1885 1956	65 66 79	1919 1926 1985	77 76 120
gas	1990	112	1983	47
energy technologies				
surface coal	1975	70	1986	59
infrastructure				
canals railways roads	1840 1913 1916	48 90 92	1843 1941 1941	113 101 101
passenger transport				
rail car/bus air	1920 n.a. 2004	51 50 67	1971 1976 2006	57 53 80
transport technologies				
steam/motor ships diesel/electric locomotives	1886 1951	75 13	1900 1961	66 14
military				
nuclear warheads	1970	31	1982	27
labor force				
agriculture manufacturing service	1893 1930 1975	115 120 224		
education		\sim		
literacy rate	1822	160	1923	38

Diffusion/Substitution Rates and Timing US - USSR

Note similarities despite fundamental different diffusion environment: Central Planning vs. Market

Biggest Difference: Social "technologies"

Source: Adapted from Grubler, 1990

Technology Diffusion Dynamics (Δt) from Core to Rim and Periphery

Source: C. Wilson, 2009.

Explaining Differences in Diffusion Speed

(each additional o implies *ceteris paribus* slower diffusion, each additional + implies *c.p.* faster diffusion)

Δt	Example	Adoption Effort High (D) Low (S)	Rel. Advantage	Market Size (Scale)	Comp Infra- structure needs	olexity technol. Interde- pendence
80/ 110	coal vs wood USA/ World	S	++	000	000	000
47/ <mark>60</mark>	railways France/ <mark>World</mark>	D	+++	000	00	000
25	% US homes with radio	D	++	00	0	00
28	mechanization coal mines Russia	S	+	0	0	00
16	Car vs. horse, France, UK	S	++	0	00	0
15	Color vs. B/W TV, USA	S	+	0	0	0

Source: adapted/modified from Grubler/Nakicenovic/Victor, 1999, Energy Policy 27:247-280

Energy Technology Capacity Growth – Historical and in Global Scenarios (BLs+stabilization)

Source: C. Wilson, 2009.

Q4: Most important field for low-C society

- AG (and IA models/scenarios) view: <u>efficiency, efficiency, efficiency</u> <u>end-use, end-use</u>
 - -- amplifies supply-side leverages
 - -- granularity decreases innovation/financial risks
 - -- co-benefits (pollution, security)
 - -- free lunches possible
- BUT

-- "inconvenient truth" against vested (supply) interests

→energy R&D portfolio biases

granular organizationally (=difficult to manage)
 →needs new institutions, business models
 (ESCOMs)

-- cumulative process requires dynamic, cumulative targets/incentives (at odds w. political cycles)

Mitigation Portfolios (which technologies we need) versus R&D (which technologies we develop)

All IEA countries

	cumulative emission reduction 2000-2100		cumulative R&D (1974-2007)	current R&D 2007		
	(mean of all scena GtC	rios) %	10 ⁹ US\$2007	%	10 ⁹ US\$2007	%
Energy efficiency	1662	57.5	38	80	16	12.0
Fossil Fuels	171	5.9	50	0.9	1.0	13.0
Renewables	537	18.6	55	12.8	1.4	11.3
Nuclear	269	93	37	8.7	1.5	12.3
Others	252	87	236	54.8	4.6	38.0
	202	0.7	64	14.8	3.1	25.4
Total	2890	100.0	431	100.0	12.0	100.0

Source: Grubler&Riahi, 2010

Q5 (bonus): Historical Patterns of TC

- End use over supply
 - main driver: new services (e.g. phone), vastly improved service efficiency (e.g. electric light vs. petroleum lamps, automobiles vs. horses
 (→Pearson)
 - -- radical cost declines (multifarious!)
 - -- granular rather than "lumpy"
- Innovation centers: urban
- Consistent scaling dynamics
 - -- system size
 - -- embeddedness in technology landscape
 - -- Core -- periphery

Energy Efficiency (%) and Emissions (g/km) for Horses, and Early and Contemporary Automobiles

	Horses	Cars	Cars
		(ca. 1920)	(1995)
Engine efficiency, %	4	10	20
Wastes			
Solid	400	—	_
Liquid	200	—	-
Gaseous, including			
Carbon (CO ₂) ^d	170	120	70
Carbon (CO)	-	90	2
Nitrogen (NO _x)	-	4	0.2
Hydrocarbons	2 ^{<i>e</i>}	15	0.2

d Total carbon content of fuel

e Methane

Grubler, 1998

Capacity of US Energy Conversion Technologies

GW (round	led)	1850	1900	1950	2000
stationary	thermal (furnaces/boilers)	300	900	1900	2700
end-use	mechanical (prime movers)	1	10	70	300
	electrical (drives, appliances)	0	20	200	2200
mobile	animals/ships/trains/aircraft	5	30	120	260
end-use	automobiles	0	0	3300	25000
stationary	thermal (power plant boilers)	0	10	260	2600
suppply	mechanical (prime movers)	0	3	70	800
	chemical (refineries)	0	8	520	1280
TOTAL		306	981	6440	35140

Energy end-use = 30 TW or 87% of all energy conversion technologies = 5 TW or 50% when excluding automobiles

Source: GEA KM24, 2012

Internet Router Density (sample of 564,521 routers)

Data: Mark Crovella, Boston University, 2007

96% of all internet routers globally are located in cities! = highest urban concentration of all indicators reviewed. Source: GEA KM18 draft

Urban Scale and Inventive Activity (patents) 331 MSA in the US

Source: Bettencourt, Lobo & Strumsky, 2004, SFI WP 04-12-038

5 Phases in Scaling-up a Technology: Example Coal Power Plants World (data: C. Wilson, 2009)

3: build many (large) units

2. scale-up units2.1. at frontier2.2. average

5: grow outside core markets (globalize)

Size of Wind Turbines 1

Size of Wind Turbines 2

Appendix

The Evolution of Technological Complexity

- Agent-based simulation model of the global energy system since 1800
- Random walk model of invention discovery and stochastic combination with other technologies into energy chains and systems
- Evolutionary selection environment
 - uncertain increasing returns
 - market share gains *f*(rel. advantage)
 - externalities (stochastic C-tax)
- >10² simulations (alternative histories and futures)
- Findings:
 - -- trade-off between learning and diversity
 - -- critical variable: innovation patience
 - -- longevity of technologies and combinations needs explicit policy mechanism of "gales of creative destruction"

Ma T, Grubler A, Nakicenovic N, Arthur WB (2008). Technologies as Agents of Change: A Simulation Model of the Evolving Complexity of the Global Energy System. IIASA IR-08-021

Alternative Histories: Bifurcation and Lock-in

Same initial conditions, same model parametrization, but alternative developments: Technology history arising from serendipity and chance?

Evolution of Complexity

(avg. of 200 simulations each) and main determinants

- Learning rate and availability of backstops
- Innovation "impatience" (invention-innovation time lag)

Long Survival Time of Technologies:

Need to consider policy mechanisms for Schumpeterian "gales of creative destruction" under changing market environment, e.g. climate constraints