
Imperial College Laing O'Rourke Centre Distinguished Lecture

February 11, 2013

arnulf.grubler@yale.edu
Global Energy Assessment

Multi-stakeholder “IPCC of energy” 2008-2012
Focus on energy challenges, options, transitions
Assess linkages: access/poverty, development, security, health, climate
Policy guidance (normative scenarios)
First ever energy assessment of urbanization: KM18
Main Messages

1. The world is already today predominantly urban (~3/4 of final energy)
2. Rural populations are likely to peak at 3.5 billion and decline after 2020 (all long-term energy growth will be urban)
3. City dwellers have often lower direct energy and carbon footprints
4. Important deficits in urban energy and carbon accounting (embodied energy, import/export balance) jeopardize effective policies
5. Cities have specific sustainability challenges & opportunities (high density enables demand/supply management but calls for low waste/∼zero-impact systems)
6. Vast improvement potentials (>×2), but most require management of urban form and systemic change (recycling, cascading, energy-transport, land-use-transport systems integration,..)
7. Governance Paradox:
 - largest leverage from systemic change,
 - but requires overcoming policy fragmentation and dispersed, uncoordinated decision making
How Urban is the World AD2000?

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Data Source</th>
<th>Range</th>
<th>References for uncertainty range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area (1000 km²)</td>
<td>2929</td>
<td>1 313-3524</td>
<td>Schneider et al., 2009 range of GlobCover-GRUMP data</td>
</tr>
<tr>
<td>% of total</td>
<td>2.2</td>
<td>0.2-2.7</td>
<td></td>
</tr>
<tr>
<td>Population (million)</td>
<td>2855</td>
<td>2 2650-3150</td>
<td>Uchida & Nelson, 2008 size threshold: 50,000-100,000</td>
</tr>
<tr>
<td>% of total</td>
<td>47</td>
<td>44-52</td>
<td></td>
</tr>
<tr>
<td>GDP (MER 2005$)</td>
<td>32008</td>
<td>1</td>
<td>not available</td>
</tr>
<tr>
<td>% of total</td>
<td>81</td>
<td>??</td>
<td></td>
</tr>
<tr>
<td>Final energy use (EJ)</td>
<td>239</td>
<td>1 176-246</td>
<td>this assessment</td>
</tr>
<tr>
<td>% of total</td>
<td>76</td>
<td>56-78</td>
<td>(see Section 18.4.1)</td>
</tr>
<tr>
<td>Light luminosity (million NLIS)</td>
<td>33</td>
<td>3,1</td>
<td>KM18 estimate</td>
</tr>
<tr>
<td>% of total</td>
<td>57</td>
<td>50-82</td>
<td></td>
</tr>
<tr>
<td>Internet routers (number in 1000)</td>
<td>592</td>
<td>4,1</td>
<td>KM18 estimate</td>
</tr>
<tr>
<td>% of total</td>
<td>96</td>
<td>73-97</td>
<td></td>
</tr>
</tbody>
</table>

Notes: MER: Market Exchange Rates, NLIS: Light Luminosity Intensity Sum (index)
Population by Settlement Type/Size

Number of agglomerations in 2005

- 13
- 30
- 340
- 3192
- ??

growth dominated by small & medium sized cities!
Path Dependent Urban Energy – Incomes

- Beijing 1985 - 2005
- Shanghai 1985 - 2005
- Singapore 1971 - 2005
- Hongkong 1971 - 2005
- Tokyo 1970 - 2005

TFC GJ/capita

GRP 1990 US$ PPP per capita
1. The world is already today predominantly urban (~3/4 of final energy)
2. Rural populations are likely to peak at 3.5 billion and decline after 2020 (all long-term energy growth will be urban)
3. City dwellers have often lower direct energy and carbon footprints
4. Important deficits in urban energy and carbon accounting (embodied energy, import/export balance) jeopardize effective policies
5. Cities have specific sustainability challenges & opportunities (high density enables demand/supply management but calls for low waste/~zero-impact systems)
6. Vast improvement potentials (>x2), but most require management of urban form and systemic change (recycling, cascading, energy-transport, land-use-transport systems integration,..)
7. Governance Paradox:
 - largest leverage from systemic change,
 - but requires overcoming policy fragmentation and dispersed, uncoordinated decision taking
Annex-I: Per Capita Urban Direct Final Energy Use

(red = above national average, blue = below national average)

$n=132$
Non-Annex-I: Per Capita Urban Direct Final Energy Use

(red = above national average, blue = below national average)

$n=68$
Direct and Embodied Urban Energy Use in Asian Cities

Energy Use (EJ)

- **Embodied**
- **Direct**

<table>
<thead>
<tr>
<th>City</th>
<th>Year</th>
<th>Energy Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tokyo</td>
<td>1990</td>
<td>3.5</td>
</tr>
<tr>
<td>Tokyo</td>
<td>1995</td>
<td>3.3</td>
</tr>
<tr>
<td>Beijing</td>
<td>1992</td>
<td>1.2</td>
</tr>
<tr>
<td>Beijing</td>
<td>1997</td>
<td>1.3</td>
</tr>
<tr>
<td>Shanghai</td>
<td>1992</td>
<td>2.2</td>
</tr>
<tr>
<td>Shanghai</td>
<td>1997</td>
<td>2.4</td>
</tr>
</tbody>
</table>
Main Messages

1. The world is already today predominantly urban (~3/4 of final energy)
2. Rural populations are likely to peak at 3.5 billion and decline after 2020 (all long-term energy growth will be urban)

3. City dwellers have often lower direct energy and carbon footprints
4. Important deficits in urban energy and carbon accounting (embodied energy, import/export balance) jeopardize effective policies

5. Cities have specific sustainability challenges & opportunities (high density enables demand/supply management but calls for low waste/~zero-impact systems)

6. Vast improvement potentials (>x2), but most require management of urban form and systemic change (recycling, cascading, energy-transport, land-use-transport systems integration,..)

7. Governance Paradox:
 - largest leverage from systemic change,
 - but requires overcoming policy fragmentation and dispersed, uncoordinated decision taking
China - Air Pollution (SO₂) Exposure

Tg SO₂ x million people

Hong Kong 2.3
Shanghai 1.4
Beijing 1.8
Europe – Energy Demand Densities
blue = renewable supply density threshold <0.5-1 W/m²
WEU >79% EEU >66% of energy demand
Gea KM18 Urbanization

Urban Energy and Exergy Efficiency

Secondary Energy: 43 TWh 100%

Final Energy: 37 TWh 85%

Useful Energy: 21 TWh 50%

Useful exergy as % of secondary primary

Geneva (CH) 23.2 15.5
Vienna (A) 17.2
Malmo (S) 21.2 12.7
London (UK) 11.3 6.2

trad. Mexican village 5.7
Main Messages

1. The world is already today predominantly urban (~3/4 of final energy)
2. Rural populations are likely to peak at 3.5 billion and decline after 2020 (all long-term energy growth will be urban)
3. City dwellers have often lower direct energy and carbon footprints
4. Important deficits in urban energy and carbon accounting (embodied energy, import/export balance) jeopardize effective policies
5. Cities have specific sustainability challenges & opportunities (high density enables demand/supply management but calls for low waste/~zero-impact systems)
6. Vast improvement potentials (>x2), but most require management of urban form and systemic change (recycling, cascading, energy-transport, land-use-transport systems integration,..)
7. Governance Paradox:
 - largest leverage from systemic change,
 - but requires overcoming policy fragmentation and dispersed, uncoordinated decision taking
Stylized Hierarchy in Urban Energy/GHG Drivers and Policy Leverages

1. Spatial division of labor (trade, industry structure, bunkers)
2. Income (consumption)
3. Efficiency of energy end-use (buildings, processes, vehicles, appliances)
4. Urban form (density ↔ public transport ↔ car ownership ↔ functional mix)
5. Fuel substitution (imports)
6. Energy systems integration (co-generation, heat-cascading)
7. Urban renewables

Decreasing order of importance

Increasing level of urban policy leverage
SynCity Simulations of Urban Policy Leverages

Baseline: Current Low Density (Sprawl) City with Low/Medium Buildings Efficiency (UK average) = 100 (144 GJ/capita)
Main Messages

1. The world is already today predominantly urban (~3/4 of final energy)
2. Rural populations are likely to peak at 3.5 billion and decline after 2020 (all long-term energy growth will be urban)

3. City dwellers have often lower direct energy and carbon footprints
4. Important deficits in urban energy and carbon accounting (embodied energy, import/export balance) jeopardize effective policies

5. Cities have specific sustainability challenges & opportunities (high density enables demand/supply management but calls for low waste/~zero-impact systems)

6. Vast improvement potentials (>x2), but most require management of urban form and systemic change (recycling, cascading, energy-transport, land-use-transport systems integration,..)

7. Governance Paradox:
 - largest leverage from systemic change,
 - but requires overcoming policy fragmentation and dispersed, uncoordinated decision taking
Lead Authors:
Xuemei Bai, Thomas Buettner, Shobhakar Dhakal, David J. Fisk, Arnulf Grubler (CLA), Toshiaki Ichinose, James Keirstead, Gerd Sammer, David Satterthwaite, Niels B. Schulz, Nilay Shah, Julia Steinberger, Helga Weisz

Contributing Authors:
(*Contributors to GEA KM18 city energy data base)

Resources:
Online: www.globalenergyassessment.org
Chapter 18 (main text)
Supporting material: GEA KM18 working papers and city energy data base