The Future of Urban Energy Systems: A Global Energy Assessment

> Imperial College Laing O'Rourke Centre Distinguished Lecture February 11, 2013 arnulf.grubler@yale.edu

Global Energy Assessment

Multi-stakeholder "IPCC of energy" 2008-2012 Focus on energy challenges, options, transitions Assess linkages: access/poverty, development, security, health, climate Policy guidance (normative scenarios) First ever energy assessment of urbanization: KM18

- 1. The world is already today predominantly urban (~3/4 of final energy)
- 2. Rural populations are likely to peak at 3.5 billion and decline after 2020 (all long-term energy growth will be urban)
- 3. City dwellers have often lower direct energy and carbon footprints
- 4. Important deficits in urban energy and carbon accounting (embodied energy, import/export balance) jeopardize effective policies
- 5. Cities have specific sustainability challenges & opportunities (high density enables demand/supply management but calls for low waste/~zero-impact systems)
- 6. Vast improvement potentials (>x2), but most require management of <u>urban form and systemic change (recycling, cascading, energy-</u> transport, land-use-transport systems integration,..)
- 7. Governance Paradox:
 - largest leverage from systemic change,
 - but requires overcoming policy fragmentation and dispersed, uncoordinated decision taking

How Urban is the World AD2000?

Indicator			Data	Range	References for
		Source		•	uncertainty range
Area	(1000 km2) % of total	2929 2.2	1	313-3524 <i>0.2-2.7</i>	Schneider et al., 2009 range of GlobCover-GRUMP data
Population	(million) % of total	2855 47	2	2650-3150 <i>44-5</i> 2	Uchida&Nelson, 2008 size threshold: 50,000-100,000
GDP (MER 2005\$)	(billion) % of total	32008 81	1	??	not available
Final energy use	(EJ) % of total	239 76	1	176-246 <i>56-78</i>	this assessment (see Section 18.4.1)
Light luminosity	(million NLIS) % of total	33 57	3,1	50-82	KM18 estimate
Internet routers	(number in 1000) % of total	592 96	4,1	73-97	KM18 estimate

Notes: MER: Market Exchange Rates, NLIS: Light Luminosity Intensity Sum (index)

5

IIASA

GEA-H, GEA-M, GEA-L and UN WUP, 2010 ••

G E A

Population by Settlement Type/Size

Path Dependent Urban Energy – Incomes

- 1. The world is already today predominantly urban (~3/4 of final energy)
- 2. Rural populations are likely to peak at 3.5 billion and decline after 2020 (all long-term energy growth will be urban)
- 3. City dwellers have often lower direct energy and carbon footprints
- 4. Important deficits in urban energy and carbon accounting (embodied energy, import/export balance) jeopardize effective policies
- 5. Cities have specific sustainability challenges & opportunities (high density enables demand/supply management but calls for low waste/~zero-impact systems)
- 6. Vast improvement potentials (>x2), but most require management of <u>urban form and systemic change (recycling, cascading, energy-</u> transport, land-use-transport systems integration,..)
- 7. Governance Paradox:
 - largest leverage from systemic change,
 - but requires overcoming policy fragmentation and dispersed, uncoordinated decision taking

5

IIASA

Annex-I: Per Capita Urban Direct Final Energy Use (red= above national average, blue = below national average)

GEA

5

IIASA

Non-Annex-I: Per Capita Urban Direct Final Energy Use (red= above national average, blue = below national average)

n=68

Direct and Embodied Urban Energy Use in Asian Cities

- 1. The world is already today predominantly urban (~3/4 of final energy)
- 2. Rural populations are likely to peak at 3.5 billion and decline after 2020 (all long-term energy growth will be urban)
- 3. City dwellers have often lower direct energy and carbon footprints
- 4. Important deficits in urban energy and carbon accounting (embodied energy, import/export balance) jeopardize effective policies
- 5. Cities have specific sustainability challenges & opportunities (high density enables demand/supply management but calls for low waste/~zero-impact systems)
- 6. Vast improvement potentials (>x2), but most require management of <u>urban form and systemic change (recycling, cascading, energy-</u> transport, land-use-transport systems integration,..)
- 7. Governance Paradox:
 - largest leverage from systemic change,
 - but requires overcoming policy fragmentation and dispersed, uncoordinated decision taking

China - Air Pollution (SO₂) Exposure

Europe – Energy Demand Densities

blue = renewable supply density threshold <0.5-1 W/m2 WEU >79% EEU >66% of energy demand

GEA KM18 Urbanization 5 IIASA GEA **Urban Energy and Exergy Efficiency** Electricity Re^{new} Gas Motor fuels Secondary Energy: 43 TWh 100% Secondary Exergy: 163 PJ 100% solids district heat Vienna 2007 Final Energy: 37 TWh 85% Final Exergy: 136 PJ 83% Industry Households Traffic Process Light, motion L.T. heat heat Losses 15.378 12.312 **Useful Energy:** 21 TWh 50% Useful Exergy: 28 PJ 17% Useful exergy as % of secondary primary 23.2 Geneva (CH) 15.5 Vienna (A) 17.2 Malmo (S) 21.2 12.7 London (UK) 11.3 6.2

trad. Mexican village 5.7

- 1. The world is already today predominantly urban (~3/4 of final energy)
- 2. Rural populations are likely to peak at 3.5 billion and decline after 2020 (all long-term energy growth will be urban)
- 3. City dwellers have often lower direct energy and carbon footprints
- 4. Important deficits in urban energy and carbon accounting (embodied energy, import/export balance) jeopardize effective policies
- 5. Cities have specific sustainability challenges & opportunities (high density enables demand/supply management but calls for low waste/~zero-impact systems)
- 6. Vast improvement potentials (>x2), but most require management of <u>urban form</u> and <u>systemic change (recycling, cascading, energy-</u> transport, land-use-transport systems integration,..)
- 7. Governance Paradox:
 - largest leverage from systemic change,
 - but requires overcoming policy fragmentation and dispersed, uncoordinated decision taking

Stylized Hierarchy in Urban Energy/GHG Drivers and Policy Leverages

- Spatial division of labor (trade, industry structure, bunkers)
- 2. Income (consumption)
- 3. Efficiency of energy end-use (buildings, processes, vehicles, appliances)
- Urban form
 (density↔public transport↔car ownership↔functional mix)
- 5. Fuel substitution (imports)
- 6. Energy systems integration (co-generation, heat-cascading)
- 7. Urban renewables

Increasing level of urban policy leverage

Decreasing order of importance

SynCity Simulations of Urban Policy Leverages

Baseline: Current Low Density (Sprawl) City with Low/Medium Buildings Efficiency (UK average) =100 (144 GJ/capita)

- 1. The world is already today predominantly urban (~3/4 of final energy)
- 2. Rural populations are likely to peak at 3.5 billion and decline after 2020 (all long-term energy growth will be urban)
- 3. City dwellers have often lower direct energy and carbon footprints
- 4. Important deficits in urban energy and carbon accounting (embodied energy, import/export balance) jeopardize effective policies
- 5. Cities have specific sustainability challenges & opportunities (high density enables demand/supply management but calls for low waste/~zero-impact systems)
- 6. Vast improvement potentials (>x2), but most require management of <u>urban form</u> and <u>systemic change (recycling, cascading, energy-</u> transport, land-use-transport systems integration,..)
- 7. Governance Paradox:
 - largest leverage from systemic change,
 - but requires overcoming policy fragmentation and dispersed, uncoordinated decision taking

GEA KM18 Authors & Resources

Lead Authors:

Xuemei Bai, Thomas Buettner, Shobhakar Dhakal, David J. Fisk, Arnulf Grubler (CLA), Toshiaki Ichinose, James Keirstead, Gerd Sammer, David Satterthwaite, Niels B. Schulz, Nilay Shah, Julia Steinberger, Helga Weisz

Contributing Authors:

Gilbert Ahamer*, Timothy Baynes*, Daniel Curtis*, Michael Doherty, Nick Eyre*, Junichi Fujino*, Keisuke Hanaki, Mikiko Kainuma*, Shinji Kaneko, Manfred Lenzen, Jacqui Meyers, Hitomi Nakanishi, Victoria Novikova*, Krishnan S. Rajan, Seongwon Seo*, Ram Manohar Shrestha*, P.R. Shukla*, Alice Sverdlik (*Contributors to GEA KM18 city energy data base)

Resources:

Online: www.globalenergyassessment.org Chapter 18 (main text) Supporting material: GEA KM18 working papers and city energy data base

A. Grubler and D. Fisk (eds), *Energizing Sustainable Cities:* Assessing Urban Energy, Earthscan (2012)