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8.1 Introduction

Attempts at comprehending the structures of ecological communities have a
long history in biology, reaching right back to the dawn of modern ecology.
A seminal debate allegedly occurred between early-twentieth-century plant
ecologists Frederic E. Clements and Henry A. Gleason. Textbooks have it
(e.g., Calow 1998: 145) that Clements viewed ecological communities as being
structured by rich internal dependencies, akin to organisms (Clements 1916),
while Gleason held that members of ecological communities were relatively
independent of each other, filling ecological niches provided by the abiotic
environment (Gleason 1926). While the actual approaches of these two lu-
minaries of plant ecology were more complex than this well-worn caricature
suggests (Eliot, in press), their purported positions conveniently established
an important conceptual continuum for the mechanistic interpretation of com-
munity structures observed in nature.
Modern echoes of this old debate can be found in notions of niche con-

struction (Odling-Smee et al. 2003), leaning towards the Clementsian end
of the spectrum, or in the neutral theory of biodiversity and biogeography
(Hubbell 2001), which is more in line with a Gleasonian perspective. Like
in many other fundamental disputes in ecology, neither side turns out to be
simply right or wrong. Instead, disagreements of this kind tend to be resolved
at a higher level – by recognizing, firstly, that the original controversy was
based on unduly generalized and polarized claims, and secondly, by refocus-
ing scientific attention on elucidating the specific factors and mechanisms
that push ecological systems towards either end of the intermediary contin-
uum. Below we will propose such an overarching notion for reinterpreting the
Clements–Gleason debate.
Early theoretical models of community structure were based on the sim-

plifying concept of randomly established ecological communities (May 1973).
This first wave of models suggested that larger random communities were less
likely to possess stable fixed-point equilibria than smaller ones – thus giving
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rise to yet another long-lasting debate in ecology, about the relationship be-
tween community complexity or diversity on the one hand, and community
stability or productivity on the other (e.g., Elton 1958; McCann 2000). A
second wave of models subsequently imbued such investigations with a higher
degree of ecological realism by accounting for the historical route through
which new ecological communities are assembled from scratch, and consider-
ing more than only infinitely small community perturbations (Post and Pimm
1983; Drake 1990; Law 1999). These assembly models usually relied on the
notion of a species pool from which individual species are drawn successively
and at random, mimicking the arrival of immigrants from outside an incipient
community. A third, much more recent, wave of models rises above consid-
ering mere immigration from such a pre-defined species pool, by trying to
understand the potential of natural selection for shaping the dynamics and
structures of ecological communities (Caldarelli et al. 1998; Drossel et al. 2001;
Loeuille and Loreau 2005; Ito and Ikegami 2003, 2006). Together, these al-
ternative suites of models suggest that community structures in ecology can
only be fully comprehended when processes of interaction (first-wave models),
immigration (second-wave models), and adaptation (third-wave models) are
taken into account. Appreciating the mechanisms that generate and maintain
diversity in ecological communities thus requires methods stretching across
the typically different time scales of interactions, immigrations, and adapta-
tions.
Once the dynamics of community formation are recognized to encom-

pass phenotypic adaptation, it is instructive to recast the classic Clements–
Gleason debate in terms of fitness landscapes. Under frequency- and density-
independent selection, the fitness landscapes experienced by members of an
ecological community are independent of the community’s composition, di-
rectly corresponding to a Gleasonian view. The resultant constant fitness
landscapes result in what is known as ‘optimizing selection’. By contrast,
when the fitness of community members depend on their overall density
and individual frequency, fitness landscapes vary with a community’s com-
position. A situation in which this variability is very pronounced, and the
frequency- and density-independent components of selection pressures within
the community accordingly are relatively weak, neatly corresponds to a
Clementsian view. As so often, reality is bound to lie in between these two
extremes.
Consequently, an evolutionary perspective on community ecology sheds

new light on two fundamental ecological debates. On the one hand, assessing
the degree to which fitness landscapes are varying with community compo-
sition provides a practical approach for locating specific communities along
the Clements–Gleason continuum. On the other hand, evolutionary dynamics
literally add new dimensions to concepts of community stability: community
structures that are ecologically stable are unlikely also to be evolutionarily
stable. This realization challenges earlier conclusions as to how the stabil-
ity of communities is affected by their complexity or diversity. In particular,
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ecologically unstable communities may be stabilized by the fine-tuning af-
forded through coevolutionary adaptations, while ecologically stable commu-
nities may be destabilized by evolutionary processes such as arms races, taxon
cycles, speciation, and selection-driven extinctions.
In the time-honored quest for understanding community structures, ecol-

ogy and evolution are thus linked inevitably and intricately, with frequency-
and density-dependent selection pressures playing important roles. This sets
the stage for considering the utility of adaptive dynamics theory for un-
derstanding community structure. Adaptive dynamics theory is a concep-
tual framework for analyzing the density- and frequency-dependent evolu-
tion of quantitative traits, based on a general approach to deriving fitness
functions, selection pressures, and evolutionary dynamics from the underly-
ing ecological interactions and population dynamics (e.g., Metz et al. 1992;
Dieckmann 1994; Metz et al. 1996; Dieckmann and Law 1996; Geritz et al.
1997, 1998). After introducing the main concepts and models of this approach
in Sect. 8.2, this chapter proceeds, in Sect. 8.3 and 8.4, to brief discussions
of how selection pressures may drive the increase or decrease, respectively,
of species numbers in ecological communities. Armed with this general back-
ground, four specific examples of community evolution models are studied in
Sects. 8.5 to 8.8.
Models of evolutionary community assembly are still in their infancy. Ac-

cordingly, much room currently exists for investigating systematic variations
of already proposed model structures, so as to separate critical from incidental
model assumptions and ingredients. The main purpose of this chapter is to
introduce readers to a particularly versatile mathematical toolbox for carrying
out these much-needed future investigations.

8.2 Models of adaptive dynamics

The theory of adaptive dynamics derives from considering ecological interac-
tions and phenotypic variation at the level of individuals. Extending classical
birth and death processes through mutation, adaptive dynamics models keep
track, across time, of the phenotypic composition of populations in which trait
values of offspring are allowed to differ from those of their parents.
Throughout this chapter we will adhere to the following notation. Time

is denoted by t. The number of species in the considered community isN . The
values of quantitative traits in species i are denoted by xi, be they univariate
or multivariate. The abundance of individuals with trait value xi is denoted
by ni(xi), while ni denotes the total abundance of individuals in species i. If
species i harbors individuals with mi distinct trait values xik, its phenotypic
density is given by pi(xi) =

∑mi
k=1 ni(xik)δ(xi − xik) =

∑ni
k=1 δ(xi − xik),

where δ denotes Dirac’s delta function. A species with mi = 1 is said to be
monomorphic. For small mi, species i may be characterized as being oligo-
morphic; when mi is large, it will be called polymorphic. The community’s
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phenotypic composition is described by p = (p1, . . . , pN). The per capita birth
and death rates of individuals with trait value x′i in a community with phe-
notypic composition p are denoted by bi(x

′
i, p) and di(x

′
i, p). Reproduction is

clonal, mutant individuals arise with probabilities μi(xi) per birth event, and
their trait values x′i are drawn from distributions Mi(x

′
i, xi) around parental

trait values xi.
If all species in the community are monomorphic, with resident trait val-

ues x = (x1, . . . , xN), and if their ecological dynamics attain an equilibrium
attractor, with resident abundances n̄i(x), the resultant phenotypic compo-
sition is denoted by p̄(x). The per capita birth, death, and growth rates of
individuals with trait value x′i will then be given by b̄i(x

′
i, x) = bi(x

′
i, p̄(x)),

d̄i(x
′
i, x) = di(x

′
i, p̄(x)), and f̄i(x

′
i, x) = b̄i(x

′
i, x) − d̄i(x′i, x), respectively. In

adaptive dynamics theory, the latter quantity is called invasion fitness. For
a mutant x′i to have a chance of invading a resident community x, its inva-
sion fitness needs to be positive. The notion of invasion fitness f̄i(x

′
i, x) makes

explicit that the fitness f̄i of individuals with trait values x
′
i can only be eval-

uated relative to the environment in which they live, which, in the presence
of density- and frequency-dependent selection, depends on x. Invasion fitness
can be calculated also for more complicated ecological scenarios, for example,
when species exhibit physiological population structure, when they experience
non-equilibrium ecological dynamics, or when they are exposed to fluctuating
environments (Metz et al. 1992). If a community’s ecological dynamics pos-
sess several coexisting attractors, invasion fitness will be multi-valued. While
strictly monomorphic populations will seldom be found in nature, it turns out
that the dynamics of polymorphic populations can often be well approximated
and understood in terms of the simpler monomorphic cases. For univariate
traits, depicting the sign structure of invasion fitness results in so-called pair-
wise invasibility plots (Matsuda 1985; van Tienderen and de Jong 1986, Metz
et al. 1992, 1996; Kisdi and Meszéna 1993; Geritz et al. 1997).
Derivatives of invasion fitness help to understand the course and out-

come of evolution. The selection pressure gi(x) =
∂
∂x′i
f̄i(x

′
i, x)|xi=x′i act-

ing on trait value xi is given by the local slope of the fitness landscape
f̄i(x

′
i, x) at x

′
i = xi. When xi is multivariate, this derivative is a gradient

vector. Selection pressures in multi-species communities are characterized by
g(x) = (g1(x1), . . . , gN(xN )). Trait values x

∗ at which this selection gradient
vanishes, g(x∗) = 0, are called evolutionarily singular (Metz et al. 1992). Also
the signs of the second derivatives of invasion fitness at evolutionarily sin-
gular trait values reveal important information. When the mutant Hessian

hmm,i(x
∗) = ∂2

∂x′i
2 f̄i(x

′
i, x)|x′i=x∗i ,x=x∗ is negative definite, x

∗
i is at a fitness

maximum, implying (local) evolutionary stability. When hmm,i(x
∗)−hrr,i(x∗)

is negative definite, where hrr,i(x
∗) = ∂2

∂x2i
f̄i(x

′
i, x)|x′i=x∗i ,x=x∗ denotes the res-

ident Hessian, subsequent invasion steps in the vicinity of x∗i will approach
x∗i , implying (strong) convergence stability.
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Based on these considerations, four classes of models are used to inves-
tigate the adaptive dynamics of ecological communities at different levels of
resolution and generality. Details concerning the derivations of these models
are provided in the Appendix and their formal relations are summarized in
Fig. 8.2. We now introduce these four model classes in turn.

Individual-based birth-death-mutation processes: polymorphic and stochastic.
Under the individual-based model specified above, polymorphic distributions
of trait values stochastically drift and diffuse through selection and mutation
(Dieckmann 1994; Dieckmann et al. 1995). See Fig. 8.1a for an illustration.
Using the specification of the birth, death, and mutation processes provided
by the functions bi, di, μi, andMi, efficient algorithms for this class of models
(Dieckmann 1994) will typically employ Gillespie’s minimal process method
(Gillespie 1976).

(a) (b) (c) (d)

Time, t

x

Fig. 8.1. Models of adaptive dynamics. Panel (a) illustrates the individual-based
birth-death-mutation process (polymorphic and stochastic), panel (b) shows an
evolutionary random walk (monomorphic and stochastic), panel (c) represents the
gradient-ascent model (monomorphic and deterministic, described by the canonical
equation of adaptive dynamics), and panel (d) depicts an evolutionary reaction-
diffusion model (polymorphic and deterministic).

Evolutionary random walks: monomorphic and stochastic. In large popula-
tions characterized by low mutation rates, evolution in the individual-based
birth-death-mutation process proceeds through sequences of trait substitu-
tions (Metz et al. 1992). During each trait substitution, a mutant with pos-
itive invasion fitness quickly invades a resident population, typically ousting
the former resident (Geritz et al. 2002). The concatenation of trait substitu-
tions produces the sort of directed random walk depicted in Fig. 8.1b, formally
described by the master equation

d

dt
P (x) =

∫
[r(x, x′)P (x′)− r(x′, x)P (x)] dx′

for the probability density P (x) of observing trait value x, with probabilistic
transition rates

r(x′, x) =
N∑
i=1

μi(xi)b̄i(xi, x)Mi(x
′
i, xi)n̄i(x)si(x

′
i, x)

N∏
j=1,j �=i

δ(x′j − xj)
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(Dieckmann 1994; Dieckmann et al. 1995; Dieckmann and Law 1996). Here δ
again denotes Dirac’s delta function, and si(x

′
i, x) = max(0, f̄i(x

′
i, x))/b̄i(x

′
i, x)

is the probability with which the mutant x′i survives accidental extinc-
tion through demographic stochasticity while still being rare in the large
population of resident individuals (e.g., Athreya and Ney 1972). If also
the resident population is small enough to be subject to accidental ex-

tinction, si(x
′
i, x) = (1 − e−2f̃i(x

′
i,x))/(1 − e−2f̃i(x′i,x)n̄i(x)) with f̃i(x′i, x) =

f̄i(x
′
i, x))/[b̄i(x

′
i, x) + d̄i(x

′
i, x)] provides a more accurate approximation (e.g.,

Crow and Kimura 1970). The resulting evolutionary random walk models
are again typically implemented using Gillespie’s minimal process method
(Dieckmann 1994).

Gradient-ascent models: monomorphic and deterministic. If mutation steps
are not only rare but also small, the dynamics of evolutionary random walks
are well approximated by smooth trajectories, as shown in Fig. 8.1c. These
trajectories represent the evolutionary random walk’s expected path and can
be approximated by the canonical equation of adaptive dynamics (Dieckmann
1994; Dieckmann et al. 1995; Dieckmann and Law 1996), which, in its simplest
form, is given by

d

dt
xi =

1

2
μi(xi)n̄i(x)σ

2
i (xi)gi(x)

for i = 1, . . . , N , where

σ2i (xi) =

∫
(x′i − xi)T (x′i − xi)Mi(x′i, xi) dx′i
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is the variance-covariance matrix of the symmetric mutation distribution Mi
around trait value xi. Implementations of this third class of models typically
rely on simple Euler integration or on the fourth-order Runge-Kutta method
(e.g., Press et al. 1992).

Reaction-diffusion models: polymorphic and stochastic. In large populations
characterized by high mutation rates, stochastic elements in the dynamics of
the phenotypic distributions become negligible. This enables formal descrip-
tions of reaction-diffusion type (e.g., Kimura 1965; Bürger 1998). Specifically,
the reaction-diffusion approximation of the birth-death-mutation process de-
scribed above is given by

d

dt
pi(xi) = fi(xi, p)pi(xi) +

1

2
σ2i (xi) ∗

∂2

∂x2i
μi(xi)bi(xi, p)pi(xi)

for i = 1, . . . , N , where σ2i (xi) is the variance-covariance matrix of the sym-
metric and homogeneous mutation distribution Mi, and where ∗ denotes the
elementwise multiplication of two matrices followed by summation over all
resultant matrix elements.. An illustration of reaction-diffusion dynamics is
shown in Fig. 8.1d. Models of this fourth class are best implemented using
so-called implicit integration methods (e.g., Crank 1975). It ought to be high-
lighted, however, that the infinitely extended tails that the distributions pi
instantaneously acquire in this framework can give rise to artifactual dynamics
that offer no good match to the actual dynamics of the underling birth-death-
mutation processes in finite populations. The derivation of finite-size correc-
tions to the traditional reaction-diffusion limit overcomes these shortcomings
(Dieckmann, unpublished).
At the expense of ignoring genetic intricacies, models of adaptive dynam-

ics are geared to analyzing the evolutionary implications of complex ecological
settings. In particular, such models can be used to study all types of density-
and frequency-dependent selection, and are equally well geared to describing
single-species evolution and multi-species coevolution. As explained above,
the four model classes specified in this section are part of a single conceptual
and mathematical framework, which implies that switching back and forth be-
tween alternative descriptions of any evolutionary dynamics driven by births,
deaths, and mutations – as mandated by particular problems in evolutionary
ecology – will be entirely straightforward.

8.3 Selection-driven increases in species numbers

Frequency-dependent selection is crucial for understanding how selection pres-
sures can increase the number of species within an ecological community:

• First, whenever selection is optimizing, a single type within each species
will be most favored by selection, leaving no room for the stable coexistence
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of multiple types per species. Frequency-dependent selection pressures, by
contrast, can readily create an ‘advantage of rarity,’ so that multiple types
within a species may be stably maintained: as soon as a type’s abundance
becomes low, the advantage of rarity boosts its growth rate and thus sta-
bilizes the coexistence.

• Second, whereas gradual evolution under optimizing selection can easily
bring about stabilizing selection, it can never lead to disruptive selection.
This is because, under optimizing selection, the two relevant notions of
stability – evolutionary stability on the one hand (Maynard Smith and
Price 1973) and convergence stability on the other (Christiansen 1991) –
are strictly equivalent: a strategy will be convergence stable if and only
if it is evolutionarily stable, and vice versa (e.g., Eshel 1983; Meszéna et
al. 2001). Frequency-dependent selection pressures, by contrast, allow for
evolutionary branching points, at which directional selection turns disrup-
tive. A gradually evolving population is then trapped at the underlying
convergence stable fitness minimum until it splits up into two branches,
which subsequently will diverge. This makes the speciation process itself
adaptive, and underscores the importance of ecology for understanding
speciation.

It is thus clear that frequency-dependent selection is necessary both for the
endogenous origin and for the stable maintenance of coexisting types within
species.
For univariate traits, the normal form for the invasion fitness of mutants

with trait values x′ in resident populations with trait values x that are close
to an evolutionary branching point with trait value x∗ = 0 is given by

f(x′, x) = x′2 + cx2 − (1 + c)x′x

with c > 1 (e.g., Dieckmann 1994: 91). From this we can see that the selection
pressure at x∗ ceases, g(x∗) = 0, that x∗ is not locally evolutionarily stable,
hmm(x

∗) = 1 > 0, and that x∗ is convergence stable, hmm(x∗) − hrr(x∗) =
1−c < 0. Under these conditions, trait substitutions in x converge to x∗ as long
as the evolving population is monomorphic, then respond to the disruptive
selection at x∗ by creating a dimorphism of trait values around x∗, and finally
cause the divergence of the two stably coexisting branches away from x∗.
When considering processes of evolutionary branching in sexual popula-

tions, selection for reproductive isolation comes into play. As lineage splits are
adaptive at evolutionary branching points, in the sense of freeing populations
from being stuck at fitness minima, the evolution of premating isolation is
favored under such circumstances. Any evolutionarily attainable or already
existing mechanism of assortative mating can be recruited by selection to
overcome the forces of recombination that otherwise prevent sexual popu-
lations from splitting up (e.g., Udovic 1980; Felsenstein 1981). Since there
exist a plethora of such mechanisms for assortativeness (based on size, color,
pattern, acoustic signals, mating behavior, mating grounds, mating season,
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the morphology of genital organs etc.), and since only one out of these many
mechanisms is needed to take effect, it would indeed be surprising if many nat-
ural populations would remain stuck at fitness minima for very long (Geritz
et al. 2004). Models for the evolutionary branching of sexual populations cor-
roborate that expectation (e.g., Dieckmann and Doebeli 1999; Doebeli and
Dieckmann 2000, 2003, 2005; Geritz and Kisdi 2000; Doebeli et al. 2005).
Processes of adaptive speciation (Dieckmann et al. 2004), resulting from

the frequency-dependent mechanisms described above, are very different from
those stipulated by the standard model of allopatric speciation through geo-
graphical isolation (Mayr 1963, 1982), which have dominated speciation re-
search for decades. Closely related to adaptive speciation are models of sym-
patric speciation (e.g., Maynard Smith 1966; Johnson et al. 1996), of com-
petitive speciation (Rosenzweig 1978), and of ecological speciation (Schluter
2000), which all point in the same direction: patterns of species diversity are
not only shaped by exogenous processes of geographical isolation and immi-
gration, which can be more or less arbitrary, but can instead by driven by
endogenous processes of selection and evolution, which are bound to imbue
such patterns with a stronger deterministic component.
In conjunction with mounting empirical evidence that rates of race for-

mation and sympatric speciation are potentially quite high, at least under
certain conditions (e.g., Bush 1969; Meyer 1993; Schliewen et al. 1994), these
considerations suggest that understanding processes and patterns of commu-
nity formation will crucially benefit from notions developed in the context of
adaptive speciation.

8.4 Selection-driven decreases in species numbers

Frequency-dependent selection and density-dependent selection are also cru-
cial for understanding how selection pressures can decrease the number of
species within an ecological community:

• First, in evolutionary game theory – including all evolutionary models
based on matrix games or on the replicator equation – a population’s den-
sity is not usually part of the model, which describes only the frequencies
of different types. Without enhancements, these types of model therefore
cannot account for any density-dependent selection pressures, or capture
selection-driven extinctions during which a population’s density drops to
zero.

• Second, in optimization approaches of evolution, a constant fitness land-
scape governs the course and outcome of evolution, and, accordingly,
frequency-dependent selection is absent. Again, the density of the evolving
population is usually not part of the model. Even when it is, selection-
driven extinctions cannot occur, as no acceptable constant fitness function
will be maximized when a population goes extinct.
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These two limitations explain why, until relatively recently, population extinc-
tions caused by natural selection were rarely modeled. In particular, landmarks
of evolutionary theory are based on notions of optimizing selection: this in-
cludes Fisher’s so-called fundamental theorem of natural selection (Fisher
1930) and Wright’s notion of hill climbing on fitness landscapes (Wright 1932,
1967). Also Levins’s seminal fitness-set approach to the study of constrained
bivariate evolution (Levins 1962, 1968) is based on the assumption that, within
a set of feasible phenotypes defined by a trade-off, evolution will maximize a
population’s fitness. Even the advent of evolutionary game theory (Maynard
Smith 1982), with its conceptually most valuable refocusing of attention to-
wards frequency-dependent selection, did not help as such, since, for the sake
of simplicity, population densities were usually removed from consideration in
such models (for an alternative approach to game dynamics aimed at including
densities, see Cressman 1990).
And yet the potential of adaptations to cause the collapse of populations

was recognized early on. Haldane (1932) provided a verbal example by con-
sidering overtopping growth in plants. Taller trees get more sunlight while
casting shade onto their neighbors. As selection thus causes the average tree
height to increase, fecundity and carrying capacity decline because more of
the tree’s energy budget is diverted from seed production to wood production,
and the age at maturation increases. Arborescent growth as an evolutionary
response to selection for competitive ability can therefore cause the decline
of a population’s abundance as well as of its intrinsic growth rate, poten-
tially resulting in population extinction. The phenomenon of selection-driven
extinction is closely related to Hardin’s (1968) tragedy of the commons. In
both cases, strategies or traits that benefit the selfish interests of individuals,
and that are therefore bound to invade, undermine the overall interests of the
evolving population as a whole once these strategies or traits have become
common. Such a disconnect between individual interest and population inter-
est can only occur under frequency-dependent selection – under optimizing
selection, the two are equivalent. It is thus clear that frequency-dependent se-
lection and density-dependent selection are both necessary for capturing the
potential of adaptive evolution in a single species to cause its own extinction.
Processes of selection-driven extinction can come in several forms:

• First, evolutionary suicide (Ferrière 2000) is defined as a trait substitution
sequence driven by mutation and selection taking a population toward and
across a boundary in the population’s trait space beyond which the popu-
lation cannot persist. Once the population’s trait values have evolved close
enough to this boundary, mutants can invade that are viable as long as the
current resident trait value abounds, but that are not viable on their own.
When these mutants start to invade the resident population, they initially
grow in number. However, once they have become sufficiently abundant,
concomitantly reducing the former resident’s density, the mutants bring
about their own extinction. Webb (2003) refers to such processes of evo-
lutionary suicide as Darwinian extinction.
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• Second, adaptation may cause population size to decline gradually through
perpetual selection-driven deterioration. Sooner or later, demographic and
environmental stochasticity will then cause population extinction. This
phenomenon has been dubbed runaway evolution to self-extinction by Mat-
suda and Abrams (1994a).

• Third, the population collapse abruptly brought about by an invading
mutant phenotype may not directly lead to population extinction but
only to a substantial reduction in population size (Dercole et al. 2002).
Such a collapse will then render the population more susceptible to ex-
tinction by stochastic causes and may thus indirectly be responsible for its
extinction.

For univariate traits, the normal form for the invasion fitness of mutants with
trait values x′ in resident populations with trait values x that are close to a
critical trait value x∗ = 0 at which evolutionary suicide occurs is simply given
by

f(x′, x) = x′ − x ,

with the corresponding equilibrium abundance

n̄(x) =

{
1 + cx2 x ≤ 0
0 x > 0

with c > 0. From this we can see that the selection pressure at x∗ is positive,
g(x∗) = 1 > 0, so that trait substitutions in x converge to x∗, where the
evolving population’s equilibrium abundance abruptly drops from 1 to 0.
The occurrence here of a discontinuous transition to extinction is not acci-

dental. As has been explained by Gyllenberg and Parvinen (2001), Gyllenberg
et al. (2002), Webb (2003), and Dieckmann and Ferrière (2004), such a catas-
trophic bifurcation is a strict prerequisite for evolutionary suicide. The reason
is that selection pressures at trait values at which a continuous transition to
extinction occurs (e.g., through a transcritical bifurcation) always point in
the trait direction that increases population size: evolution towards extinc-
tion is then impossible. Allee effects, by contrast, provide standard ecological
mechanisms for discontinuous transitions to extinction.
The potential ubiquity of selection-driven extinctions is underscored by

numerous examples based on the evolutionary dynamics of many different
traits, including competitive ability (Matsuda and Abrams 1994a; Gyllen-
berg and Parvinen 2001; Dercole et al. 2002), anti-predator behavior (Mat-
suda and Abrams 1994b), sexual traits (Kirkpatrick 1996; Kokko and Brooks
2003), dispersal rates (Gyllenberg et al. 2002), mutualism rates (Ferrière et
al. 2002), cannibalistic traits (Dercole and Rinaldi 2002), maturation reac-
tion norms (Ernande et al. 2002), levels of altruism (Le Galliard et al. 2003),
and selfing rates (Cheptou 2004). Dieckmann and Ferrière (2004) showed, by
examining ecologically explicit multi-locus models, that selection-driven ex-
tinction robustly occurs also under sexual inheritance. Relevant overviews of
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the mathematical and ecological underpinnings of selection-driven extinction
have been provided by Webb (2003), Dieckmann and Ferrière (2004), Rankin
and López-Sepulcre (2005), and Parvinen (2006).
Also coevolutionary dynamics can cause extinctions. An early treatment,

which still excluded the effects of intraspecific frequency-dependent selection,
was provided by Roughgarden (1979, 1983). This limitation has been over-
come in modern models of coevolutionary dynamics based, for example, on
the canonical equation of adaptive dynamics (e.g., Dieckmann et al. 1995,
Dieckmann and Law 1996; Law et al. 1997). Also in this multi-species context
it is important to distinguish between continuous and discontinuous transi-
tions to extinction. As has been explained above, evolutionary suicide can-
not contribute to an evolutionarily driven continuous transition to extinction.
Moreover, such continuous extinctions cause mutation-limited phenotypic evo-
lution in the dwindling species to grind to a halt, since fewer and fewer in-
dividuals are around to give birth to the mutant phenotypes that fuel the
adaptive process. This stagnation renders the threatened species increasingly
defenseless by depriving it of the ability to counteract the injurious evolution
of its partner through suitable adaptation of its own. For these two reasons,
continuous evolutionary extinctions are driven solely by adaptations in the
coevolving partners. By contrast, when a transition to extinction is discon-
tinuous, processes of evolutionary suicide and of coevolutionary forcing may
conspire to oust a species from the evolving community.

8.5 First example of community evolution:
monomorphic and deterministic

Simple community modules comprising two, three, or four interacting species
have often been used for investigating how trophic interactions organize sim-
ple communities. These studies have laid the foundations for theories (i) of
competition, including the R∗ rule (Tilman 1982), (ii) of predation within the
context of exploitative ecosystems, including work on trophic cascades (Oksa-
nen et al. 1981; Oksanen and Oksanen 2000), and (iii) of omnivory, including
research on intraguild predation (Holt and Polis 1997; Diehl and Feissel 2000;
Mylius et al. 2001; HilleRisLambers and Dieckmann 2003). All these stud-
ies, however, did not account for the potential of evolutionary changes in
the ecological interactions between the considered species. Overcoming this
restriction is important as patterns of species interactions encountered in na-
ture ought to be interpreted in light of not only ecological stability but also
of evolutionary stability.
Here we take a step in this direction by investigating the evolution of

feeding preferences within a simple community module. In particular, we
examine evolutionary dynamics in simple food webs comprising a basal re-
source and two antagonistic consumer species, where each consumer is capa-
ble of feeding on the resource, on its antagonist, or on a combination of both
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(HilleRisLambers and Dieckmann 2003). The relative investments into re-
source or antagonist feeding characterize the consumers’ feeding preferences
and can evolve subject to a trade-off. In this way, all of the classic three-
species community modules – including linear food chains, two consumers
sharing a resource, omnivory on the part of one consumer, and mutual intra-
guild predation between two consumers – can be realized in the model. By
examining how feeding preferences – and thus the trophic linkages between
species – evolve, we can chart the possible evolutionary pathways connect-
ing all these classic community modules (HilleRisLambers and Dieckmann,
submitted). Since density- and frequency-dependent selection pressures are
important for addressing these questions, and since it is desirable to derive
the considered evolutionary dynamics from the underlying population dynam-
ics, models of adaptive dynamics provide a useful framework for this kind of
analysis.
The abundances nC and nD of the two antagonistic consumers change ac-

cording to Lotka–Volterra dynamics, assuming intrinsic mortalities and linear
functional responses. The basal energetic input is provided by a dynamic re-
source, whose abundance nR changes according to semichemostat dynamics
and consumer feeding. The community’s population dynamics are thus given
by

d

dt
nC = nC(eCRaCRnR + eCDaCDnD − aDCnD − dC) ,
d

dt
nD = nD(eDRaDRnR + eDCaDCnC − aCDnC − dD) ,
d

dt
nR = rR(kR − nR)− nR(aCRnC + aDRnD) ,

with attack coefficients a, conversion efficiencies e, and intrinsic mortality
rates d. The carrying capacity and intrinsic growth rate of the resource are
denoted by kR and rR, respectively.
The feeding preferences of the two consumers are affected by a trade-off

between the attack coefficients for resource feeding and antagonist feeding,

aiR = amax,ix
si
i , aij = amax,i ( 1− xi )si ,

for i = C,D and j = D,C, where, for consumer i, amax,i is the maximal attack
coefficient, si is the trade-off strength, and the adaptive trait 0 ≤ xi ≤ 1
determines the feeding preference, measured as the relative investment into
resource feeding. Intermediate feeding strategies, 0 < xi < 1, characterize
omnivorous consumers. For si > 1, generalist feeding strategies (xi ≈ 1

2 ) are
disfavored compared with specialist feeding strategies (xi ≈ 0, 1), resulting in
specialist advantage. The reverse is true for si < 1, which thus corresponds
to generalist advantage. On this basis, the canonical equations (Sect. 8.2) for
the two adaptive traits xC and xD are given by

d

dt
xi =

1

2
μiσ

2
i n̄iamax,i si[eiRx

si−1
i n̄R − eij (1− xi)si−1 n̄j] ,
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for i = C,D and j = D,C, where equilibrium abundances are denoted by n̄,
and μi and σ

2
i are the mutation probability and variance in consumer i.

Coevolutionary dynamics unfold within the constraints of ecological co-
existence. HilleRisLambers and Dieckmann (2003) found that, in the model
specified above, regions of coexistence open up around linear three-species
food chains, (xC , xD) = (0, 1), (1, 0), where one consumer is a better antag-
onist feeder, while the other consumer is a better resource feeder. When the
trade-off strengths sC and sD are varied together, sC = sD, two extreme
scenarios can be distinguished:

• At strong specialist advantage, linear three-species food chains are evo-
lutionarily stable (in the sense of the corresponding trait combinations
being asymptotically stable under the adaptive dynamics described by
the two simultaneous canonical equations for xC and xD). Under these
conditions, selection simplifies community structure by causing the evo-
lution of neighboring trait values towards (xC, xD) = (0, 1), (1, 0). This
means that the better resource feeder will invest even more into resource
feeding, while the better antagonist feeder will invest even more into an-
tagonist feeding, until the evolving three-species food chain has become
strictly linear.

• At strong generalist advantage, trait combinations ensuring ecological co-
existence are severely limited (HilleRisLambers and Dieckmann 2003). Un-
der these conditions, linear three-species food chains become evolutionarily
unstable, and both the better resource feeder and the better antagonist
feeder evolve towards generalist strategies, which ultimately results in the
exclusion of the former by the latter. Also here the end result is a simpli-
fied community structure, in this case given by a simple two-species food
chain.

At intermediate trade-off strengths, ecologically feasible communities evolve
towards linear two- or three-species food chains, largely depending on the
initial feeding preference of the better antagonist feeder.
It must be expected that the trade-offs constraining the attack coeffi-

cients of consumer species are not identical, sC �= sD . Considering inter-
mediate trade-off strengths, we find that if the better antagonist feeder is
more constrained at generalist feeding strategies than the better resource
feeder, linear food chains are evolutionarily unstable, and evolutionarily sta-
ble food webs exhibiting more complex trophic interactions may be realized.
Fig. 8.3a shows such a coevolutionary attractor with (xC , xD) �= (0, 1), (1, 0).
Fig. 8.3a also shows that different coevolutionary attractors may coexist. De-
pending on the initial food web configuration, coevolution leads to one of the
three outcomes depicted in Fig. 8.3b: (i) coexistence between two omnivores,
(ii) coexistence between an omnivore and a pure antagonist feeder, or (iii)
evolutionary exclusion of the better resource feeder. Which of these occurs
is affected largely by the initial feeding preference of the better antagonist
feeder and also by the relative scaling of the evolutionary rates in the two
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Fig. 8.3. Evolution of community structure in first example. Traits xC and xD
measure the degree to which consumers C and D invest into feeding on the resource
R, as opposed to feeding on each other. For xC > xD, C is the better resource feeder,
while D is the better antagonist feeder. In panel (a), the evolutionary isoclines of
xC and xD are depicted by continuous and dashed curves, respectively. Regions in
panel (a) indicate different potentials for coexistence and coevolution. Region C:
C and R can coexist, while D goes extinct. Region D: D and R can coexist, while
C goes extinct. Region C/D: ecological bistability between coexistence of R with
either C or D. Regions (i), (ii), and (iii): C, D, and R can coexist, so that C and
D can coevolve. The community structures resulting from these coevolutionary dy-
namics then depend on the initial conditions for (xC, xD) and are shown in panel
(b). Region (i): Coevolution towards attractor depicted by filled circle, correspond-
ing to omnivorous mutual intraguild predation. Region (ii): Coevolution towards
attractor depicted by filled square, corresponding to omnivory on the part of just
one consumer. Region (iii): Coevolution towards Region D, corresponding to the
exclusion of consumer C. Parameters: sC = 0.82, sD = 1.5, amax,C = amax,D = 0.4,
eCR = eDR = 0.2, eCD = eDC = 0.8, dC = dD = 0.05, rR = 0.2, kR = 100,
μCσ

2
C/μDσ

2
D = 5.

consumers, measured by μCσ
2
C/μDσ

2
D. Specifically, the basin of attraction for

outcome (iii) increases when the better antagonist feeder evolves faster than
the better resource feeder. It is also possible that communities of type (i)
exhibit cyclical fluctuations in the feeding preferences xC and xD, akin to
those found by Dieckmann et al. (1995) for predator-prey coevolution and
by Law et al. (1997) for coevolution under asymmetric competition. These
evolutionary cycles may come dangerously close to the boundaries of coex-
istence, so that small environmental perturbations may then lead to a shift
from outcome (i) to (iii).
We can summarize the results of the analysis here by concluding that lin-

ear three-species food chains are most likely to persist evolutionarily under
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strong specialist advantage, whereas the evolutionary exclusion of consumers
is most likely under strong generalist advantage. By contrast, complex trophic
interactions in this model are difficult to stabilize evolutionarily. They are
most likely to occur in communities in which trade-off strengths are interme-
diate and the better antagonist feeder experiences a stronger trade-off than
the better resource feeder, especially when the latter evolves faster than the
former.

8.6 Second example of community evolution:
oligomorphic and stochastic

Some existing models of food web evolution incorporate realistic popula-
tion dynamics, but at the same time rely on interactions mediated by high-
dimensional traits that lack clear and direct ecological interpretations (e.g.,
Caldarelli et al. 1998; Drossel al. 2001). By contrast, a model by Brännström
et al. (in preparation), described below, builds on previous foundational work
by Loueille and Loreau (2005) and accordingly is based on body size as an
evolving trait of high physiological and ecological relevance.
The considered community comprises one autotrophic andN heterotrophic

species evolving through mutation-limited phenotypic adaptation. Each species
i possesses a trait value xi determining its body size on a logarithmic scale.
From these body sizes, species-specific properties such as energy requirements,
competitive interactions, and attack coefficients are determined. The commu-
nity’s demographic processes follow Lotka–Volterra dynamics, with the dy-
namics of the non-evolving autotrophic species i = 0 given by

d

dt
n0 = n0

[
b0 − n0/k0 −

N∑
j=1

exp(xj − x0)F (xj − x0)nj
]

and the per capita birth and death rates, respectively, of the heterotrophic
species i = 1, . . . , N given by

bi(x, n) = e
N∑
j=0

exp(xj − xi)F (xi − xj)nj ,

di(x, n) = d(xi) +
N∑
j=1

F (xj − xi)nj +
N∑
j=1

C(xi − xj) exp(xj)nj .

The four terms on the two right-hand sides above correspond, in turn, to re-
production, intrinsic mortality, mortality from predation, and mortality from
interference competition:

• Energy inflow from foraging results in reproduction as described by the
first term. The rate at which new individuals enter the focal species
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through birth thus depends on the abundance of available prey, on the
relative difference in size between predator and prey, and on a predator’s
ability to attack a prey. The latter is characterized by a shifted Gaus-
sian function F of the relative size difference, with F being referred to as
the foraging kernel. The degree to which energy is lost as prey biomass is
converted into offspring is measured by the trophic efficiency e.

• The intrinsic mortality rate in the second term is assumed to decrease
with body size according to a power law resulting in body-size-dependent
generation times consistent with empirical observations (e.g., Peters 1983).

• Losses resulting from predation are captured by the third term, which im-
mediately follows from the considerations concerning the foraging kernel.

• Interference competition between individuals is described by the fourth
term. The increase in mortality caused by interference from other individ-
uals depends on their biomass and on the relative size difference. This is
characterized by a Gaussian function C, centered at zero and referred to
as the competition kernel. Accordingly, two individuals that greatly differ
in size will compete much less than two individuals that have similar sizes.
The exponential term ensures that smaller individuals are affected more
by interference competition.

The evolutionary dynamics of this community are modeled under the assump-
tion that mutations are rare, so that a new mutant will either successfully
invade the resident community or be extinct by the time the next successful
mutation occurs. We can then employ an oligomorphic extension of the evolu-
tionary random walk model described in Sect. 8.2. Mutations occur at a rate
proportional to the total birth rate of the corresponding resident species, and
mutant trait values are assumed to be normally distributed around those of
their parent. Whether or not a mutant morph can invade the resident com-
munity will depend on its invasion fitness, with the success probabilities of
potentially invading mutants given in Sect. 8.2. When a successful invasion
occurs, its community-level consequences can be determined from the Lotka–
Volterra dynamics specified above. However, since the underlying time integra-
tion is time-consuming, an approximate, but in practice accurate, algorithm
is used, known as the oligomorphic stochastic model (Ito and Dieckmann, un-
published). The steps in this algorithm aim at inferring the structure of the
post-invasion community without time integration whenever possible. Simu-
lations of the evolutionary process end when the community-level probability
of successful invasion falls below a prescribed threshold.
Fig. 8.4a shows how the interplay between mutation and selection gradu-

ally leads from a single ancestral species to a community of seven heterotrophic
species, through a process of sequential evolutionary branching. The structure
of the resulting food web is depicted in Fig. 8.4b.
To isolate and determine the factors governing diversity, two complemen-

tary approaches were used. First, the asymptotic number of species was eval-
uated numerically, as described above. Second, the strengths of disruptive
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Fig. 8.4. Evolution of community structure in second example. Panel (a) shows
the temporal development of community structure through recurrent evolutionary
branching, utilizing a logarithmic time scale. Panel (b) depicts the resulting com-
munity structure. Each species is represented by a circle, with its vertical position
given by its trophic level. Circles are connected by arrows, from prey to predator,
where the energy flow between the two corresponding species account for more than
10% of the total energy inflow to the recipient species. Arrows connecting to the
bottom indicate consumption of the autotrophic species (or basal resource, which is
not displayed). Parameters: x0 = 1, k0 = 100, b0 = 1, e = 0.3, d(xi) = d0 exp(−qxi)
with d0 = 0.2 and q = 0.75; F is a lognormal function with mean 3, standard de-
viation 1.5, and amplitude 2.5; C is a lognormal function with mean 0, standard
deviation 0.6, and amplitude 0.0025.

selection at the first and second branching points were determined as a func-
tion of model parameters. This enabled analytical insights into which param-
eters are important for the initial stages of food web evolution. Interference
competition and metabolic scaling (in the form of reduced mortality at larger
body size) proved to be critical components in this regard. The former pro-
motes evolutionary branching and is a prerequisite for diversity to develop,
while the latter offsets the advantage that smaller species enjoy in terms of
increased encounter rates per unit of biomass. In simulations in which either
interference competition or metabolic scaling were absent, evolution did not
lead to communities with more than just one or two species.
It proved useful to group parameters according to their role in the model,

with energy parameters directly affecting the energy flow, foraging parame-
ters determining the shape of the foraging kernel, and competition parame-
ters governing the interference competition between individuals of similar size.
With this grouping and terminology in place, it turned out that the initial
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stages of food web evolution primarily depend on the energy and competition
parameters. While these same parameters were naturally also important for
the asymptotically evolving diversity, their role there was largely overshad-
owed by the foraging parameters. The fact that some parameters are mainly
important in the early stages of community evolution while others become
crucial only during the later stages shows that an analysis that stopped pre-
maturely after investigating only the first or second incidence of evolutionary
branching would be insufficient for determining which mechanisms and pa-
rameters affect the longer-term structuring of ecological communities.

8.7 Third example of community evolution:
polymorphic and deterministic

Explaining the evolutionary origin and history of food webs through sequen-
tial adaptive diversification is a challenge that has as yet been tackled by
few evolutionary models. It is therefore interesting to explore to what extent
the coevolution of predator-prey interactions underlying trophic community
structures can induce recurrent evolutionary branching.
In nature the ecological dynamics of phenotypes engaged in trophic in-

teractions depend on how the considered individuals perform in their roles
as predator on the one hand and as prey on the other. Both of these com-
ponents must be expected to evolve. Ito and Ikegami (2003, 2006) therefore
considered bivariate adaptive traits x = (xr, xu), with the first trait com-
ponent xr determining how an individual is exposed as a resource (strat-
egy as prey) and the second trait component xu determining how the in-
dividual is utilizing such resources (strategy as predator). Resources may
have many relevant phenotypic properties – including body size, toxicity,
proportion of protective tissue, ability to hide, running speed etc. – which
jointly can be described by a vector z. The contribution an individual with
resource trait xr makes to the density in this potentially multivariate re-
source space is denoted by pr(xr, z), and analogously the utilization spec-
trum of an individual with utilization trait xu is pu(xu, z). Given a phe-
notypic distribution p(x), the distribution of resource properties is thus
Pr(z) =

∫ ∫
p(xr, xu)dxupr(xr, z) dxr + S(z), where S accounts for sources

of resource supply from outside the modeled population. Likewise, the popu-
lation’s utilization spectrum is Pu(z)x = x

∫ ∫
p(xr , xu)dxrpu(xu, z) dxu. Ito

and Ikegami (2003, 2006) then considered the following ecological and evolu-
tionary dynamics,

d

dt
p(x) =

(
e

∫
F (z)pu(xu, z) dz −

∫
F (z)

Pu(z)

Pr(z)
pr(xr, z) dz − d

)
p(x)

+
1

2
μσ2 ∗ ∂

2

∂x2
p(x) ,
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where e measures trophic conversion efficiency and d is the intrinsic death rate.
The function F (z) = aPr(z)/(1 + Pr(z)/P1/2) is a Holling type II functional
response, with maximum a and half-saturation constant P1/2. As explained in
Sect. 8.2 and in the Appendix, the population-level effect of frequent muta-
tions can be approximated by a diffusion term with diffusion coefficient matrix
1
2
μσ2 (to avoid dynamical artifacts, values of p(x) are reset to zero after falling
below a very low cutoff threshold).
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Fig. 8.5. Evolution of community structure in third example. When two trait com-
ponents for an individual’s strategy as prey, xr, and for its strategy as predator, xu,
evolve under selection pressures resulting from predator-prey interactions, complex
food webs can emerge through recurrent evolutionary branching. Panel (a) shows
the temporal development of community structure, with the widths of tubes reflect-
ing the densities of phenotypic clusters. Panels (b) to (d) show the evolving food
web at three different moments in time. Spheres represent phenotypic clusters, with
diameters reflecting the corresponding densities. On the bottom planes, the shad-
ows of these spheres show the distribution p(x). Tubes represent trophic links, with
diameters reflecting the corresponding interaction strengths. Tubes connecting to
the bottom planes indicate consumption of the external supply of resources (which
is assigned trophic level 0). The resultant trophic levels of phenotypic clusters are
shown along the vertical axes in (b) to (d). Parameters: e = 0.1, d = 1, a = 20,
P1/2 = 17,

1
2
μσ2 = ((3 · 10−2, 0), (0, 10−3)), S0 = 200, σS = 0.08.
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For the sake of simplicity, here we assume a one-dimensional resource
space, strictly localized functions pr(xr, z) = δ(z − xr) and pu(xu, z) =
δ(z − xu), where δ denotes Dirac’s delta function, a normally distributed
source of external resources, S(z) = S0N0,σ2S (z), and traits xr and xu confined
to the unit interval. Within a wide range of parameter values, the dynamics
of initially unimodal phenotypic distributions p(x) then comprises phases of
directional evolution and evolutionary branching. Phenotypic clusters with
few prey and many predators go extinct, while phenotypic clusters with many
prey and few predators rapidly increase in density and subsequently split
through evolutionary branching. Since branching in xr often induces branch-
ing in xu, and vice versa, the branching sequences resulting from this posi-
tive feedback bring about a richly structured food web. Large food webs are
maintained through a dynamic balance between selection-driven branching
and extinction.
Implementation of sexual reproduction, akin to the model by Drossel

and McKane (2000), does not change these dynamics qualitatively (apart
from the fact that phenotypic clusters become reproductively isolated). Giv-
ing pr and pu a certain width, by assuming Gaussian functions instead of
delta functions, also does not qualitatively affect evolutionary outcomes. Fi-
nally, interference competition among predators can be considered by using
F (z) = aPr(z)/(Pu(z) + Pr(z)/P1/2), which gives rise to a ratio-dependent
functional response (Arditi and Ginzburg 1989) and facilitates the evolution-
ary origin and maintenance of complex food webs, as illustrated in Fig. 8.5.

8.8 Fourth example of community evolution:
polymorphic and stochastic

The examples presented so far may create the impression that trophic inter-
actions were a necessary prerequisite for the evolutionary origin and mainte-
nance of complex community structures. This is clearly not the case. Purely
competitive interactions have long been shown to ensure the maintenance of
large species numbers, with early work on the species packing problem dating
back to MacArthur and Levins (1967), Vandermeer (1970), May (1973), and
Roughgarden (1974).
To illustrate and underscore the potential of purely competitive interac-

tions to bring about and structure multi-species communities through evo-
lutionary dynamics including adaptive radiations, we consider adaptations
under asymmetric competition. Specifically, we assume that interactions be-
tween individuals are affected by a univariate quantitative trait x, of which
we may think, for example, as representing stem height in plants or adult
body size in animals. In either case, individuals with a small trait value will
suffer a lot from competition against individuals with a large trait value,
while the reverse effects will often be negligible. And if individuals are too
far apart in their trait values, so as to occupy essentially different ecological
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niches, they will hardly interact at all. These qualitative dependencies are
captured by the function

C(x− x′) = exp
(
1

2
σ2Cβ

2

)
exp

(
−(x− x

′ + σ2Cβ)
2

2σ2C

)
,

which has been used to describe the strength of competition exerted by an
individual with trait value x′ on an individual with trait value x (Rummel
and Roughgarden 1985; Taper and Case 1992). Here β = 0 corresponds to
symmetric competition, while β > 0 causes asymmetric competition favoring
larger trait values. We also assume that trait values differ in their intrinsic
carrying capacity,

K(x) = K0 exp

(
−1
2
(x− x0)2/σ2K

)
,

which, by itself, causes stabilizing selection towards x = x0. On this basis,
we can specify the per capita birth and death rates of individuals with trait
values x in a community with phenotypic density p,

b(x, p) = b0 , d(x, p) =
1

K(x)

∫
C(x− x′)p(x′) dx′ = 1

K(x)

n∑
k=1

C(x− xk) ,

resulting in simple population dynamics of Lotka–Volterra type.
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Fig. 8.6. Evolution of community structure in fourth example. When a trait gov-
erning asymmetric competition evolves, selection-driven increases and decreases in
morph number are embedded into a macroevolutionary pattern of perpetual lam-
inar flow of morphs towards larger trait values. The individual-based dynamics
shown involved more than 420,000,000 explicitly simulated birth and death events.
Parameters: b0 = 1, K0 = 1000, x0 = 2, σK = 1, σC = 0.3, β = 2, μ = 0.005,
σ = 0.025.
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The individual-based birth-death-mutation model introduced in Sect. 8.2
is well suited to explore the resultant evolutionary dynamics (Doebeli and
Dieckmann 2000). Fig. 8.6 shows a typical realization of this stochastic pro-
cess. As we can see, directional selection towards larger trait values initially
causes convergence to a primary evolutionary branching point. Evolutionary
branching subsequently enlarges the number of morphs in the community,
until the maximum number resulting from limitations on species packing has
been reached. Perpetual coevolutionary change then ensues, through (i) the
selection-driven extinction of morphs with large trait values, which run out
of carrying capacity, (ii) the laminar and gradual flow of resident morphs to-
wards the larger trait values favored by asymmetric competition, and (iii) the
continual replenishment of morphs at low trait values through adaptive radi-
ations triggered by the opening up of ecological opportunities resulting from
the first two effects. It is worthwhile to highlight that in this model the in-
cessant coevolutionary turnover is caused entirely by intrinsic or endogenous
mechanisms. No environmental forcing needs to be invoked for understanding
the systematic trends in the observed macroevolutionary pattern.

8.9 Summary

In this chapter we have shown how models of adaptive dynamics provide a
variety of flexible tools for studying the evolutionary dynamics of ecological
communities. Once demography and mutations have been specified, evolution-
ary and coevolution processes – including those that increase or decrease the
number of species in the community – can be analyzed at several mutually il-
luminating levels of description. While individual-based descriptions of birth,
deaths, and mutations provide the finest level of detail, such models are often
too computationally intensive and too unwieldy to be comprehensively exam-
ined. It is then helpful to have available other classes of models that provide
tried and tested approximations. Depending on the features of the evolving
community and the nature of the addressed research questions, evolutionary
random walks, gradient-ascent models, or reaction-diffusion models may al-
ternatively be best suited for systematically investigating evolving community
structures.
Until relatively recently, community models have focused either on the

ecological dynamics of large communities or on the evolutionary dynamics
of small communities. Now the time seems ripe to bring together these two
previously independent strands of inquiry in a new, more ambitious synthe-
sis. Even though it thus has already become clear that a rich diversity of
ecological mechanisms can drive the persistent diversification of ecologically
relevant adaptive traits, and thus of ecological community structure, much
research remains to be done in this area. The eventual goal will be to ar-
rive at a systematic understanding of the ways through which processes of
interaction, immigration, and adaptation can work together to generate the
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rich, but at the same time not arbitrary, community structures observed in
nature.
Theoretical models of community evolution are revealing the stunning ca-

pacity of ecological interactions, in conjunction with the selection pressures
thus engendered, to result in the emergence of non-random community pat-
terns. It thus seems safe to conclude that neither of the old Clementsian or
Gleasonian notions – viewing ecological communities as either organismically
or externally structured – can do justice to the subtle interplay of endoge-
nous and exogenous demographic and evolutionary pressures unfolding in real
communities. Fueled by the mutual shaping and reshaping of ecological niches
caused by community evolution, natural community structures appear to oc-
cupy a highly complex middle ground.

8.10 Appendix: Specification and derivation
of adaptive dynamics models

This appendix provides salient mathematical details on how the four models
of adaptive dynamics are defined and derived.

Polymorphic Stochastic Model. We start from an individual-based descrip-
tion of the ecology of an evolving multi-species community (Dieckmann 1994;
Dieckmann et al. 1995). The number of species in the considered commu-
nity is N . The phenotypic distribution pi of a population of ni individu-
als in species i is given by pi =

∑ni
k=1 δxik , where xik are the trait val-

ues of individual k in species i, and δxik denotes the Dirac delta function
peaked at xik, δxik(xi) = δ(xi − xik). As a reminder we mention that Dirac’s
delta function is defined algebraically through its so-called sifting property,∫
F (xi)δ(xi − x0) dxi = F (x0) for any continuous function F . This implies
pi(xi) = 0 unless xi is represented in species i. We can thus think of pi(xi) as
a density distribution in the trait space of species i, with one peak positioned
at the trait value of each individual in that species. Since

∫
δxik (x) dx = 1 for

any xik, we also have
∫
pi(xi) dxi = ni. If pi(xi) �= 0 for more than one xi,

the population in species i is called polymorphic, otherwise it is referred to as
being monomorphic. The community’s phenotypic composition is described
by p = (p1, . . . , pN).
The birth and death rates of an individual with trait value xi in species i

are given by bi(xi, p) and di(xi, p). Each birth by a parent with trait
value xi gives rise, with probability μi(xi), to mutant offspring with a trait
value x′i �= xi, distributed according to Mi(x′i, xi), whereas with probabil-
ity 1− μi(xi) trait values are inherited faithfully from parent to offspring.
A master equation (e.g., van Kampen 1981) describes the resultant birth-
death-mutation process,

d

dt
P (p) =

∫
[r(p, p′)P (p′)− r(p′, p)P (p)] dp′ .
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The equation describes changes in the probability P (p) for the evolving com-
munity to be in state p. This probability increases with transitions from states
p′ �= p to p (first term) and decreases with transitions away from p (second
term). A birth event in species i causes a single Dirac delta function, peaked at
the trait value xi of the new individual, to be added to pi, p→ p′ = p+uiδxi ,
where the elements of the unit vector ui are given by Kronecker delta sym-
bols, ui = (δ1i, . . . , δNi). Analogously, a death event in species i corresponds
to subtracting a Dirac delta function from p, p→ p′ = p− uiδxi .
The rate r(p′, p) for the transition p→ p′ is thus given by

r(p′, p) =
N∑
i=1

∫
[r+i (xi, p)Δ(p+ uiδxi − p′) + r−i (xi, p)Δ(p− uiδxi − p′)] dxi .

Here Δ denotes the generalized delta function introduced by Dieckmann
(1994), which extends the sifting property of Dirac’s delta function to func-
tion spaces, i.e.,

∫
F (p)Δ(p − p0) dp = F (p0) for any continuous functional

F . The terms Δ(p + uiδxi − p′) and Δ(p − uiδxi − p′) thus ensure that the
transition rate r vanishes unless p′ can be reached from p through a birth
event (first term) or death event (second term) in species i. The death rate
r−i (xi, p) is given by multiplying the per capita death rate di(xi, p) with the
density pi(xi) of individuals at that trait value,

r−i (xi, p) = di(xi, p)pi(xi) .

Similarly, the birth rate r+i (xi, p) at trait value x is given by

r+i (xi, p) = [1− μi(xi)]bi(xi, p)pi(xi) +
∫
μi(x

′
i)bi(x

′
i, p)pi(x

′
i)Mi(x

′
i, xi) dx

′
i ,

with the first and second terms corresponding to births without and with mu-
tation, respectively. The master equation above, together with its transition
rates, describes so-called generalized replicator dynamics (Dieckmann 1994)
and offers a generic formal framework for deriving simplified descriptions of
individual-based mutation-selection processes.

Monomorphic Stochastic Model. If the time intervals between successfully
invading mutations are long enough for evolution to be mutation-limited,
μi(xi) → 0 for all i and xi, the evolving populations will remain monomor-
phic at almost any moment in time (unless and until evolutionary branch-
ing occurs). We can then consider trait substitutions resulting from the
successful invasion of mutants into monomorphic resident populations that
have attained their ecological equilibrium. Denoting trait values and pop-
ulation sizes by xi and ni for the residents in species i = 1, . . . , N and
by x′j and n

′
j for a mutant in species j, we can substitute the density

p = (n1δx1 , . . . , nNδxN ) + ujn
′
jδx′j into the generalized replicator dynamics

defined above to obtain a master equation for the probability P (n, n′j) of
jointly observing resident population sizes n and mutant population size n′j.
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Assuming that the mutant is rare while the residents are sufficiently abun-
dant to be described deterministically, this master equation is equivalent to
the joint dynamics

d

dt
ni = [bi(xi, p)− di(xi, p)]ni

for the resident populations with i = 1, . . . , N and

d

dt
P (n′j) = bj(x

′
j , p)P (n

′
j − 1) + dj(x′j, p)P (n′j + 1)

for the mutant population in species j, where p = (m1δx1 , . . . , mNδxN ) and
P (m′j) denotes the probability of observing mutant population size m

′
j . The

rare mutant thus follows a homogeneous and linear birth-death process.
Assuming that the resident community is at its equilibrium, the con-

ditions bi(xi, p̄) = di(xi, p̄) for all species i = 1, . . . , N define n̄i(x) and
thus p̄(x) = (n̄1(x)δx1 , . . . , n̄N(x)δxN ), b̄j(x

′
j, x) = bj(x

′
j, p̄(x)), d̄j(x

′
j, x) =

dj(x
′
j, p̄(x)), and f̄j(x

′
j, x) = b̄j(x

′
j , x) − d̄j(x′j , x). When the resident pop-

ulation in species j is small enough to be subject to accidental extinc-

tion through demographic stochasticity, sj(x
′
j , x) = (1 − e−2f̃j(x

′
j ,x))/(1 −

e−2f̃j(x
′
j,x)n̄j(x)) with f̃j(x

′
j , x) = f̄j(x

′
j , x))/[b̄j(x

′
j, x) + d̄j(x

′
j, x)] approx-

imates the probability of a single mutant individual with trait value x′i
to survive accidental extinction through demographic stochasticity and to
go to fixation by replacing the former resident with trait value xi (e.g.,
Crow and Kimura 1970). When the resident population in species j is
large, n̄j(x) → ∞, this probability converges to the simpler expression
sj(x

′
j , x) = max(0, f̄j(x

′
j, x))/b̄j(x

′
j, x) known from branching process theory

(e.g., Athreya and Ney 1972).
Once mutants have grown beyond the range of low population sizes in

which accidental extinction through demographic stochasticity is still very
likely, they are generically bound to go to fixation and thus to replace the
former resident, provided that their trait value is sufficiently close to that of
the resident, x′j ≈ xj (Geritz et al. 2002). Hence the transition rate r(x′, x)
for the trait substitution x → x′ is given by multiplying (i) the distribution
μj(xj)b̄j(xj, x)Mj(x

′
j , xj) of arrival rates for mutants x

′
j among residents x,

with (ii) the probability sj(x
′
j, x) of mutant survival given arrival, and with

(iii) the probability 1 of mutant fixation given survival,

r(x′, x) =
N∑
j=1

μj(xj)b̄j(xj, x)Mj(x
′
j, xj)n̄j(x)sj(x

′
j, x)

N∏
i=1,i �=j

δ(x′i − xi)

(Dieckmann 1994; Dieckmann et al. 1995; Dieckmann and Law 1996). Here
the product of Dirac delta functions captures the fact that all but the jth

component of x remain unchanged, while the summation adds the transition
rates for those jth components across all species.
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Based on these transition rates, the master equation for the probability
P (x) of observing trait value x,

d

dt
P (x) =

∫
[r(x, x′)P (x′)− r(x′, x)P (x)] dx′ ,

then describes the directed evolutionary random walks in trait space resulting
from sequences of trait substitutions.

Monomorphic Deterministic Model. If mutational steps xi → x′i are small,
the average of many realizations of the evolutionary random walk model
described above is closely approximated by

d

dt
xi =

∫
(x′i − xi)r(x′, x) dx′

for i = 1, . . . , N (e.g., van Kampen 1981). After inserting r(x′, x) as derived
above, this yields

d

dt
xi = μi(xi)b̄i(xi, x)n̄i(x)

∫
si(x

′
i, x)(x

′
i − xi)Mi(x′i, xi) dx′i .

By expanding si(x
′
i, x) = max(0, f̄i(x

′
i, x))/b̄i(x

′
i, x) around xi to first order

in x′i, we obtain si(x
′
i, x) = max(0, (x

′
i − xi)gi(x))/b̄i(xi, x) with gi(x) =

∂
∂x′i
f̄i(x

′
i, x)|xi=x′i ; notice here that f̄i(xi, x) = 0. This means that in the

x′i-integral above only half of the total x
′
i-range contributes, while for the

other half the integrand is 0. If mutation distributions Mi are symmetric –
Mi(xi +Δxi, xi) =Mi(xi −Δxi, xi) for all i, xi, and Δxi – we obtain

d

dt
xi =

1

2
μi(xi)n̄i(x)

∫
(x′i − xi)T (x′i − xi)Mi(x′i, xi) dx′ gi(x) .

The integral is the variance-covariance matrix of the mutation distributionMi
around trait value xi, denoted by σ

2
i (xi). Hence we recover the canonical

equation of adaptive dynamics (Dieckmann 1994; Dieckmann and Law 1996),

d

dt
xi =

1

2
μi(xi)n̄i(x)σ

2
i (xi)gi(x)

for i = 1, . . . , N . When mutational steps xi → x′i are not small, higher-order
correction terms can be derived: these improve the accuracy of the canonical
equation and also cover non-symmetric mutation distributions (Dieckmann
1994; Dieckmann and Law 1996).

Polymorphic Deterministic Model. When mutation probabilities are high,
evolution is no longer mutation-limited, so that the two classes of models
introduced above – both being derived from the analysis of invasions into
essentially monomorphic populations – cannot offer quantitatively accurate
approximations of the underlying individual-based birth-death-mutation pro-
cesses. Provided that population sizes are sufficiently large, it instead becomes
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appropriate to investigate the average distribution-valued dynamics of many
realizations of the birth-death-mutation process,

d

dt
p(x) =

∫
[p′(x)− p(x)]r(p′, p) dp′ .

Inserting the transition rates r(p′, p) specified above for the individual-based
evolutionary model, we can infer (by collapsing the integrals using the sifting
properties of the Dirac delta function and of the generalized delta function)

d

dt
pi(x) = r

+
i (xi, p)− r−i (xi, p)

for i = 1, . . . , N . Inserting r+i (xi, p) and r
−
i (xi, p) from above, this gives

d

dt
pi(x) = [1− μi(xi)]bi(xi, p)pi(xi)

+

∫
μi(x

′
i)bi(x

′
i, p)pi(x

′
i)Mi(x

′
i, xi) dx

′
i − di(xi, p)pi(xi) .

Further analysis is simplified by assuming that the mutation distributionsMi
are not only symmetric but also homogeneous – Mi(x

′
i + Δxi, xi + Δxi) =

Mi(x
′
i, xi) for all i, x

′
i, xi, and Δxi. Expanding μi(x

′
i)bi(x

′
i, p)pi(x

′
i) up to

second order in x′ around xi,

μi(x
′
i)bi(x

′
i, p)pi(x

′
i) = μi(xi)bi(xi, p)pi(xi) + (x

′
i − xi)

∂

∂xi
μi(xi)bi(xi, p)pi(xi)

+
1

2
(x′i − xi)T [

∂2

∂x2i
μi(xi)bi(xi, p)pi(xi)](x

′
i − xi) ,

then yields

d

dt
pi(x) = fi(xi, p)pi(xi) +

1

2
σ2i (xi) ∗

∂2

∂x2i
μi(xi)bi(xi, p)pi(xi) ,

with fi(xi, p) = bi(xi, p) − di(xi, p), σ2i (xi) =
∫
(x′i − xi)T (x′i − xi)Mi(x′i, xi)

dx′i, and with ∗ denoting the elementwise multiplication of two matrices fol-
lowed by summation over all resultant matrix elements. This result also pro-
vides a good approximation when mutation distributions are heterogeneous,
as long as σ2i (xi), rather than being strictly independent of xi, varies very
slowly with xi on the scale given by its elements.
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95. Schliewen, U.K., Tautz, D., and Pääbo, S. (1994). Sympatric speciation sug-
gested by monophyly of crater lake cichlids. Nature 368: 629–632

96. Schluter, D. (2000). The Ecology of Adaptive Radiation. Oxford, UK: Oxford
University Press

97. Taper, M.L., and Case, T.J. (1992). Coevolution among competitors. In: Fu-
tuyma, D., and Antonivics, J. eds. Oxford Surveys in Evolutionary Biology,
Volume 8. Oxford, UK: Oxford University Press, pp. 63–111

98. Tilman, D. (1982). Resource Competition and Community Structure. Prince-
ton, USA: Princeton University Press

99. Udovic, D. (1980). Frequency-dependent selection, disruptive selection, and
the evolution of reproductive isolation. American Naturalist 116: 621–641

100. van Kampen, N.G. (1992). Stochastic Processes in Physics and Chemistry.
Amsterdam, The Netherlands: North-Holland

101. van Tienderen, P.H., and de Jong, G. (1986). Sex-ratio under the haystack
model – Polymorphism may occur. Journal of Theoretical Biology 122: 69–81

102. Vandermeer, J.H. (1970). The community matrix and the number of species
in a community. American Naturalist 104: 73–83

103. Webb, C.T. (2003). A complete classification of Darwinian extinction in eco-
logical interactions. American Naturalist 161: 181-205

104. Wright, S. (1932). The roles of mutation, inbreeding, crossbreeding and selec-
tion in evolution. Proceedings of the 6th International Congress of Genetics 1:
356–366

105. Wright, S. (1967). Surfaces of selective value. Proceedings of the National
Academy of Sciences of the USA 102: 81–84



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (Euroscale Coated v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.5
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 100
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 72
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 2.40
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 72
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 2.40
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 72
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K 0
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ([Based on 'web'] [Based on 'web'] Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PageMarksFile /RomanDefault
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [72 72]
  /PageSize [595.276 841.890]
>> setpagedevice




